计算方法简明教程习题全集及解析

计算方法简明教程习题全集及解析
计算方法简明教程习题全集及解析

例1 已知数据表

xk

10

11

12

13

f(xk)

2.302 6

2.397 9

2.484 9

2.564 9

试用二次插值计算f(11.75)(计算过程保留4位小数).并回答用线性插值计算f(11.75),应取

哪两个点更好?

解因为11.75更接近12,故应取11,12,13三点作二次插值.先作插值基函数.已知x0=11, y0=2.397 9,x1=12, y1=2.484 9 ,x2=13, y2=2.564 9

P2(x)=y0l0(x)+y1l1(x)+y2l2(x)

P2(x)=

f(11.75)?P2(11.75)=

=2.463 8

若用线性插值,因为所求点x=11.75在11与12之间,故应取x=11,x=12作线性插值合适.注:在作函数插值时,应根据要求,使所求位于所取的中央为好,任意取点一般近似的效果

差些.第五章插值与最小二乘法

5.1 插值问题与插值多项式e x

实际问题中若给定函数是区间上的一个列表函数

,如果,且f(x)在区间上是连续的,要求用一个简单的,便于计算的解析表达式在区间上近似f(x),使

(5.1.1)

就称为的插值函数,点称为插值节点,包含插值节点的区间称为插值区间.

通常,其中是一组在上线性无关的函数族,表示组成的函数空间表示为

(5.1.2)

这里是(n+1)个待定常数,它可根据条件(5.1.1)确定.当

时,表示次数不超过n次的多项式集合,

,此时

(5.1.3)

称为插值多项式,如果为三角函数,则为三角插值,同理还有

分段多项式插值,有理插值等等.由于计算机上只能使用+、-、×、÷运算,故常用的就是多项式、分段多项式或有理分式,本章着重讨论多项式插值及分段多项式插值,其他插值问题不讨论.

从几何上看,插值问题就是求过n+1个点的曲线,使它近似于已给函数,如图5-1所示.

插值法是一种古老的数学方法,它来自生产实践.早在一千多年前,我国科学家在研究历法时就应用了线性插值与二次插值,但它的基本理论却是在微积分产生以后才逐步完善的,其应用也日益广泛.特别是由于计算机的使用和航空、造船、精密机械加工等实际问题的需要,使插值法在理论上和实践上得到进一步发展.尤其是近几十年发展起来的样条(Spline)插值,获得了极为广泛的应用,并成为计算机图形学的基础.

本章主要讨论如何求插值多项式、分段插值函数、三次样条插值、插值多项式的存在唯一性及误差估计等.此外,还讨论列表函数的最小二乘曲线拟合问题与正交多项式.

讲解:

插值多项式就是根据给定n+1个点,求一个n次多项式:

使

这里是n+1个待定系数,根据n+1个条件得到的方程组是关于参数

的线性方程组。当节点互异时由于系数行列式

所以解是存在唯一的。但直接求解较复杂,也得不到统一的表达式。所以通常求插值多项式不用这种方法,而使用下节给出的基函数方法。

5.2 Lagrange插值

5.2.1 线性插值与二次插值

最简单的插值问题是已知两点及,通过此两点的插值多项式是一条直线,即两点式

(5.2.1)

显然,满足插值条件,所以就是线性插值.若记

则称为与的线性插值基函数.如图5-2所示.

于是

当n=2,已给三点,

称为关于点的二次插值基函数,它满足

(5.2.2)

的图形见图5-3.它们是满足(5.2.2)的二次插值多项式.满足条件

的二次插值多项式可表示为

(5.2.3)

的图形是通过三点的抛物线.

5.2.2 Lagrange插值多项式

将n=1及n=2的插值推广到一般情形,考虑通过(n+1)个点,的插值多项式,使

(5.2.4)

用插值基函数方法可得

(5.2.5)

其中

(5.2.6)

称为关于的n次插值基函数,它满足条件

显然(5.2.5)得到的插值多项式满足条件(5.2.4),则称为Lagrange(拉格

朗日)插值多项式.

引入记号

(5.2.7)

于是由(5.2.6)得到的可改写为

从而(5.2.4)中的可改为表达式

(5.2.8)

并有以下关于插值多项式的存在唯一性结论.

定理2.1满足条件(5.2.4)的插值多项式是存在唯一的.

证明存在性已由(5.2.5)给出的证明,下面只需证明唯一性.用反证法,假定还有另一个使成立,于是有且

,它表明n次多项式有n+1个根这与代数基本定理n次多项式只有n个根矛盾,故.证毕.

5.2.3 插值余项与误差估计

若插值区间为,在上有插值多项式,则称

为插值余项.

定理 2.2设(表示f(x)在上(n+1)阶导数连续),且节点

,则满足条件(5.2.4)的插值多项式对有

(5.2.9)

这里是(5.2.7)所定义的.

证明由插值条件(5.2.4)可知,故对任何x∈有

(5.2.10)

其中K(x)是依赖于x的待定函数.将x∈看做区间上任一固定点,作函数

显然,且,它表明在上有n+2个零点

及x,由Rolle定理可知在上至少有n+1个零点.反复应用Rolle定理,可得在上至少有一个零点ξ∈,使

代入(5.2.10)则得余项表达式(5.2.9).证毕.

注意定理中ξ∈依赖于x及点,此定理只在理论上说明ξ存在,

实际上仍依赖于x,即使x固定,ξ也无法确定.因此,余项表达式(5.2.9)的准确值是算不出的,只能利用(5.2.9)式做截断误差估计,由

可得误差估计

(5.2.11)

当n=1时可得线性插值的误差估计

(5.2.12)

当n=2时有二次插值的误差估计

(5.2.13)

利用余项表达式(5.2.9),当时,由于,于是有

即 (5.2.14) 它表明当时,插值多项式就是它自身,(5.2.14)也给出了插值基函数

的性质,特别当k=0时有

例5.1已给,,,用线性插值及二次插值计算sin 0.336 7的近似值并估计误差.

解由题意知被插函数为[,给定插值点为,

,,,,.由(5.2.1)知线性插值函数为

当x=0.336 7时

其截断误差由(5.2.12)得

其中.因f(x)=sin x,f″(x)=-sin x,故

于是

若用二次插值,在(5.2.3)中取n=2,则得

这个结果与6位有效数字的正弦函数表完全一样.其截断误差由(5.2.13)得

其中

于是

例5.2 设,试证

解由于的线性插值

于是

例5.3证明,其中是关于点5的插值基函数. 解

讲解:

当n=1及n=2得到的是线性插值和抛物线插值,对于一般情形给定被插值函数

的n+1个点,要求可通过n+1个点的插值基函数得到,其中就是由(5.2.6)给出的,它在点的初值为1,其余点上为0,于是有

(5.2.5)

它显然满足条件就是Legrange插值多项式。在区间上用它的余项为

(5.2.9)这里是依赖于和插值点,实际是给不出来的。所以也不可能精确得到,但当在区间上有最大值,则得误差估计

利用余项表达式(5.2.9),令则得到插值基函数得一个重要性质(5.2.14)特别当K=0有

用这一性质可以证明例5.3得等式。

5.3 均差与Newton插值公式

5.3.1 均差及其性质

利用插值基函数求出Lagrange插值多项式(5.2.8),在理论上是很重要的,但用

计算f(x)近似值却不大方便,特别当精度不够,需增加插值节点时,计算要全部重新进行.为此我们可以给出另一种便于计算的插值多项式,它表达为

(5.3.1)

其中为待定常数.显然,它可根据插值条件

(5.3.2)

直接得到,例如当时,得;当时,由(5.3.1)得

,得.实际上就是直线方程的点斜式.,

.为了给出的系数的表达式,先引进以下定义.

定义3.1记为f的零阶均差,零阶均差的差商记为

称为函数关于点的一阶均差.一般地,记(k-1)阶均差的差商为

(5.3.3)

称为f关于点的k阶均差.

均差有以下重要性质:

(1) 均差对称性.k阶均差可表示为函数值的线性组合,即

(5.3.4)

这个性质可用归纳法证明,见[3].(5.3.4)表明均差与节点排列次序无关,称为均差对称性.

(2) 如果是x的m次多项式,则是x的(m-1)次多项式.

证明由均差定义可知

右端分子为x的m次多项式,且当时,此式为零,所以分子含有

的因子,与分母相约后得到(m-1)次多项式.

(3) 若,并且互异,则有

,其中(5.3.5) 这公式可直接由Rolle定理证明(略).

其他均差性质可作为习题自己证明.均差可列均差表,见表5-1

5.3.2 Newton插值

根据均差定义,把x看成上一点,可得

只要把后一式代入前一式,就得到

其中

(5.3.6)

(5.3.7)

是由(5.2.7)定义的.由(5.3.6)确定的多项式显然满足插值条件,且次数不超过n,它就是形如(5.3.1)的多项式,其系数为

我们称为Newton均差插值多项式.系数就是均差表5-1中加横线的各阶均差,它比Lagrange插值的计算量少,且便于程序设计.

(5.3.7) 为插值余项,由插值多项式的唯一性可知,它与(5.2.9)是等价的.事实上,利用均差与导数关系式(5.3.5),可由(5.3.7)推出(5.2.9).但(5.3.7)更有一般性,它对f 是由离散点给出的情形或f导数不存在时均适用.

例5.4给出f(x)的函数表(见表5-2),求四次牛顿插值多项式,并由此计算f(0.596)的近似值.

从均差表看到四阶均差已近似于常数.故取四次插值多项式做近似即可.

于是

截断误差

这说明截断误差很小,可忽略不计.

讲解:

均差即差为函数值之差商比相应自变量之差。K阶均差是K-1阶均差的均差。由(5.3.3)给出,它有很多性质,其中(5.3.4)及(5.3.5)最重要,利用均差定义则可推出Newton均差插值公式,从而得到Newton均差插值多项式

及均差形式的余项表达式(5.3.7),实际上当则的极限

就是函数在处的Taylor多项式。余项极限就是Taylor多项式。Newton插值多项

式有点是计算简单。且增加一个插值点就增加一项。前面计算都是有效的。注意,由于插值点固定时插值多项式是存在唯一的。因此Newton插值多项式与Lagrange插值多项式只是形式不同,它们都是同一个多项式。

5.4 差分与Newton前后插值公式

5.4.1 差分及其性质

当插值节点为等距节点时,称h为步长,此时均差及Newton 均差插值多项式(5.3.6)均可简化.

定义4.1设,记

(5.4.1)

(5.4.2)

分别称为在处以h为步长的一阶向前差分及一阶向后差分.符号Δ及Δ分别称为向前差分算子及向后差分算子.

利用一阶差分可定义二阶差分为

(二阶向前差分)

(二阶向后差分)

一般地,可定义m阶向前差分及m阶向后差分为

此外还可定义不变算子I及位移算子E为:

(5.4.3)

于是,由,可得

同理可得.

由差分定义并应用算子符号运算可得下列基本性质.

性质1各阶差分均可用函数值表示.例如

(5.4.4)

(5.4.5) 其中为二项式展开系数.

性质2 可用各阶差分表示函数值.例如,可用向前差分表,因为

于是

(5.4.6) 性质3均差与差分有的关系.由定义可知,向前差分

一般地有

(5.4.7) 同理,对向后差分有

(5.4.8)

利用(5.4.7)及(5.3.5)又可得到

(5.4.9) 其中,这就是差分与导数的关系.差分的其他性质从略.

计算差分可列差分表,表5-3是向前差分表.

表5-3

5.4.2 等距节点插值公式

将牛顿均差插值多项式(5.3.6)中各阶均差用相应差分代替,就可得到各种形式的等距节点插值公式.这里只推导常用的前插与后插公式.

如果有节点,要计算附近点x的函数f(x)的值,可令

,于是

将此式及(5.4.7)代入(5.3.6),则得

(5.4.10)

称为Newton前插公式,其余项由(5.2.9)得

(5.4.11)

如果要用函数表示附近的函数值f(x),此时应用牛顿插值公式(5.3.6),插值点应按

的次序排列,有

作变换,并利用公式(5.4.8),代入上式得

(5.4.12) 称为Newton后插公式,其余项

(5.4.13)

例5.5设,给出在的值.试用三次等距节点插值公式求f(1.01)及f(1.28)的近似值.

解本题只要构造出f的差分表,再按Newton前插公式及后插公式计算即

可.的差分表如下所示.

计算f(1.01)可用Newton前插公式(5.4.10),此时用到差分表中的上半部分划波纹线的各阶差分值.

计算f(1.28)要用Newton后插公式(5.4.12),它用到差分表下部分的差分Δ(即下划直线的).

f(1.01)与f(1.28)的7位有效数字分别为,,可见计

算结果已相当精确.

讲解:

实际使用时给定的函数表常常是等距节点的情形,这时只需考察函数值之差。于是均差变成了差分,相应的Newton均差插值变成Newton前插与后插公式,当插值节点

由小到大排列得到的是前插公式,反之,插值点由大到小排列得到的是后插公式,而利用插值计算f(x)的值时如果只用到函数表中的部分值。那么计算x0附近点x的函数值就用前插公式,而计算xn附近的函数值f(x),就用后插公式。

5.5 Hermite插值

不少问题不但要求在插值节点上函数值相等,而且还要求节点上导数值相等,有的甚

至要求高阶导数值也相等,满足这种要求的插值多项式称为Hermite插值多项式.若给出的插值条件有(m+1)个则可造出m次插值多项式.建立Hermite插值多项式的方法仍可采用插值基函数和均差插值的方法,较常见的一类带导数插值的问题,是在给出节点

上已知要求,

使

(5.5.1)

若用基函数方法表示可得

(5.5.2)

其中及是关于点的(2n+1)次Hermite插值基函数,它们为(2n+1)次多项式且满足条件

(5.5.3)

若f(x)在上存在(2n+2)阶导数,则其插值余项为

(5.5.4)

其中ξ∈与x有关,由(5.2.7)表示.

下面只对n=1的情形给出的表达式.若插值节点为及,要求,使

(5.5.5)

相应插值基函数为,它们满足条件

根据给出条件可令

显然

再由及

解得

于是可得

(5.5.6)

同理,可求得

(5.5.7)

于是满足条件(5.5.5)的Hermite插值多项式为

(5.5.8)

它的插值余项为

,ξ在与之间(5.5.9) 下面再给出一个典型的例子.

例5.6求,使及的插值多项式及其余项表达式.

解这里给出了四个条件故可造三次插值多项式,由

,可用Newton均差插值,令

(5.5.10)

显然它满足条件,为待定参数.

由可得

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

贴现利息的计算题

票据贴现利息的计算 票据贴现利息的计算分两种情况: (1)票据贴现 贴现利息=票据面值x贴现率x贴现期 不带息票据不需要算到期值他的面值就是到期值带息票据要算到期值 (2)带息票据的贴现 票据到期值=票据面值+票面面值*票面利率*票据期限 票据到期值=票据面值×(1+贴现率×票据期限/12) 贴现利息=票据到期值x贴现率x贴现天数/360 贴现利息=票据到期值x贴现率x贴现月数/12 贴现实际所得额=票据面值-贴现息 【例】:汇票金额10000元,到期日2006年7月20日,持票人于4月21日向银行申请贴现,银行年贴现利率3.6%: 贴现利息=10000x90x3.6%/360=90元,银行在贴现当日付给持票人9910元,扣除的90元就是贴现利息。 一公司于8月15日拿一张银行承兑汇票申请贴现面值1000000贴现率2.62%,签发于上年的12月30日,到期日为10月29日,贴现息如何计算? 16(16-31日)+30(9月)+29(1-29日)=75天 贴现息=1000000x 75x(2.62%/360)=5458.33 〔例〕2004年3月23日,企业销售商品收到一张面值为10000元,票面利率为6%,期限为6个月的商业汇票。5月2日,企业将上述票据到银行贴现,银行贴现率为8%。假定在同一票据交换区域,则票据贴现利息计算如下: 票据到期值=10 000 x(1+6×6% /12)=10 300(元) 该应收票据到期日为9月23日,其贴现天数应为144天(30 +30 +31 +31+23-1)

票据贴现利息=票据到期值x贴现率x贴现天数/360=103 00 x 8% x 144/360=329.60(元)

财务管理学计算公式及例题

财务管理学计算公式与例题 第二章时间价值与收益风险 1.单利终值是指一定量的资本在若干期以后包括本金和单利利息在内的未来价值。 单利终值的计算公式为: F=P+P×n×r=P×(1+n×r) 单利利息的计算公式为: I=P×n×r 式中:P是现值(本金);F是终值(本利和); I是利息;r是利率;n是计算利息的期数。 某人于20x5年1月1日存入中国建设银行10000元人民币,存期5年,存款年利率为5%,到期本息一次性支付。则到期单利终值与利息分别为: 单利终值=10 000×(1+5×5%)=12 500(元) 利息=10 000×5%×5=2 500(元) 2.单利现值是指未来在某一时点取得或付出的一笔款项,按一定折现率计算的现在的价值。 单利现值的计算公式为: 某人3年后将为其子女支付留学费用300 000元人民币,20x5年3月5日他将款项一次性存入中国银行,存款年利率为 4.5%。则此人至少应存款的数额为: 第n期末:F=P×(1+r)n 式中:(1+r)n称为复利终值系数或一元的复利终值, 用符号(F/P,r,n)表示。(可查表) 因此,复利终值也可表示为:F=P×(F/P,r,n) 某人拟购房一套,开发商提出两个付款方案: 方案一,现在一次性付款80万元; 方案二,5年后一次性付款100万元。假如购房所需资金可以从银行贷款取得,若银行贷款利率为7% ,则: 方案一5年后的终值为: F=80×(F/P,7%,5)=80×1.4026=112.208(万元) 由于方案一5年后的付款额终值(112.208万元)大于方案二5年后的付款额(100万元),所以选择方案二对购房者更为有利。

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.–作为x的近似值一定具有6位有效数字,且其误差限。() 2.对两个不同数的近似数,误差越小,有效数位越多。() 3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用近似表示cos x产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算的乘除法次数尽量少,应将该表达式改写 为; 2.–是x舍入得到的近似值,它有位有效数字,误差限 为,相对误差限为; 3.误差的来源是; 4.截断误差 为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题 1.,,分别作为的近似值,各有几位有效数字? 2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3.利用等价变换使下列表达式的计算结果比较精确: (1), (2) (3) , (4) 4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。 5*. 采用迭代法计算,取 k=0,1,…, 若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。 练习题二 一、是非题 1.单点割线法的收敛阶比双点割线法低。 ( ) 2.牛顿法是二阶收敛的。 ( ) 3.求方程在区间[1, 2]内根的迭代法总是收敛的。( ) 4.迭代法的敛散性与迭代初值的选取无关。 ( ) 5.求非线性方程f (x)=0根的方法均是单步法。 ( ) 二、填空题

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

银行贷款利息计算题目附答案

1、某客户2011年8月1日贷款10000元,到期日为2012 年6月20日,利率7.2‰,该户于2012年5月31日前来还款,计算贷款利息应收多少? 304*7.2‰*10000/30=729.6(元) 2、2012年7月14日,某客户持一张2012年5月20日签 发、到期日为2012年10月31日、金额10万元的银行承兑汇票,到我行办理贴现,已知贴现率为4.5‰,我行规定加收邮程为3天,计算票据办理贴现后实际转入该客户账户金额是多少? 答:贴现天数为109天,另加3天邮程共112天 利息收入:100000*112*4.5‰/30=1680 实际转入该客户账户100000-1680=98320 重点在于天数有天算一天,大月31日要加上,另3天邮程要加上 3、张三2012年1月1日在我行贷款5000元,到期日为 2012年10月20日,利率9‰,利随本清,约定逾期按15‰罚息,张三于2012年12月10日还款,他共要支付多少利息? 答:期限内天数293天,293*5000*9‰/30=439.50 逾期51天,51*5000*15‰/30=127.50 439.50+127.50=567元

4、张三2011年1月1日在我行贷款10000元,到期日为 2011年12月31日,利率7.2‰,利随本清,约定逾期按12‰计算罚息,张三于2011年9月1日要求先行归还部分贷款,本金加利息共计5000元,计算本金和利息各是多少? 答:归还时天数为243天, 本金=5000÷(1+7.2‰÷30×243)=4724.47 利息=275.53 5、如上题,张三在2011年9月1日归还部分贷款后,直 到2012年4月10日才来还清贷款,计算他应支付本息共计多少? 答:本金=10000-4724.47=5275.53 期限内天数=364天逾期天数=101天 5275.53×7.2‰÷30×364+5275.53×12‰÷30×101 =460.87+213.13 =674元(利息) 本息合计5275.53+674=5949.53

Matlab中文简明教程

MatLab简介 MATLAB是什么? 典型的使用包括: 数学和计算 算术发展模型, 模拟,和原型 数据分析,开发,和可视化 科学和工程图学 应用发展包括图形用户界面设计 MATLAB表示矩阵实验室。 MATLAB系统 MATLAB系统由5主要的部分构成: 1. MATLAB语言。这是高阶的矩阵/数组语言,带控制流动陈述,函数,数据结构,输入/输出,而且面向目标的编程特点。 Ops 操作符和特殊字符。 Lang 程序设计语言作。 strfun 字符串。 iofun 输入/输出。 timefun 时期和标有日期。 datatypes数据类型和结构。 2. MATLAB工作环境。这是你作为MATLAB用户或程序编制员的一套工具和设施。 3. 制图这是MATLAB制图系统。它为2维上,而且三维的数据可视化,图象处理,动画片制作和表示图形包括高阶的指令在内。它也为包括低阶的指令在内,允许你建造完整的图形用户界面(GUIs),MATLAB应用。制图法功能在MATLAB工具箱中被组织成5文件夹: graph2d 2-的维数上的图表。 graph3d 三维的图表。 specgraph 专业化图表。 graphics 制图法。 uitools 图形用户界面工具。 4. MATLAB的数学的函数库。数学和分析的功能在MATLAB工具箱中被组织成8文件夹。 elmat 初步矩阵,和矩阵操作。 elfun 初步的数学函数。 specfun 专门的数学函数。

matfun 矩阵函数-用数字表示的线性的代数。 datafun 数据分析和傅立叶变换。 polyfun 插入物,并且多项式。 funfun 功能函数。 sparfun 稀少矩阵。 5. MATLAB应用程序接口(API)。这是允许你写C、Fortran语言与MATLAB交互。 关于 Simulink Simulink ? MATLAB为做非线性的动态的系统的模拟实验的交互式的系统。它是允许你通过把方框图拉到屏幕,灵活地窜改它制作系统的模型的用图表示的鼠标驱动的程序。实时工作室?允许你产生来自你的图表块的C代码,使之能用于各种实时系统。 关于工具箱 工具箱是为了解答特别种类的问题扩展MATLAB环境的MATLAB函数的综合的(M-文件)收集 MatLab工作环境 命令窗口 若输入 A = [1 2 3; 4 5 6; 7 8 10] 按下回车键后显示如下 A = 1 2 3 4 5 6 7 8 10 清除命令窗口 clc 这并不清除工作间,只是清除了显示,仍可按上箭头看到以前发出的命令

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f(4)=5.9,则二次Ne wton 插值多项式中x 2系数为 ( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

各种利息计算方法例题

.各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元=1.58元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.25%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元=171元 本息合计=50000+171=50171元 ※2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年 =2880元. ※2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)=(907.2+34.08)=940.08元.

计算机网络简明教程课后答案第三章

数据链路(即逻辑链路)与链路(即物理链路)有何区别“电路接通了”和“数据链路接通了”的区别何在 1数据链路与链路的区别在于数据链路除链路外,还必须有一些必要的规程来控制数据的传输。因此,数据链路比链路多了实现通信规程所需的硬件和软件。 2“电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了。但是,数据传输并不可靠。在物理连接基础上,在建立数据链路连接,才是“数据链路接通了”。此后,由于数据链路连接具有检测、queen和重传等功能,才使不太可靠地物理链路变成可靠的数据来南路,惊醒可靠的数据传输。当数据链路断开连接时,物理电路连接不一定跟着断开连接。 数据链路层的三个基本问题为什么都必须加以解决 帧定界是分组交换的必然要求 透明传输避免消息符号与帧定界符号相混淆 差错检测防止合差错的无效数据帧浪费后续路由上的传输和处理资源 PPP协议的主要特点是什么为什么PPP不适用帧的编号PPP适用于什么情况为什么PPP协议不能使数据链路层实现可靠传输 简单,提供不可靠的数据报服务,检错,无纠错 PPP协议是点对点线路中的数据链路层协议;它有三部分组成:一个将IP数据报封装到串行链路的方法,一个用来建立、配置和测试数据链路的链路控制协议LCP,一套网络控制协议;PPP是面向字节的,处理差错检测,支持多种协议;PPP不使用序号和确认机制,因此不提供可靠传输的服务。它适用在点到点线路的传输中。 PPP协议适用同步传输技术传送比特串000。试问经过零比特填充后变成怎样的比特串若接收方收到的PPP帧的数据部分是000110110,问删除发送方加入零比特后变成怎样的比特串 经过比特填充后:0100 去掉填充的比特:0001110 局域网的主要特点是什么为什么局域网采用广播通信方式而广域网不采用呢局域网LAN是指在较小的地理范围内,将有限的通信设备互联起来的计算机通信网络从功能的角度来看,局域网具有以下几个特点:(1)共享传输信道,在局域网中,多个系统连接到一个共享的通信媒体上。(2)地理范围有限,用户个数有限。通常局域网仅为一个单位服务,只在一个相对独立的局部范围内连网,如一座楼或集中的建筑群内,一般来说,局域网的覆盖范围越位10m~10km内或更大一些。从网络的体系结构和传输检测提醒来看,局域网也有自己的特点:(1)低层协议简单(2)不单独设立网络层,局域网的体系结构仅相当于相当与OSI/RM的最低两层(3)采用两种媒体访问控制技术,由于采用共享广播信道,而信道又可用不同的传输媒体,所以局域网面对的问题是多源,多目的的连连管理,由此引发出多中媒体访问控制技术 在局域网中各站通常共享通信媒体,采用广播通信方式是天然合适的,广域网通常采站点间直接构成格状网。 常用的局域网的网络拓扑有哪些种类现在最流行的是哪种结构为什么早期的以太网选择总

现代设计方法复习题集含答案

《现代设计方法》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《现代设计方法》(编号为09021)共有单选题,计算题,简答题, 填空题等多种试题类型,其中,本习题集中有[ 填空题,单选题]等试题类型未进入。 一、计算题 1. 用黄金分割法求解以下问题(缩小区间三次)。 342)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε。 2. 用黄金分割法求解以下问题(缩小区间三次) 32)(m in 2+=x x f ,给定[][],1,2a b =-,取1.0=ε 3. 用黄金分割法求解以下问题(缩小区间三次) 432+=x )x (f min ,给定[][]40,b ,a =,取10.=ε。 4. 用黄金分割法求解以下问题(缩小区间三次)。 12)(m in 3+-=x x x f ,给定初始区间[][]3,0,=b a ,取5.0=ε 5. 用黄金分割法求解以下问题(缩小区间三次)。 107)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε 6. 用梯度法求解无约束优化问题: 168)(m in 22221+-+=x x x X f ,取初始点[]T X 1,1)0(= ,计算精度1.0=ε。 7. 用梯度法求解96)(m in 12221+-+=x x x X f ,[]T X 1,1)0(= ,1.0=ε。 8. 用梯度法求解44)(m in 22221+-+=x x x X f ,[]T X 1,1)0(=,1.0=ε 。 9. 用梯度法求解无约束优化问题:1364)(m in 222 121+-+-=x x x x X f ,取初始点

利率表示方法和利息的计算方法

利息计算方法及例题 各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元×80%=1.26元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.2 5%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元×80%=136.80元 本息合计=50000+136.8=50136.80元 ※ 2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年×80%=2304元. ※ 2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)×80%=(907.2+34.08)×0.8=752.64元. 3、利随本清贷款利息计算:方法与活期存单一样,按头际天数有一天算一天。逾期归还的,逾期部分按每天3/万计算。(现行计算方法是按原订利率的50%计算罚息) ※例:某户于2006年2月3日向信用社借款30000元,利率为10.8‰,定于2006年8月10日归还,若贷户于2006年7月3日前来归还贷款时,问应支付多少利息? 解:利息=(213-63+0)天×(10.8‰÷30)×30000元=1620元. ※例:某户于2005年10月11日向信用社借款100000元,利率为9.87‰,定于2006年5月10日到期,贷户于2006年6月15日前来归还贷款,问应支付多少利息? 解:利息=(160+360-311+2)天×100000元×(9.87‰÷30)+(195-160+1)天×100000元×(9.87‰÷30×1.5)=6941.90+1776.60=8718.50元 4、定活两便利息计算:存期不足三个月按活期存款利率计算。三个月以上六个月以下的整个存期按定期三个月的利率打六折计算,六个月以上一年以下的整个存期按定期六个月的利率打六折计算,超过一年的整个存期都按一年期利率打六折算。日期有一天算一天. 例:某存款户于2005年3月1日存入10000元定活两便存款,分别于2005年8月4日、2005年9月1 5日、2006年6月16日支取,问储户支取时分别能得多少利息?(三个月利率为1.71%,半年利率为2.0 7%,一年利率为2.25%) 解:2005年8月4日支取时可得利息=(244-91+3)天×(1.71%÷360)×10000元×60%×80%=35.57元. 2005年9月15日可得利息=(285-91+4)天×(2.07%÷360)×10000元×60%×80%=54.65元.

计算方法简明教程插值法习题解析

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1()(1)(2)()()2 ()()1()(1)(2)()()6()()1()(1)(1) ()() 3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x == ∑ 022 3()4() 14(1)(2)(1)(1)2 3 5376 2 3 l x l x x x x x x x =-+=- --+ -+=+ - 2.给出()ln f x x =的数值表 用线性插值及二次插值计算ln 0.54的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln 0.54即(0.54)f , 则0.50.540.6<<

21121221 11122()10(0.6)()10(0.5) ()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.93147( 0.6) 5.10826 (x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln 0.54时, 1200102021101201220212001122()()()50(0.5)(0.6)()()()()()100(0.4)(0.6)()()()()()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291( 0.5)( 0.6) 69.3147( 0.4)(0.6)0.51082650(0.4)(0.5 x x x x x x =-?--+---?--2(0.54)0.615319840.615320 L ∴=- ≈- 3.给全cos ,090x x ≤≤ 的函数表,步长1(1/60),h '== 若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤ 时, 令()cos f x x = 取0110,( )6060 180 10800 x h π π === ? = 令0,0,1,...,5400i x x ih i =+= 则5400902x π = = 当[]1,k k x x x -∈时,线性插值多项式为

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, (0) a a >的牛顿 迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 21 12(1)(,0,1,2,.... (2),1,2,...... k k k x k x a x a k x a k +-= -=≥= 证明: (1) ( 2 2 112222k k k k k k k k x a a x ax a x a x a x x x +-??-+-=+-== ? ?? (2) 取初值0 >x ,显然有0 >k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而 ( )k k k k k x x x x x 28882182 1-=-??? ? ??+=-+ n n k k x x 21221102 1 5.221041 85 .28--+?=??<-∴>≥ 1 k x +∴必有2n 位有效数字。

8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021* ?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1 a 为* x 中第一个非零数) 则7 .21 =x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71 .22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718 x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7 .21 =x ,0183.01 <-e x ∴ 其相对误差限为00678.07 .20183.01 1≈<-x e x 同理对于71 .22 =x ,有 003063.071 .20083 .022≈<-x e x

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

相关文档
最新文档