有机前处理方法总汇

有机前处理方法总汇
有机前处理方法总汇

序号标准名称标准编号替代标准号发布日期实施日期

1 有机分析样品前处理方法SL 391一一2007 2007.08.20 2007.11.20

固相萃取气相色谱/质谱分析法(GC/MS)测

2 SL 392 2007 2007.08.20 2007.11.20

定水中半挥发性有机污染物

吹扫捕集气相色谱/质谱分析法(GC/MS)测

3 SL 393—2007 2007.08.20 2007.11.20

定水中挥发性有机污染物

4 铅、锅、钒、磷等34种元素的测定SL 394--2007 2007.08.20 2007.11.20

5 地表水资源质量评价技术规程SL 395--2007 2007.08.20 2007.11.20

第1部分:液液萃取法

SL 391—2007

1范围

本部分适用于水样中难溶或微溶的半挥发性有机物的萃取和浓缩。

2方法概述

定量移取一定量的水样至分液漏斗中,调至所需的pH值后,分次用二氯甲烷进行萃取,干燥浓

缩萃取液,依净化和测定方法所需要的溶剂,进行溶剂置换。

3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致沾污,应采用全程方法空白验证实

验中所用的材料是否存在干扰,若存在,找出干扰源,消除污染。

3.2有些化合物在碱性萃取条件下易发生分解反应,如有机氯农药可能发生脱氯反应,酞酸酯类化

合物可能发生置换反应,酚类化合物可能反应生成丹宁酸盐。pH值越高,分解反应越强,萃取时间

越短,反应越弱。

3.3避免使用含有酞酸酯的塑料制品,以防止对测定结果产生干扰。

第2部分:索氏提取法

SL 391一一2007

1范围

本部分适用于提取土壤、沉积物中的难挥发和半挥发性有机物。

2方法概述

将一定量固体样品与无水硫酸钠混合,置于萃取套筒中或置于两层玻璃棉之间,利用合适的溶剂

在索氏提取器中进行提取。然后根据需要对提取液进行干燥、溶剂置换、净化和浓缩等处理。3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致干扰,应采用全程方法空白验证实

验中所用的材料是否存在干扰,若存在,应找出干扰源,消除之。

3.2实验过程中避免使用塑料制品,塑料中普遍含有酞酸酯类污染物,会对测定结果产生干扰。

3.3洗涤玻璃器皿时,应避免使用含肥皂成分的洗涤剂,因肥皂很难从玻璃器皿上冲洗掉,引起

pH值升高,导致某些化合物的降解。如艾氏剂、七氯和大部分有机磷农药都可能产生降解。

第3部分:固相萃取法

本部分适用于从水样中萃取半挥发和难挥发有机物。

2方法概述

SL 391—2007

取一定体积的水样,将其调至所需的pH值后,以一定的速率通过固相萃取盘或固相萃取柱,利

用高分子大网状吸附树脂与样品各组分之间的相互作用,将样品中的待测物吸附、保留在固相萃取盘

或柱中,并最大限度地摒弃其他组分。采用二氯甲烷或其他合适的溶剂将吸附的待测物洗脱下来,萃

取液用无水硫酸钠干燥,依净化和测定方法所需要的溶剂进行溶剂置换,再经过净化、浓缩后,用于

分析,测定出组分在水样中的含量。

3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致干扰,应采用全程方法空白验证实

验中所用的材料是否存在干扰,若存在,应找出干扰源,进行消除。

3.2在实验过程中应使用玻璃器皿,避免使用塑料制品,塑料中普遍含有酞酸酯类污染物,会对测

定结果产生干扰。

3.3键合相硅胶(如C-s)长时间暴露在pH值小于2或大于9的水样品中会发生水解,降低萃取效

率并引起基线漂移,这时可改用苯乙烯二乙烯基苯(SDVB)萃取盘或柱进行萃取。

3.4样品颗粒会阻塞固相萃取柱,延长萃取时间,使用适当的滤膜过滤水样可以缩短萃取时间。即

使采用滤膜过滤水样,此方法也不适合悬浮物含量过高(大于1%)的水样。

第4部分:快速溶剂萃取法

SL 391 2007

1范围

本部分适用于萃取土壤、沉积物中难溶或微溶于水的半挥发性有机物,包括有机磷农药、有机氯

农药、氯代除草剂、多氯联苯(PCBs)、多氯二苯并对二恶英和多氯二苯并呋哺(PCDDs/PCDFs)、总石油烃、柴油和废油等。

对于小颗粒的干燥物体萃取效率较高,因此样品最好经过风干和研磨,再进行萃取。取样量一般

为10~309,可根据实际情况适当增减取样量。

2方法概述

样品经干燥、研磨后,加入分散剂,转移至萃取池中。根据目标化合物极性选择合适的溶剂,泵

人萃取池,加温、加压,萃取5~10min。将萃取液收集到收集瓶中,经净化、脱水、浓缩处理,供

色谱分析用。

3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致干扰,应采用全程方法空白验证实

验中所用的材料是否存在干扰,若存在,应找出干扰源,进行消除。

3.2在实验过程中应使用玻璃器皿,避免使用塑料制品,塑料中普遍含有酞酸酯类污染物,会对测

定结果产生干扰。

3.3在洗涤玻璃器皿时,应避免使用含肥皂成分的洗涤剂。肥皂很难从玻璃器皿壁上冲洗掉,它使

pH值升高,呈碱性,导致某些化合物的降解。尤其对艾氏剂、七氯和大部分有机磷农药都会产生

影响。

3.4在必要的时候,可采用硅酸镁载体或硫磺进行净化。

第5部分:氧化铝净化法

SL 391—2007

1范围

本部分适用于含有酞酸酯和亚硝胺的样品提取液的净化。

2方法概述

2.1选用装有氧化铝填料的层析柱或固相萃取柱对样品提取液进行净化。

2.2层析柱是在玻璃柱中填充适量的氧化铝吸附剂,固相萃取柱是购买商业氧化铝萃取柱。将样品

提取液转移到层析柱或固相萃取柱中,用适当溶剂将待测物洗脱下来,洗脱液经浓缩后,进行色谱

分析。

2.3酞酸酯的净化既可以用层析柱技术完成,也可以用固相萃取柱技术完成,亚硝胺只能用层析柱

技术净化。

3干扰消除

3.1在应用本标准之前,应采用全程方法空白验证实验中所用的材料是否存在干扰,干扰水平应低

于方法检出限。

3.2本标准所列出的试剂净化步骤是最低要求,要想获得更好的分析结果,应考虑更多的净化步骤。

第6部分:佛罗里硅土净化法

SL 39l 2007

l范围

本部分适用于农药残留物以及氯代烃的净化;从烃中分离有机氮;从脂肪族一芳香族混合物中分

离芳香化合物,以及从脂肪、石油及腊中分离芳香化合物。此外佛罗里硅土很适合甾类化合

物(类固

醇)、酯、酮、甘油酯、生物碱和某些碳水化合物的分离。

本部分规定了酞酸酯、亚硝胺、有机氯农药、有机磷农药、卤代醚、多氯联苯、硝基芳香化合

物、异佛尔酮、氯代烃、苯胺及其衍生物、有机磷酸盐、衍生的氯代苯氧基除草剂样品提取液的

净化。

2方法概述

2.1选用装有佛罗里硅土填料的层析柱或固相萃取柱对样品提取液进行净化。

2.2层析柱是在玻璃柱中填充适量的佛罗里硅土吸附剂,固相萃取柱是购买商业佛罗里硅土萃取柱。

将样品提取液转移到层析柱或固相萃取柱中,用适当溶剂将待测物洗脱下来,洗脱液经浓缩后,进行

色谱分析。

3干扰消除

3.1在使用本标准净化实际样品前,应采用全程方法空白验证实验中所用的材料是否存在干扰,保

证干扰水平低于方法检出限。

3.2本标准所列出的试剂净化步骤是最低要求,要想获得更好的分析结果,应考虑更多的净化步骤。

每个固相萃取柱的试剂空白中会出现400ng的酞酸酯,因此,用佛罗里硅土柱完全去除酞酸酯是不可

能的。

第7部分:硅胶净化法

SL 39l 2007

本部分适用于多环芳烃、苯酚衍生化合物、有机氯农药及多氯联苯的样品提取液的净化。

本部分规定了五氟次苄基溴化衍生酚、有机氯农药和多氯联苯的固相萃取柱净化步骤,也提供了

从大部分有机氯农药中分离多氯联苯的方法。当只需要测定多氯联苯时,可以将本标准与硫酸/高锰

酸净化标准联合使用。

如果回收率能满足要求,其他有机化合物也可用此法进行净化。

2方法概述

2.1选用装有硅胶填料的层析柱或固相萃取柱对样品提取液进行净化。

2.2层析柱是在玻璃柱中填充适量的硅胶吸附剂,固相萃取柱是购买商业硅胶萃取柱。将样品提

取液转移到层析柱或固相萃取柱中,用适当溶剂将待测物洗脱下来,洗脱液经浓缩后,进行色

谱分析。

3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致干扰,在应用本方法之前,应采用

全程方法空白验证实验中所用的材料是否存在干扰,若存在,找出于扰源,消除之。

3.2某些萃取柱可能存在酞酸酯污染,如果用惰性萃取柱材料如玻璃或聚四氟乙烯,会减少酞酸酯

污染,酞酸酯不但会于扰酞酸酯本身的分析,而且会对其他待测物的分析产生干扰。

4装置和材料

第8部分:酸碱分配净化法

1范围

本部分适用于表1所示化合物的分离。

襄1酸碱分配净化法可分离的化台韧

SL 391—2007

化台物名称化学文摘登记号组分化合物名称化学文摘登记号组分

苯并(a)蒽56——55——3 碱性一中性六氯丁二烯87—68—3 碱性一中性

苯并(a)芘50—32—8 碱性一中性六氧乙烷67—72—1 碱性一中性

苯并(b)荧蒽205—99 2 碱性一中性六氯代环戊二烯77—47—4 碱性一中性

氯丹57—74—9 碱性一中性萘91—20一3 碱性一中性

氯代二苯二恶英碱性一中性硝基苯98—95—3 碱性中性

2一氯酚95—57—8 酸性4一硝基酚100—02—7 酸性

窟218一01—9 碱性一中性五氯酚87~86—5 酸性

杂酚油8001—58—9 碱性一中性和酸性苯酚108—95—2 酸性

甲基苯酚酸性甲拌磷(三九一一) 298一02—2 碱性一中性

二氯苯碱性一中性2一甲基吡啶109—06—8 碱性一中性

二氯苯氧基乙酸94—-75—-7 酸性抗蚜威l】0—86—1 碱性一中性

2,4二甲基酚105—67—9 酸性六氯苯1】8—74一l 碱性一中性

二硝基苯25154—54—5 碱性一中性六氯酚酸性

4。6一二硝基一正一甲酚534—52—1 酸性毒杀芬800l一35—2 碱性一中性

2,4一二硝基甲苯121—14—2 碱性一中性三氯酚酸性

七氯76—44—8 碱性一中性2,4,5一涕丙酸93—72—1 酸性

六氯苯118—74—1 碱性一中性

2方法概述

本方法是通过调节pH值,用液液分配净化技术分离酸性分析物,将样品提取液与强碱性水混合,

酸性化合物分配到水相,而碱性及中性化合物仍在有机溶剂中,有机相即碱性及中性部分经浓缩后作进

一步的净化或分析。水相经酸化后,用有机溶剂进行萃取,萃取液经浓缩后用于酸性有机物的分析。

3干扰消除

3.1溶剂、试剂、玻璃容器及处理样品用的其他器皿均可能导致干扰,在使用本方法净化实际样品

前,应采用全程方法空白验证实验中所用的材料是否存在干扰,干扰水平应低于方法检出限。3.2本部分所列出的试剂净化步骤是最低要求,要想获得更好的分析结果,需要考虑更多的净化步骤。

第9部分:脱硫净化法

SL 39l 2007

一些前处理方法

一、含硅样品(玻璃、陶瓷)的前处理方法 电热板消解 1.敲碎样品,过筛。 2.称取0.1g样品,加入10ml硝酸后在电热板上消解4h。转移样品至特氟龙烧杯中,继续 加热至硝酸体积为5ml左右。 3.加入2mlHF。 4.冷却,加入15ml蒸馏水,加入0.6g硼酸,加热并搅拌。 5.定容至25ml。 二、金属钛的消解方法 1.称取0.125g样品于50ml的烧杯中。 2.加入5mlHF于烧杯中。 3.溶解后加入硼酸0.8g定容至25ml。 三、铁氧体或磁铁的溶解方法 称0.5g于250ml烧杯中,加入30mlHCl,加热到150℃ 1h。再加入王水,温度120℃至消解,保持王水的体积为20ml。 四、电池 1.称重 电池重量(g) 消化液体积(ml) 消化后定容体积(ml) <2 20 50 2~5 40 100 5~15 80 200 ) 2.消化液配制: 2:1(HCL:HNO 3 3.用剪钳把电池剪开,将电池金属外壳及内容物切割打散,置于100至250ml(依电池大小及消化液用量决定)烧杯中,切割工具在每次使用前用DI水及纸巾清洗。 4.电池在加入消解液前,先加入一定量的酸,用玻璃棒搅拌的同时,缓慢加入消解溶液,若反应过于激烈,可适量加入DI水缓和反应。 5.盖上表面皿在室温下放置18h以上。 6.过滤并定容至指定体积。 7.试剂空白按上述消解步骤制备,但不加电池。

五、Al 1.加入1:1 HCl 10ml,加热反应(放于炉边较低温度处)。 2.若反应过慢,可盖上表面皿置于较高温度处。 3.若反应过后有大量残渣或甚至不反应,报告组长。 4.试剂空白按步骤配制,但不加样。 六、焊锡条与焊锡膏 1.称0.5g样品于250ml烧杯中,加入40ml王水和50ml 10%(v/v)的酒石酸。 2.慢慢加热至溶液反应完全,但不能沸腾,若反应较慢,可盖上表面皿反应。 3.反应完全后,冷却至室温,以DI水定容至200ml。 4.试剂空白按步骤同样配制,但不加样。 EPA(TW) METHOD 1.称0.25g样品于250ml烧杯,加入40ml浓硝酸,盖上表面皿。 2.加热反应6h。 3.冷却后第一次加入1ml 30% H 2O 2 ,其后反复加入3ml 30% H 2 O 2 到不再发生反应为止,H 2 O 2 总量不超过10ml,除去漏斗,浓缩到10ml。 4.冷却后加入2ml浓HCl,加热浓缩到5ml。 5.冷却后定容至25ml。 In House Method 1.镀锡液加入1:1硝酸会产生沉淀,改加1:1盐酸则不会产生沉淀。 2.SOLDER的前处理方法 称取0.5g的样品,加入40ml王水和50ml的10% 酒石酸,慢慢加热(不要沸腾)。 铜基材的前处理 称取0.5g的样品,加入10ml 1:1 盐酸和2ml硝酸,待反应初步完全,加热5-10分钟,但不能沸腾,冷却后定容至100ml。 In House Method 1.称0.25g样品于100ml的烧杯中。 2.加入20ml浓硝酸。 3. a 盛塑胶样品的烧杯放在温度为350左右的电热板上消解1h。 b 盛其他材料的烧杯放在温度为200左右的电热板上消解1h。 4. 加入10ml的浓硝酸于稍冷的烧杯中,于低温炉上加热半小时。

农药残留主要的检测方法

农药残留主要的检测方法1 农业生产中农药的应用地位 农业的可持续发展关系到国家经济建设和社会稳定的全局。农作物病、虫、草害等是农业生产的重要生物灾害。据资料记载中国有害生物为2,300多种,这些有害生物不仅种类多、分布广泛,而且成灾条件复杂,发生频繁。如不进行防治,每年将损失粮食总产量15%、棉花20%-25%、蔬菜25%以上。我国农药每年实际产量约40万吨,仅次于美国据世界第二位,年用量约27万吨,居世界前列。据统计,九十年代我国农业平均每年发生病虫草鼠44亿亩次,防治面积为49亿亩次,仅以防治有害生物计算,每年挽回的粮食损失即达6,500多万吨,相当于亿人的口粮(按每人每年200千克计算)。 在生物灾害的综合治理中,根据目前植物保护学科发展的水平,化学防治仍然是最方便、最稳定、最有效、最可靠、最廉价的防治手段。尤其是当遇到突发性、侵入型生物灾害发生时,尚无任何防治方法能够代替化学农药,唯有化学防治方能奏效。在可预见的未来,农业生产离不开农药。 2 农药残留检测的必要性 随着农业产业化的发展,农产品的生产越来越依赖于农药、抗生素和激素等外源物质。我国农药在粮食、蔬菜、水果、茶叶上的用量居高不下,而这些物质的不合理使用必将导致农产品中的农药残留超标,影响消费者食用安全,严重时会造成消费者致病、发育不正常,甚至直接导致中毒死亡。农药残留超标也会影响农产品的贸易。

3 农药残留主要的检测方法 国际上用于农药残留快速检测方法种类繁多,究其原理来说主要分为两大类:生化测定法和色谱快速检测法。 生化检测法是利用生物体内提取出的某种生化物质进行的生化反应来判断 农药残留是否存在以及农药污染情况,在测定时样本无需经过净化,或净化比较简单,检测速度快。生化检测法中又以酶抑制法和酶联免疫法应用最为广泛。 色谱快速检测法通过尽可能的简化样品净化步骤,直接提取进样分析蔬菜和水果中的有机磷类农药残留。上述快速检测方法在具体应用中可以根据实际情况和方法各自适用范围及优缺点来选择使用。 (一)、农药残毒速测法 农药残毒速测法只限于检测蔬菜和水果中的有机磷和氨基甲酸酯类农药残毒,是依据有机磷和氨基甲酸酯类农药抑制生物体内乙酰胆碱酯酶的活性来检测上述两类农药残毒的原理。 近年来,每年因食用残留量严重超标农产品引起急性中毒事故时常发生,特别是食用了高毒有机磷类农药和氨基甲酸酯类农药严重超标的蔬菜和水果极易引起急性中毒,甚至导致食用者死亡。由于蔬菜、水果类鲜食农产品保存时间相对短的特点,因此市场急需有机磷和氨基甲酸酯类农药(这两种农药中高毒农药比例大,比如甲胺磷、对硫磷、氧化乐果、甲拌磷、克百威、涕灭威等)残毒快速检测方法。 农药残毒速测法可以快速检测上述两类农药严重超标的蔬菜、水果,通过将一部分含农药残毒的蔬菜不允许上市场,达到防止食用引起急性中毒问题出现。同时该方法还具有短时间能够检测大量样本、检测成本低,对于检测人员技术水平要求低,易于在基层(如:蔬菜、水果生产基地和批发市场等)推广等特点,是目前阶段我国控制高毒农药残留的一种有效方法,也是目前国内应用最为广泛的农药残毒快速检测方法。但是农药残毒速测法也有其本身局限性,如:检测农药种类只限于有机磷和氨基甲酸酯类农药,不能给出定性、定量检测结果,检测限普遍高国际和国内规定的残留限量标准值,因此不能作为法律仲裁依据。农业部农药检定所依据酶抑制法原理制定了甲胺磷、氧化乐果等8种有机磷农药,克百威、涕灭威等10种氨基甲酸酯类农药的蔬菜农药残毒快速检测法农业行业标准。尽管农药残毒快速检测法还存在一定缺陷,但是在东南亚一些国家如韩国、泰国、越南以及我国的台湾、香港地区仍然得到了广泛使用,特别是在台湾应用是从1985开始,经过20多年的持续发展,已经形成了一整套完整的管理制度,快速检测方法涵盖苯硫磷等27种有机磷、丁硫克百威等13种氨基甲酸酯类农药。

实验室样品前处理常用方法

实验室样品前处理常用方法 【样品前处理要求】 1.样品是否要预处理,如何进行预处理,采样何种方法,应根据样品的性状、检验的要求和所用分析仪器的性能第方面加以考虑。 2.应尽量不用或少使用预处理,以便减少操作步骤,加快分析速度,也可减少预处理过程中带来的不利影响,如引入污染、待测物损失等。 3.分解法处理样品时,分解必须完全,不能造成被测组分的损失,待测组分的回收率应足够高。 4.样品不能被污染,不能引入待测组分和干扰测定的物质。 5.试剂的消耗应尽可能少,方法简便易行,速度快,对环境和人员污染少。 1 高温灰化法 高温灰化法是利用热能分解有机试样,使待测元素成可溶状态的处理方法。其处理过程是准确是准确称取0.5~1.0g(有些试样要经过预处理),置于适宜的器皿中,zui常用的是适宜的坩锅,如铂坩锅、石英坩锅、瓷坩锅、热解石墨坩锅等,然后置于电炉进行低温碳化,直至冒烟近尽。再放入马弗炉中,由低温升至375~600℃左右(视样品而定),使试样完全灰化。试样不同,灰化的温度和时间也不相同,冷却后,灰分用无机酸洗出,用去离子水稀释定容后,即可进行待测元素原子吸收法测定。 灰化法是有机试样zui常用的方法之一,其优点:操作比较简单,适宜于大量试样的测定,处理过程中不需要加入其它试剂,可避免污染试样,但灰化法也存在明显的缺点:在灰化过程中,引起易挥发待测元素的挥发损失,待测元素沾壁及滞留在酸不溶性灰粒上的损失。汞和硒等易挥发元素,灰化处理中挥发损失严重,不易采用。As、B、Cd、Cr、Fe、Pb、P、V、Zn等元素在灰化过程中有一定程度的挥发损失。Cu、Ni等形成某些有机复合物,在温度相对较低时,也会挥发。非金属元素能形成多种多样化合物,易于挥发。 应特别指出的是,为克服灰化法的不足,在灰化前加入适量的助灰化剂,可减少挥发损失和粘壁损失。常见的灰化剂有:MgO、Mg(NO3)2、HNO3、H2SO4等。其中HNO3起氧化作用,加速有机物的破坏,因而可适当降低灰化温度,减少挥发损失。加入H2SO4能使挥发性较大的氯酸盐转化为挥发性较小的硫酸盐,起到象基体改良剂的作用,硫酸可是使灰化温度升高到980℃,镉、铅未发现明显的损失。Mg(NO3)2有双重作用,其分解为NO2和MgO,前者促进氧化,后者可稀释灰分,减少灰分与坩锅壁的总接触面积,从而减少沾留。例如:As、Cu、Ag等在常规灰化时会有严重损失,如果加入Mg(NO3)2后,则能得到满意的结果。 2 湿法消化法 湿法消化法亦称湿灰化法,其实质是用强氧化性酸或强氧化剂的氧化作用破坏有机试样,使待测元素以可溶形式存在。其基本方法是:称取预处理过的试样于玻璃烧杯中(或石英烧杯、聚四氟乙烯烧杯),加入适量消化剂,通常应在100~200℃下加热以促进消化,待消化液清亮后,蒸发剩余的少量液体,用纯水洗出,定容后即可进行原子吸收法测定。 湿法消化法中zui常用的试剂是HNO3、HClO4、H2SO4等强氧化性酸,以及H2O2、KMnO4 等氧化性试剂。实际上多用以一定比例配制的混合酸。在消化过程中避免产生易挥发性的物质,避免有新的沉淀形成。例如,HNO3:HClO4:H2SO4=3:1:1的混合酸适于大多数的生物试样的消化,但样品含钙高,则可不用H2SO4,以避免CaSO4沉淀形成。某些硫酸盐(如Pb2+、Ag+、Ba2+)和氯酸盐(Pb2+、Ag+如等)呈不溶性,因此测定这类样品时不宜使用HClO4或H2SO4。其它氧化剂如H2O2、高锰酸盐等也可用于消化试样,钼盐则能作催化剂加速氧化反应。

样品前处理方法-氮吹浓缩.doc

样品前处理方法 -氮吹浓缩 1.引言 色谱分析样品制备是一个非常重要和复杂的过程,因为色谱分析技术涉及的样品种类繁多、样品组成及其浓度复杂多变。样品物理形态范围广泛,对采用分析方法进行直接分析测定构成的干扰因素特别多,所以需要选择并实施科学有效的处理方法及其技术,达到分析测定或评价和调查的目的。现代色谱仪器对一个样品的分析测定所需要的时间越来越短,但是色谱分析样品制备过程所用的时间却仍然很长。据统计,在大部分的色谱分析实验中,将一个原始样品处理成可直接用于色谱仪器分析测定的样品状态,所消耗的时间只约占整个分析时间的60%-70%,而色谱仪器测定此分析样品的时间只约占 10%,其余的时间是用于此样品测定结果的整理和报告等。 2.样品前处理过程 2.1 预处理 对样品进行粉碎、混匀和缩分等过程称为预处理。 固体样品——含水较低,粉碎过筛。含水量较高取食用部分切碎或先烘干后 粉碎过筛。 液体、浆体——搅拌混合均匀 互不相容的液体——先分离再取样 特殊样品——根据实验要求特殊处理 2.2 提取 浸提——针对固体样品使待测组分转移到提取液中 萃取——针对液体样品,利用某组分在两种互不相容的溶剂中的分配系数不同,从一种溶剂转移到另一种溶剂中,从而达到提取目的。 2.3 净化 去除杂质的过程称为净化。 萃取法——适用于液体样品,少量多次 化学法——通过使杂质或待测物发生化学反应而改变其溶解性,使其与原体系分离。

层析法——利用混合物中各组分的理化性质(如溶解度、吸附能力、电荷、分子量、分子极性和亲和力等)不同,使各组分在支持物上的移 动速度不同,而集中分布在不同区域,借此将各组分分离。 2.4 浓缩 样品经过提取净化后,体积变大,待测物浓度降低,不利于检测,所以浓缩 的目的是减小样品体积提高待测物浓度,常见方法如下: 常压浓缩——适用于挥发性和沸点相对较低的组分,通过升高温度,将溶剂由液态转化成气态被抽走或被通过冷凝器再次收集,从而达到浓缩目 的。 减压浓缩——通过抽真空,使容器内产生负压,在不改变物质化学性质的前提下降低物质的沸点,使一些高温下化学性质不稳定或沸点高的溶剂在 低温下由液态转化成气态被抽走或被通过冷凝器再次收集。 冷冻干燥——冷冻的同时减压抽真空,使溶剂升华,适用于生物活性样品。 氮吹浓缩——适用于体积小、易挥发的提取液。采用惰性气体对加热样液进行吹扫,使待处理样品迅速浓缩,达到快速分离纯化的效果。该方法操 作简便,尤其可以同时处理多个样品,大大缩短了检测时间。被广 泛应用于农残检测,制药行业和通用研究中的样品批量处理。 2.5 氮气漩涡吹扫技术 该装置采用氮气旋涡旋转吹扫技术 , 样品在一定温度下 , 通过氮气吹扫 , 使待测物质获得良好富集效果。浓缩仪由微处理器控制 , 保证样品的自动浓缩蒸发。气体喷嘴吹出氮气流在浓缩管内形成螺旋状气流 , 减缓了气流冲力 , 使溶剂均匀挥发且不飞溅。

(完整版)中国铁塔动环常见告警处理指导手册

中国铁塔动环常见告警处理指导手册一、FSU离线告警 告警名称:FSU离线; 告警解释:FSU和铁塔集团平台连接通讯中断; 原因分析:1)信号差或不稳定;2)FSU设备掉电;3)无线模块硬件故障;4)FSU设备硬件故障;5)天线和无线模块连接中断,或天线丢失;6)VPN服务器连接不上;7)SIM卡被盗、欠费或故障。平台处理方法:查询历史告警记录,如频繁离线或长时间离线,需现场检查。 现场处理方法: 第一步检查供电: 1)在运维监控系统检查离线站点是否有停电告警,判断是否现场停电; 2)现场检查FSU指示灯不亮设备没有供电。 原因分析:FSU供电异常。 解决方案: 1)检查整个基站是否停电,如停电则通知相关人员取电; 2)检查FSU供电空开是否跳闸及通电线路是否正常。 第二步检查无线模块: 检查无线模块指示灯都不亮或都常亮。

原因分析:无线模块供电异常或无线模块故障。 解决方案: 1)无线模块供电故障,则检查给无线模块供电接线是否正常如正常,则用万用表测量给无线模块供电FSU输出端是否有12V,如没有则为FSU供电板问题,更换FSU供电板。 2)确认供电正常,则更换无线模块进行测试。 下站建议:下站时建议随身带上一套可以成功拨号的无线网卡和SIM 卡,下站的时候作对比验证,快速确认是SIM卡问题,还是无线模块问题。 第三步FSU检查 通过EISUConfig软件登陆FSU设备,点击设备诊断管理。 1)信号强度弱:通过设备软件登录设备,如信号强度小于15。

解决方案:更换运营商无线模块或将天线外延(室内站放到室外,室外柜放到底部隐蔽区域或有外层保护情况下放到机柜顶部) 2)铁塔VPN网络连接异常:铁塔VPN网络提示连接异常 3)铁塔网管未注册:铁塔网管提示连接异常(正常显示连接正常)解决方案: 确认总部平台正常,重启FSU(等待程序连接)。如重启后未恢复,联系厂家专业人员。 平台恢复确认:告警管理-活动告警监控-当前告警查询该站点,确认告警是否消除。 二、电源配套告警 2.1开关电源类告警: 2.1.1开关电源通信状态告警 告警名称:开关电源通信状态告警; 告警解释:开关电源和FSU之间的通讯中断; 原因分析:开关电源和FSU之间的通讯中断 平台处理方法:无 现场处理方法:检查开关电源屏幕是否显示正常,和FSU的监控线连接是否正常。

生物试样分析的前处理.

生物试样分析的前处理 户田昭三 钟辉译友岩校 一、前言 以电感耦合等离子发射光谱法〈ICP〉或原子吸收法〈AAS〉对生物试样中金属元素进行一般性测定时,必须预先处理水分及有机物等试样主体成分。生物体中含有70%以上的水分,各种生物体中水分含量列于表1。 也有按照灰分重量计算元素含量的。在某些特定的情况下,也有根据某种特定成分的含量计算其它成分含量的。以新鲜生物体为准计算测定成分的含量时,由于取样后试样的经历和保存方式的不同,水分含量也不同,测定值的重现性很差。 二取样保存 生物试样中微量元素的含量与工业制品的情况不同,即使从同一场所采取试样,每个生物体之间也有很大差别。还必须考虑到由于采样环境、粘附或混入试样中物质的影响,如粘在根上的土及叶子上的灰尘等应该洗净。由于海水、河水中金属元素含量非常低,不必顾虑试样粘上的水会使金属元素的含量发生很大变化,可用滤纸或纱布将水轻轻擦拭干净。 生物死亡之后,由于自身新陈代谢的加剧,组织腐败,NA ﹑K﹑CA﹑C I等离子随渗出的细胞液流失,会使得测定值发生很大变化。因此,最好是在采取试样后尽可能快地处理。植物的种子和薯类那样的生物组织如果处于暂时的生长状态,即使经过数日,除水分之外其它成分也不会发生很大变化,动物的肌肉

红血球等细胞膜脆弱的试样,冷冻会破坏细胞膜,使细胞液流出与细胞外液 〈如血清〉混合而得不到真正的分析数值。红血球[1]内Zn、K、Ca﹑Fe、Na的 含量分别为10, 3600, 0.67, 1000, 200ug/ml, 而血清中上述元素的含量分别为0.6 ~1.2, 160, 100, 1.0, 3300ub/ml,应该注意到这种悬殊的差别。测定血液中的成分 时,取样后必须尽快进行分离处理,然后再保存,或者采样于定量容器内,分析 时处理全部试样后测定,以全血中的含量表示。 保存干燥试样时应置于干燥、避光的场所,可用硅胶等降低试样保存环境的 温度。用干燥氮气置换保存容器内的空气,或封入防老化箱、一次性手炉那样的 装有脱氧剂的包装之内,可长期保存。只是这类包装含有铁、钙等物质,启封时 必须注意。 三干燥 从生物试样的保存和运输方面考虑,干燥的试样较为方便,为了准确、精密 地分析和表达试样中金属元素含量,最好使用干燥试样并按照干燥试样的单位重 量计算成分含量。某些种类的试样,在一定的条件下干燥会造成低分子有机化合 物的分解和挥发,Se、Hg、As等元素也会损失。 生物试样的干燥条件应根据试样的种类而异,例如碳水化合物含量高的试样 水分与碳的结合力很强,需要较高的干燥温度。对于脂肪含量低水分含量 高的试样,应预先在60~70°C通风干燥,使之与大气中蒸汽压达到平衡之后 再做作进一步处理。表2中列出了日本科学技术厅和资源调查委员会颁布的食品 标准分析方法中为测定水分含量所规定的干燥条件。表内所列的条件对于分析食 品中无机成分是毫无问题的,但分析其中某些易挥发成分时则需要更稳妥的干燥 方法。分析美国商务部标准局(NBS)和日本环境厅国立公害研究所制备的用于 分析金属元素成分的生物试样时,分析前的干燥条件如表3所示。同时也指出, 分析Hg、Se、As时所用的试样不经干燥直接使用。另行取样在指定条件下干燥, 测定试样的水分,将分析试样换算成干燥试样重量后计算测定成分含量。 蔬菜、水果、藻类等水分含量高达90%左右的试样,若水分含量变化0.5% 就意味着干燥体的重量相差5%,因而对金属成分含量的分析影响很大。可见干 燥是必须注意的前处理之一。 表2 食品分析中规定的干燥条件(用于测定水分)<1>

中国铁塔动环常见告警处理指导手册

中国铁塔动环常见告警处理指导手册 一、FSU离线告警 告警名称:FSU?线; 告警解释:FSUffi铁塔集团平台连接通讯中断; 原因分析:1)信号差或不稳定;2)FSUI^备掉电;3)无线模块硬件故障;4) FSUI^备硬件故障;5)天线和无线模块连接中断,或天线丢失;6) VPM艮务器连接不上;7) SIM卡被盗、欠费或故障。 平台处理方法:查询历史告警记录,如频繁离线或长时间离线,需现场检查。 现场处理方法: 第一步检查供电: 1)在运维监控系统检查离线站点是否有停电告警,判断是否现场停 电; 2)现场检查FSU指示灯不亮设备没有供电。 原因分析:FSUtt电异常。 解决方案: 1)检查整个基站是否停电,如停电则通知相关人员取电; 2)检查FSU供电空开是否跳闸及通电线路是否正常。 第二步检查无线模块: 检查无线模块指示灯都不亮或都常亮。

原因分析:无线模块供电异常或无线模块故障。 解决方案: 1)无线模块供电故障,则检查给无线模块供电接线是否正常如正常, 则用万用表测量给无线模块供电FSLtt出端是否有12V,如没有则为FS姬电板问题,更换FSUf;电板。 2)确认供电正常,则更换无线模块进行测试。 下站建议:下站时建议随身带上一套可以成功拨号的无线网卡和SIM 卡,下站的时候作对比验证,快速确认是SIM卡问题,还是无线模块问题。 第三步FSU^查 解决方案:更换运营商无线模块或将天线外延(室内站放到室外,室外柜放到底部隐蔽区域或有外层保护情况下放到机柜顶部) 2)铁塔VPN网络连接异常:铁塔VPMW络提示连接异常 3)铁塔网管未注册:铁塔网管提示连接异常(正常显示连接正常) 解决方案: 确认总部平台正常,重启FSU(等待程序连接)。如重启后未恢复,联系厂家专业人员。 平台恢复确认:告警管理-活动告警监控-当前告警查询该站点,确认告警是否消除。

农药残留检测的前处理技术(一)

农药残留检测的前处理技术(一) 摘要介绍农药残留检测的前处理技术,包括超临界流体萃取、固相微萃取、微波辅助萃取技术、凝胶渗透色谱、基质固相分散萃取、固相萃取等方面内容,以为农药残留检测技术的发展提供参考。 关键词农药残留;检测;前处理技术 近年来,由于农业生产过程中忽视农药的正确、合理使用,农药污染问题经常发生,农药残留量超标现象相当严重,并呈现逐年加剧的趋势。为保障人民的身体健康、有效控制农药在农产品生产中的使用和对其残留量进行监控,大力开展农药残留检测技术特别是相关的前处理技术的研究是非常必要的。农药残留测定之前要有适合于各种样品的理化性质的萃取、净化、浓缩等前处理步骤,这些前处理过程往往对农药残留分析的准确性、精确程度有重要影响。由于农药残留检测技术涉及的样品种类繁多、样品组成及其浓度复杂多变、样品物理形态范围广泛,对农药残留测定构成的干扰因素特别多,所以需要选择科学有效的处理方法。据统计表明1],大部分农药残留检测实验室中用于农药残留检测样品前处理过程的时间约占整个分析时间的2/3。为了提高分析测定效率,改善和优化农药残留检测样品制备的方法和技术是一个重要问题。在现代农药残留分析中,有些提取方法已经能够达到部分净化或完全净化的效果。因此,提取和净化方法的界限已十分模糊。这些新技术的共同特点是节省时间,减轻劳动强度,节省溶剂,减少样品用量,提高提取或净化效率以及自动化水平。目前,得

到广泛应用的新技术主要有超临界流体提取、固相微萃取、微波辅助萃取技术、胶渗透色谱、基质固相分散萃取、固相萃取等。 1超临界流体萃取(SupercriticalFluidExtraction,SFE) 超临界流体(supercriticalfluid,SCF)是指处于临界温度和临界压力的非凝缩性的高密度流体。这种流体介于气体和液体之间,兼具二者的优点。超临界流体萃取(SFE)是指利用处于超临界状态的流体为溶剂对样品中待测组分的萃取方法。Lehotay等2]首次报道了应用SFE技术检测蔬菜中五氯硝基苯残留,样品无需进一步净化即可通过气质联机(GC-MS)检测。随后Lehotay等再次使用SFE,GC-MS检测了蔬菜、水果中46种农药残留,除甲胺磷和乙酰甲胺磷外,其他农药的回收率都在80%以上。为提高SFE的萃取效果,常在超临界流体CO2中加入少量的极性溶剂。Rhan通过在洋葱、胡萝卜前处理过程中加入甲醇,有效地提高了被检农药的回收率。刘瑜等3]应用此技术对苹果中5种氨基甲酸酯农药进行检测,其结果支持了这一观点。SFE技术的优点是可进行选择性萃取,萃取物不会改变其原来的性质,萃取过程简单易于调节;缺点是萃取装置较昂贵,不适于分析水样和极性较强的物质4]。 2固相微萃取(Solid-phasemicroextraction,SPME) 固相微萃取是20世纪80年代末由加拿大Waterloo大学Pawliszyn和Arhturhe教授提出的,它是在固相萃取技术基础上发展起来的一种兼样品制备的前处理技术。SPME的原理是利用待测物在基体和萃取相之

常见告警故障处理及分析

···常见告警故障处理及分析 MOTOROLA基站的告警按故障设备可分为三类:设备告警、内部告警、外部告警。 一、设备常见告警 设备告警是硬件告警最常见也是最重要的告警,告警设备一般为基站的主要器件,它的告警类型就是它的设备类型。 1. DRI 29:[Front End Processor Failure - Watchdog Timer Expired] 前端处理器故障 DRI硬件故障,出现此告警时DRI可能会反复自启,可能会退服,应先reset or ins DRI应进行INS或RESET处理,若告警未消失,更换TCU。 2. DRI 40-47 :[Channel Coder Timeslot 0(-7) Failure] 0-7时隙信道编码器失败。 M-CELL基站经常出现此类告警,应进行INS或RESET处理,不行再更换TCU900。此告警在GSR4时出现,升级到GSR5可能会消失。 3. DRI 51 :[Baseband Hopping TDM Link Error]基带跳频TDM链路错误。 此告警有几种可能性:TDM-Highway BUS或KSW可能有问题。 DRIM的FEP,CCDSP可能有问题。 此告警须在现场具体测试分析。测试后判定故障点。 此告警在GSR4时出现,升级到GSR5可能会消失 TDM——Time Division Multiplexing时分复用:该总线用于把来自BTS的呼叫与信令数据传送到MSC,反之亦然。可分为两个独立的部分:交换机公共通路&出局公共通路。 交换机公共通路:处理路由到交换机的数据,数据来自外部信源 (通过E1/T1接口)或由GPROC内部产生。 出局公共通路:这是一个被交换的数据,现在被路由出BSC/RXCDR (通过E1/T1接口)或通向内部GPROC。 4. DRI 81:[Transmitter Synthesizer Failure]收发单元故障 此告警为收发单元TCU故障,故障原因有可能为: -接收Calibration频点丢失 -信道盘的CEB故障 -射频电缆连接失败 处理方法:远程ins或reset TCU,告警消失并监测;若告警未消失,更换TCU 5. DRI 86 :[Transmitter Failure]输出功率失败,引起DRI退出服务。状态:

蔬菜农药残留的快速检测方法原理及检验标准

蔬菜农药残留的快速检测方法原理及检验标准 1、目前农药在蔬菜中残留的问题 1.1、农药是把“双刃剑”,对促进农业增产有极其重要的作用。但由于农药本身固有的化学属性和对其使用不当,导致农产品农药残留严重超标,严重危害到广大人民群众的健康。 1.2、在我国农药中,70%为有机磷农药,而在我国生产使用的有机磷农药中,70%为剧毒、高毒类,而且较多是禁止在蔬菜作物上使用的。 2、农药中毒事件常有报道,究其原因 2.1、农产品不按规定的用药量、次数、方法或安全间隔期施药,或施用不允许在蔬菜上使用剧毒、高毒类农药; 2.2、现在标准施行的农药残留测定需要通过有机溶剂提取、净化和用大型分析仪器进行,无法对廉价的蔬菜进行随时随地或快速检测而形成的监管不到位。 3、农药分类: 3.1、矿物源农药 3.1.1、有效成分起源于矿产无机物和石油的农药。 3.1.2、代表有硫酸铜、硫磺、石硫合剂、磷化铝、磷化锌和石油乳剂等。 3.2、生物源农药

3.2.1、包括植物源农药和动物源农药及微生物源农药。 3.2.2、植物类别有植物毒素、植物内源激素、植物源昆虫激素、拒食剂、引诱剂、驱避剂、绝育剂、增效剂、植物防卫素、易株克生物质等。 3.2.3、动物资源开发的农药包括动物毒素、昆虫激素、昆虫信息素和天敌等。 3.3、按作用方式分类 3.3.1、胃毒素农药(敌百虫、敌敌畏、甲胺磷、马拉硫磷) 3.3.2、触杀性农药(对硫磷、敌敌畏、甲胺磷、马拉硫磷) 3.3.3、内吸性农药(乐果、甲胺磷、氧乐果、久效磷) 3.3.4、熏蒸性农药(溴甲烷、磷化铝、敌敌畏) 3.3.5、特异性农药(乙烯利、毒霉素、灭幼脲) 4、目前所使用的农药按其化学结构大致可以分为以下几类: 有机氯类、有机磷类、氨基甲酸酯类、拟除虫菊酯类、杂环类化合物、其他(苯氧羧酸类、脲类化合物)等。 A、有机磷类 敌敌畏、甲拌磷、乐果、对氧磷、对硫磷、喹硫磷、优杀硫磷、敌百虫、氧化乐果、磷胺、甲基嘧啶磷、马拉硫磷、辛硫磷、亚胺硫磷、甲胺磷、地亚农、甲基毒死蜱、毒死蜱、倍硫酸、杀扑磷、乙酰甲胺磷、巴胺磷、甲基对硫磷、杀螟硫磷、异柳磷、异柳磷等。 B、有机氯类 α -666、β -666、γ-666、δ-666、op -DDE、pp’-DDE、op’-DDD、pp’-DDT、op’-DDT、异菌脲、五氯硝基苯、林丹、乙烯菌核利、三氯杀螨醇、功夫、氯硝胺、百菌清、粉锈宁、甲氯菊酯、氯菊酯、氰戊菊酯、溴氰菊酯等。 C、氨基甲酸酯类 涕灭威砜、涕灭威亚砜、灭多威、3-羟基呋喃丹、涕灭威、呋喃丹、甲萘威、叶蝉散、仲丁威、速灭威等。 d、拟除虫菌酯类

农残检测前处理中常见七大方法

农残检测前处理中常见七大方法 1.索氏提取法(自动索式提取) 索氏提取法是一种经典萃取方法,在当前农药残留分析的样品制备中仍有着广泛的应用。美国环保署(EPA)将其作为萃取有机物的标准方法之一(EPA3540C);国标方法中也用使用索式提取法作为提取方法。由于是经典的提取方法,其它样品制备方法一般都与其对比,用于评估方法的提取效率。索氏提取方法的主要优点是不需要使用特殊的仪器设备、且操作方法简单易行,很多实验室都可以得以实现、使用成本较低。主要的缺点是溶剂消耗量大、耗时也较长、需冷凝水等。 索氏提取中玻璃材质的脂肪提取器是比较容易损坏的玻璃器皿之一,尤其是提取器外壁的虹吸回流管很容易破损,在实验操作中应小心谨慎一些; 决定索氏提取效率的因素除了提取溶剂之外,还有就是提取溶剂的回流次数(在某种程度上可以说是提取时间),一般实验室中使用的水浴锅温度分布不是很均匀、提取用的圆底烧瓶的瓶壁厚薄不一均会造成的回流速率的差异;一般在实验中水浴的温度不能过高以防止暴沸造成目标物的损失; 在索氏提取中,装样品一般都是用滤纸筒,不宜使用金属的筛筒(这会造成部分农药目标物的分解,如Fe可能会造成某些有机氯农药分解)。此外,应注意滤纸筒在装样之后与提取器的匹配,尤其须注意纸筒不能堵塞虹吸回流管。 实验中所使用的索氏提取器不宜过大,否则溶剂蒸气到达提取器之前由于环境空气的冷凝作用而减少(特别是冬天等环境温度较低的时候),从而减缓了提取效率,使得提取耗时过长。 由于索氏提取是一个相对开放的提取体系,因此在提取操作中还应注意防止产生污染;实验操作中最好将冷凝管顶端进行覆盖。索氏提取管的清洗,一般可以用铬酸洗液进行清洗,去离子水(可以在使用前多准备一些用正己烷萃取一下备用)在清洗干净、烘干或者风干。 索氏提取中还有一种自动索氏提取法( Automated Soxhlet Extraction Method),EPA3541也有标准方法。相比与索氏提取,自动索氏提取法具有提取时间较快、操作自动化、溶剂可以回收等有点。由于该方法本人没有使用过,因为只能根据资料简单陈述这些。 2.振荡提取和组织捣碎法(匀浆法) 振荡提取和组织捣碎法(匀浆法),这两种提取方法相对更为简单,一般对植物样品、食品,尤其是含水量较高的新鲜样品,如蔬菜、水果等使用时较为方便简单。这两种方法也不需要特设的设备,普通的振荡器,离心机、匀浆机等均可使用; 这两种在很多农药残留分析的标准方法中均有使用,如GB/T5009系列方法和日本的“JAP 肯定列表检测方法--食品中残留农药兽药饲料添加剂检测方法”。 在这两中方法中,一般使用的提取溶剂以极性溶剂居多,标准方法中以使用乙腈居多。由于这些样品中含水量一般都较高的,如果使用单一的非极性溶剂提取,由于疏水性强,浸润或渗透样品的能力有限,会造成提取效果的降低。 振荡法和和组织捣碎法(匀浆法)以及后面提到的超声提取、微波提取等方法中,还有一个重要前处理步骤,即固液分离。实现这个步骤可以用过滤(抽滤)和离心等操作进行。过滤可以用简单的滤纸进行,也可以用助滤剂(如Celite 545)进行抽滤。如果使用离心分离时,应注意防止容器的破碎。 在这两种提取方法中,为了避免液体转移产生的损失,一般都是直接从提取液中抽取部分液体用以后续的操作。 3.超声波提取法

常见报警及处理办法

附录三常见报警及处理办法 1、Light barrier 机械手到位报警,当机械手在取放刀区域上位时,系统将忽略这一信号,以使取放刀正常。当机械手不在取放刀区域时,只要机械手离开下限位,就产生Light barrier报警,并停止机器。 处理办法:检查机械手是否在上限位,在上限位放下机械手即可。若仍然报警,查看机械手下限位传感器灯是否亮,检查传感器螺丝是否松动,传感器是否故障,检查线路是否断开。 2、Position stop 人身安全保护对射灯,当有人或物体进入机器内并当住对射光线时,机器停止,清除障碍物或人离开后,机器才能正常工作,有两种选择:一是清除障碍物或人离开后机器立即接着工作,二是清除障碍物或人离开后按空格键才能继续工作。 3、Table stop 当主轴有转动和PIN夹打开时机器就产生Table Stop报警,并停止机器。检查PIN夹是否打开,关闭PIN夹并按空格键即可。 4、EMERGENCY STOP 机器的紧急停止信号,当急停按钮按下时即产生此报警信号,能有效中断X、Y、Z轴的伺服电机供给,所有的轴开始变得不能动作,主轴也不能运转。在检查作业时进入机器前,确认本功能有效才可进入机器作业。X、Y、Z轴驱动器及变频器亦能产生EMG此报警信号,所以在释放急停按钮,按下电脑键盘ESC后仍产生EMG报警,则检查是否有其它故障导致驱动器报警。 5、SPINPLE AIR 总气阀报警,当主气压不足时,机器停止,主轴停止,主气压满足要求,按ESC键清除报警信号,机器才能工作。 6、QIC limit alarm 压脚切换报警,指定的压脚切换到系统指定位置(大孔或者小孔),如果切换不到位即产生报警。或是如果压脚在钻板过程中离开指定位置,系统亦会报警,并停止机器。 找到故障轴后排除压脚切换故障时,检查压脚切换单元电磁阀是否动作,压脚切换装置是否有异物卡住,是否有外力撞击而导致装置无法定位。检查切换汽缸位置传感器是否有亮,传感器是否故障,传感器固定螺丝是否有松动,传感器电源线是否断路。 7、SPIN THERMAL 主轴过载报警,当任一主轴电流过大时,电机保护继电器将脱扣,这时将产生过载报警。检查主轴是否异常,排除异常之后,打开机器后背门,按下电机保护继电器黑色RESET按钮可使跳脱的开关复位。 8、Cooling Unit 冷却机异常,检查冷水机是否打开,冷水机故障依照冷水机手册进行排除。 9、Circumstance temperature 环境温度报警,当机器工作的环境温度超过28℃时即产生环境温度报警,请检测环境温度是否已超过28℃。 10、COLLET_AIR 主轴夹头报警,在主轴有转动时,若主轴夹头总气压大于0.3kg时产生此报警。检查夹头张开总气阀是否关闭或者检查线路。 11、Machine stop 当电源异常、主轴、电机、驱动器发生故障时均产生此报警,如温度过高等,检查电源线路,各驱动器、主轴、电机温度是否异常,温度线是否断开。平台或者横梁使用直线电机时增加第二级位置保护,一旦电机超过限位触发,将中断整机供电,显示此报警。 12、NO CONTACT T 接触钻断刀报警,报警后机器会自动量刀,若断刀则更换刀具,若量刀判断刀未断则为断刀误报警,检查压脚是否接地,钻板时压脚是否与板接触良好,仍有此现象发生则更换断刀检测板。 13、GRIPPER NOT UP

有机试样前处理方法

有机试样的处理方法 1 高温灰化法 高温灰化法是利用热能分解有机试样,使待测元素成可溶状态的处理方法。其处理过程是准确是准确称取0.5~1.0g(有些试样要经过预处理),置于适宜的器皿中,最常用的是适宜的坩锅,如铂坩锅、石英坩锅、瓷坩锅、热解石墨坩锅等,然后置于电炉进行低温碳化,直至冒烟近尽。再放入马弗炉中,由低温升至375~600℃左右(视样品而定),使试样完全灰化。试样不同,灰化的温度和时间也不相同,冷却后,灰分用无机酸洗出,用去离子水稀释定容后,即可进行待测元素原子吸收法测定。 灰化发是有机试样最常用的方法之一,其优点:操作比较简单,适宜于大量试样的测定,处理过程中不需要加入其它试剂,可避免污染试样,但灰化法也存在明显的缺点:在灰化过程中,引起易挥发待测元素的挥发损失,待测元素沾壁及滞留在酸不溶性灰粒上的损失。汞和硒等易挥发元素,灰化处理中挥发损失严重,不易采用。As、B、Cd、Cr、Fe、Pb、P、V、Zn等元素在灰化过程中有一定程度的挥发损失。Cu、Ni等形成某些有机复合物,在温度相对较低时,也会挥发。非金属元素能形成多种多样化合物,易于挥发。 应特别指出的是,为克服灰化法的不足,在灰化前加入适量的助灰化剂,可减少挥发损失和粘壁损失。常见的灰化剂有:MgO、Mg(NO3)2、HNO3、H2SO4等。其中HNO3起氧化作用,加速有机物的破坏,因而可适当降低灰化温度,减少挥发损失。加入H2SO4能使挥发性较大的氯酸盐转化为挥发性较小的硫酸盐,起到象基体改良剂的作用,硫酸可是使灰化温度升高到980℃,镉、铅未发现明显的损失。Mg(NO3)2有双重作用,其分解为NO2和MgO,前者促进氧化,后者可稀释灰分,减少灰分与坩锅壁的总接触面积,从而减少沾留。例如:As、Cu、Ag等在常规灰化时会有严重损失,如果加入Mg(NO3)2后,则能得到满意的结果。 2湿法消化法 湿法消化法亦称湿灰化法,其实质是用强氧化性酸或强氧化剂的氧化作用破坏有机试样,使待测元素以可溶形式存在。其基本方法是:称取预处理过的试样于玻璃烧杯中(或石英烧杯、聚四氟乙烯烧杯),加入适量消化剂,通常应在100~200℃下加热以促进消化,待消化液清亮后,蒸发剩余的少量液体,用纯水洗出,定容后即可进行原子吸收法测定。 湿法消化法中最常用的试剂是HNO3、HClO4、H2SO4等强氧化性酸,以及H2O2、KMnO4等氧化性试剂。实际上多用以一定比例配制的混合酸。在消化过程中避免产生易挥发性的物质,避免有新的沉淀形成。例如,HNO3:HClO4:H2SO4=3:1:1的混合酸适于大多数的生物试样的消化,但样品含钙高,则可不用H2SO4,以避免CaSO4沉淀形成。某些硫酸盐(如Pb2+、Ag+、Ba2+)和氯酸盐(Pb2+、Ag+如等)呈不溶性,因此测定这类样品时不宜使用HClO4或H2SO4。其它氧化剂如H2O2、高锰酸盐等也可用于消化试样,钼盐则能作催化剂加速氧化反应。 湿法消化法处理试样的优点是:设备简单、操作方便,待测元素的挥发性较灰化法小,因此是目前最常用的处理方法。但是,湿法消化法并非没有损失。例如:测定汞时,如果用开口烧瓶消化,则有很大损失,必须配以闭合回流冷凝装置。在消化过程中,如果有机物烧焦时,砷、硒、锑等可形成挥发性氢化物而损失。如果试样中含有有机氯化物时,Ge、As 等可形成挥发性氯化物而损失,钌、锇等可形成挥发性氧化物而损失。当含有HCl、HClO4、

农残检测样品前处理(气相)

本资料是我们为了方便我们的用户在网上搜集整理的,我们所做的就是让每一位朋友都能享受到资源共享。 农药残留检测与样品前处理技术的发展趋势 ——资料来源,中国色谱网 一、概述 农药是当前农业生产用于防治病、虫、杂草对农作物危害不可缺少的物质,对促进农业增产有极重要的作用。随着农业科学技术的发展,化学农药的品种和数量不断增加,已成为防治病虫害的主要手段。农药施用到农作物上以后,绝大部分因多种原因而转化,但作物内会残留有极少量的农药。长时间摄食残留农药会影响人体的健康,这就是农药残留量问题的由来。近年来,在茶叶、粮谷、蔬菜及水果种植中由于不少农户忽视农药的正确、合理使用,农药污染问题经常发生,农药残留量超标相当严重,并逐年加剧。而欧盟、美国、日本、加拿大等西方发达国家或地区,出于维护本国经济利益和保护人们健康的需要,相继对进口食品中农药残留量等卫生指标提出了愈来愈严格的要求。鉴于此,为保障我国人民的身体健康、有效控制农药在茶叶、粮谷、蔬菜和水果等生产中的合理使用和对其残留量进行监控,满足进出口贸易的需要,大力开展农药残留量检测技术以及相关的前处理技术的研究是非常必要的。 化学农药是一类复杂的有机化合物,根据其用途可以分为杀虫剂、杀菌剂、除草剂、植物生长调节剂、杀螨剂、杀鼠剂、杀线虫剂。根据化学结构又可分为有机氯、有机磷、拟除虫菊酯杀虫剂,取代氯苯氧基酸或酯除草剂,氨基甲酸酯杀虫剂、除草剂和杀菌剂和有机杂环类杀菌剂、除草剂等。农药残留量分析需要测定各种样品中ug/g、ng/g、甚至pg/g 量级的农药和/或代谢产物及降解产物。其分析过程一般包括取样、样品处理(提取、净化和衍生化)和测量,根据农药种类和样品基质的不同,上述各个步骤的复杂性有所不同。色谱方法常用于样品的净化和测量,以前较多采用填充柱气相色谱法(GC),现在则越来越多地使用毛细管气相色谱法(GC)和高效液相色谱法(HPLC),尤其在定性分析的气相色谱/质谱法(GC/MS)中,毛细管柱技术占绝对优势。电子捕获检测器(ECD)、火焰光度检测器(FPD)、氮磷检测器(NPD)是最常用的农药残留量分析的气相色谱检测器,质谱检测器(MSD)则是最通用和灵敏的检测器。各种进样方式,如分流、不分流、冷柱上进样技术和程序升温汽化进样技术都已应用于农药残留物分析。近年来,随着农药残留研究的不断深入,农药残留检测方法日趋完善,并向简单、快速、灵敏、多残留、低成本、易推广的方向发展。 在检测技术方面,目前国际上已较多采用多残留检测技术和快速筛选检测技术 传统的农残分析大多用来分析某一类农药的单一成分,多残留分析方法(Multi-Residue Analysis Method)不仅可以用于分析同一类农药中的不同成分,而且可以分析不同种类农药中的不同成分。前者称为选择性多残留分析方法(Selective Multi-Residue Analysis Method),后者称为多类多残留分析方法(Multi-class,Multi-Residue Analysis Method)。这 美瑞泰克有限公司中国代表处 https://www.360docs.net/doc/62608376.html, 服务热线:86-22-87890415 86-22-87890416 传真:86-22-87890417

土壤有机类物质前处理方法

全国土壤污染状况调查样品分析测试技术规定 3 土壤有机类物质前处理方法 3—1 提取 3 —l—1 有机物的提取和样品的制备(EPA3500 ) 1 .0 适用范围 1 .1 方法3500是从各种样品基体中定量地提取非挥发性或半挥发性有机化合物的方法。净化和(或)分析制成的提取物将在卞文中予以叙述。 1 . 2 方法3580叙述了在净化和(或)分析之前,可以应用于非水不挥发性和半挥发性有机样品的溶剂稀释技术。 1 .3 制备定量分析用的含有挥发性有机化合物样品的方法参见EPA5000 。 1 .4 欲知详细内容,参考有关的具体方法。 2 .0 方法摘要 2 .1 方法3500 。用溶剂提取已知体积或重量的样品。提取物经干燥,然后在K—D 装置中浓缩。如果能符合测定方法的质量控制要求,其它浓缩装置或技术可用来代替K—D 浓缩器(见方法8000 第8 .0 节)。 3 .0 干扰 3 .1 需要分析挥发性有机化合物的样品,在运输和贮存过程中挥发性有机化合物(特别是氯氟烃,二氯甲烷),通过样品容器衬垫的扩散可使样品受到污染。用试剂水配制现场空白经过采样和随后的贮存及处理过程,可用以检查这种污染。 3 .2 溶剂,试剂和玻璃器皿,和其它样品处理器会对样品分析产生入为因素及(或)干扰,所有这些材料和须在分析条件下用分析方法空白来证明其无干扰。可能需要特殊选择试剂并在全玻璃系统中蒸馏纯化溶剂。参见第一章关于质量控制步骤的具体指导。 3.3从样品中央提取的干扰物会因来源不同而相差很大。若被提取样品的分析因干扰而受到阻碍,可能需要进一步净化样品提取物。参见方法3600关于净化步骤的指导。 3.4酞酸酯类污染来自于实验室中常见的许多种类的用品。特别是塑料制品必须避免使用,因为酞酸酯通常用作增塑剂、容易从塑料材料中提取出来。如果不实行始终如一的质量控制,任何时候都会发生严重的酞酸酯污染。 3.5待测物降解造成玻璃器皿污染。玻璃器皿上的肥皂残留物将引起某些待测物的降解。特别是艾氏剂、七氯及大多数有机磷农药会在此情况下降解。这种问题对于那些难于冲洗的玻璃器皿(如500mlK-B烧瓶)尤为突出。这些器皿应该非常小心地用手工清洗以避免这一难题。 4.0仪器和设备

相关文档
最新文档