材料的光学性能测试资料

材料的光学性能测试资料
材料的光学性能测试资料

材料科学实验讲义

(一级实验指导书)

东华大学材料科学与工程中心实验室汇编

2009年7月

一、实验目的和要求

1、掌握透过率、全反射和漫反射测定的基本原理;

2、掌握透过率、全反射和漫反射测定的操作技能;

3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。

4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。

二、实验原理

光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。

在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。

目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍:

1、有机物的紫外—可见吸收光谱:

分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

*

σ

π

n

π

σ

轨道

*

σ

轨道

*

π

非键轨道

轨道

π

轨道

σ

图1 有机物的电子跃迁

相应的外层电子和价电子有三种:σ电子、π电子和n 电子。通常情况下,电子处于低的能级(成键轨道和非键轨道)。当用合适能量的紫外光照射分子时,分子可能吸收光的能量,而又低能级跃迁到反键*轨道。在紫外可见光区,主要有下列几种跃迁类型:

①N→V跃迁:电子又成键轨道跃迁到反键轨道,包括σ→σ*;π→π*跃迁。

②N→Q跃迁:分子中未成键的n 电子跃迁到反键轨道,包括n→σ*;n→π*跃迁。

③N→R跃迁:σ电子逐级跃迁到各高能级,最后脱离分子,使分子成为分子离子的跃迁。(光致电离)

④电荷迁移跃迁:当分子形成配合物或分子内的两个大π体系相互接近时,外来辐射照射后,电荷可以由一部分转移到另一部分,而产生电荷转移吸收光谱。

可见,有机化合物一般主要有4种类型的跃迁:n→π*、π→π*、n→σ*和σ→σ*。各种跃迁所对应的能量大小为n→π*< π→π*< n→σ*< σ→σ*。

2、无机化合物的紫外吸收光谱:

产生无机化合物紫外、可见吸收光谱的电子跃迁形式,一般分为两大类:电荷迁移跃迁和配位场跃迁。许多无机配合物有电荷迁移跃迁所产生的电荷迁移吸收光谱。

电荷迁移跃迁:指络合物吸收了可见-紫外光后,电子从中心离子的某一轨道跃迁到配位体的某一轨道,或从配位体的某一轨道跃迁到与中心离子的某一轨道。所产生的吸收光谱称为电荷迁移吸收光谱。(相当于内氧化还原反应)。一般可表示为:

M n+-L b-→ M(n+1)+-L(b+1)-(hν)

[Fe3+-SCN-]2+→[Fe2+-SCN]2+

(这就是配合物λmax=490nm为血红色原因)

金属配合物的电荷转移吸收光谱,有三种类型:

(1) 电子从配体到金属离子:相当于金属的还原。

(2) 电子从金属离子到配体:产生这种跃迁的必要条件是金属离子容易被氧化(处于低氧化态),配位体具有空的反键轨道,可接受从金属离子转来的电子,如吡啶、2,2'-联吡啶,1,10-二氮杂菲及其衍生物等,这类试剂易与可氧化性的Ti(III)、Fe(II)、V(II)、Cu(I)等结合,生成有色配合物,反应过程中,电子从主要定域在金属离子的d 轨道,转移到配位体的π轨道上。

(3) 电子从金属到金属:配合物中含有两种不同氧化态的金属时,电子可在其间转移,这类配合物有很深的颜色,如普鲁士蓝KFe[Fe(CN)6],硅(磷、砷)钼蓝H8[SiMo2O5(Mo2O7)5]等。

过度金属离子与含生色团的试剂反应所生成的配合物以及许多水合无机离子,均可产生电荷迁移跃迁。

如,Fe2+--1,10邻二氮菲及Cu+--1,10邻二氮菲配合物。

又如,Fe3+OH-→ Fe2+HO(hν)

此外,一些具有d10电子结构的过度元素形成的卤化物及硫化物,如AgBr、HgS 等,也是由于这类跃迁而产生颜色。

电荷迁移吸收光谱出现的波长位置,取决于电子给予体和电子接受体相应电子轨道的能量差。若中心离子的氧化能力越强,或配位体的还原能力越强,则发生跃迁时需要的能量越小,吸收光波长红移。

电荷迁移吸收光谱的ε一般在103~104之间,其波长通常处于紫外区。

(4) 配位场跃迁

配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配体的存在下,过度元素五个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。

当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d 或f轨道,这两类跃迁分别称为d - d 跃迁和f - f 跃迁。由于这两类跃迁必须在配体的配位场作用下才可能发生,因此又称为配位场跃迁。例如[Co(NH3)5X]n+的吸收光谱,其中d - d 跃迁属配位场跃迁。

配位场跃迁吸收光谱的ε一般在10-1~102之间,其波长通常处于可见区。ε较小,所以在定量分析上用途不大,但可用于研究无机化合物的结构及键合理论。

这里还要特别强调有一类化合物半导体,按照能带理论,其导带是部分被填充的。其最高被占用轨道和最低未填充轨道之间的能量差称为带隙,其吸收光谱不再是吸收峰而是一个吸收带边界。如我们常常说锐钛矿相的二氧化钛的带隙为3.2eV,吸收波长在387nm或以下的光。氧化锌的带隙为3.37eV,吸收波长在370nm或以下的光。硒化镉则有点不同,其往往也有一个较明显的吸收峰,其较大的晶粒带隙为1.8eV,吸收波长在688nm或以下的光。但硒化镉晶粒的吸收光谱具有明显的尺寸效应如:晶粒尺寸为5.6nm,其吸收带边界为610nm;晶粒尺寸为4.1nm,其吸收带边界为560nm;晶粒尺寸为2.8nm,其吸收带边界为505nm (S. Neeleshwar, et al. Size-dependent properties of CdSe quantum dots, Physical Review B 2005, 71, 201307(R)),相应的吸收光谱如图2所示。

3、紫外-可见吸收光谱(UV-vis)及漫反射光谱(DRS)

物质受光照射时,通常发生两种不同的反射现象,即镜面反射和漫反射。镜面反射如同镜子反射一样,光线不被物质吸收,反射角等于入射角,反射光束是平行的。图3为镜面反射和漫反射的示意,注意较粗糙的表面主要发生漫反射,对于很多粉末样

品,将其压片后其表面是粗糙的,可通过一个积分球的附件来测定粗糙表面的漫反射光谱。积分球是一个内壁涂有高反射率的物质(如硫酸钡)球形附件,可将压片后粉末的漫反射光谱收集起来,通过光电倍增管来定量测定光信号的强弱。

300400500600700

2.8nm

4.1nm

5.6nm

Wavelength(nm)A b s o r b a n c e (a r b . u n i t )

图2 氯仿介质中不同晶粒尺寸的硒化镉的吸收光谱

(插入的图为硒化镉的高分辨透射电镜照片

)

图3 镜面反射和漫反射的区别

对于粒径极小的超细粉体,主要发生的是漫反射。漫反射满足 Kubelka-Munk 方程式: S K R R =-∞∞2)1(2 (1)

式(1)中K 为吸收系数,与吸收光谱中的吸收系数的意义相同,S 为散射系数,R ∞表示无限厚样品的反射系R 的极限值。实际上,反射系数R 通常采用与一已知的高反射系数(R ∞≈1)标准物质比较来测量,测定R ∞(样品)/R ∞(标准物)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。常用的标准物质为硫酸钡粉末。

三、实验设备

采用北京普析通用的TU-1901型双光束紫外-可见分光光度计,仪器配有IS19-1积分球,积分球的直径约为60mm 。

主要的功能有:

1、吸光度测量:为用户提供单点或多点读数的功能,测量1~10个波长处的吸光度或透过率并可按设定的公式进行科学度算。还可计算平均值及四则运算结果。

2、光谱扫描:为用户提供指定波段范围的扫描功能,支持Abs、T% 和能量方式。可进行重复扫描。按设定的波长范围进行吸光度或透过率的谱图扫描并可进行各种数据处理,如峰值检出,导数光谱,谱图运算等。多通道光谱测量,彩色曲线显示与打印,配各种数据处理功能,能满足各行各业的需求。

3、定量计算:单波长,双波长,三波长及微分定量,定量测定的工作曲线制作更加方便,可实现多达20点的1~4次曲线回归,对吸光度非线性样品也可实现准确测定。用户可根据不同的需要进行选择。

4、时间扫描:为用户提供定点波长的时间扫描功能。在设定的1~10个波长处进行吸光度或透过率的时间扫描并可进行各种数据处理,如峰值检出,谱线微分,谱线运算等。用户可根据不同的需要对扫描时间、间隔时间和采样点进行设置。同时,还可以对时间增量进行设置。时间扫描与光谱扫描类似,都具有重复扫描的功能。

5、性能指标

波长范围190nm~900nm

波长准确度±0.3nm(开机自动校准)

波长重复性0.1nm

光谱带宽TU-1900: 2nm;TU-1901: 0.1nm、0.2nm、0.5nm、1.0nm、2.0nm、5.0nm 杂散光≤0.010%T(220nm,NaI:340nm,NaNO2)

光源转换自动切换(可在320nm~380nm波段范围内任意设定)

光度方式透过率、吸光度、反射率,能量

光度范围-4.0~4.0Abs

光度准确度±0.002Abs (0~0.5Abs)、±0.004Abs (0.5~1.0Abs)、±0.3%T (0~100%T) 光度重复性0.001Abs (0~0.5Abs)、0.002Abs (0.5~1Abs)

基线平直度±0.001Abs

基线漂移0.0004Abs/h(500nm,0Abs预热后)

噪声±0.0004Abs

主机

光源插座型长寿命溴钨灯及氘灯(更换灯后无须调整)

检测器光电倍增管

样品室可选配八联样品池架,积分球附件等

体积587×562×260mm

重量30kg

四、实验内容和实验步骤

1、胶体的消光光谱

实际上胶体对光仍有部分散射,所以标准的样品池得到的是消光光谱而不是吸收光谱。在前面已经提到,锐钛矿相的二氧化钛吸收波长为387nm 及以下的光,但其胶体仍在可见光区有“吸收”,解释其原因。作为对比,可将二氧化钛粉末分散成悬浊液,测定其消光光谱,比较两者的差异。吸收光谱测定间接半导体的带隙的原理如下:

图4 不同浓度的二氧化钛胶体的UV-vis 消光光谱

图4为不同浓度的二氧化钛胶体的UV-vis 消光光谱,没有稀释的光谱中二氧化钛的浓度约为10.0g/L 。

从图4的消光光谱可以看出,二氧化钛胶体的浓度为10.0g/L ,在可见光区A 值并不为零,这部分主要是二氧化钛纳米晶的团聚体对光的散射引起的。经过1:5稀释后,在可见光区的消光现象大大减弱,主要是稀释后团聚体的相对浓度变小。在团聚体的尺寸不改变的前提下,消光和吸收都遵循下面的公式: c A 110303.23ρα?= (2) 其中α是摩尔吸光吸收,A 是吸光或消光度,ρ、l 、c 分别为二氧化钛的密度(锐钛矿相二氧化钛的密度是3.84g/cm 3)、光程长和二氧化钛胶体的浓度(以g/L 计)。经过1:125到1:500的比例稀释后,得到了类似与溶液的吸收光谱,它们对应的吸收带边界的起始点约为340nm ,对应的带隙为3.65eV 。 hv

E hv B g d 2

1)(-=α (3) hv E hv B g i 2

)(-=α (4)

式(3)式(4)中B d 、B i 和h ν分别表示直接半导体的吸收常数、间接半导体的吸收常数和照射光的能量。二氧化钛属于间接半导体,结合公式(2)和(4)可以得到下面的公式: )()(21g i E hv B hv -=?α (5)

作图后可计算出尺寸为5nm 左右的锐钛矿相二氧化钛的间接带隙为 3.34到

3.46eV ,与所选择的外推线段有关。用图4的间接半导体外推都能得到二氧化钛带隙的数据,用公式(5)更准确,其结果如图5所示。所以我们可以认为尺寸为5nm 的二氧化钛晶粒有0.12到0.25eV 的蓝移,表现出了尺寸效应。关于二氧化钛胶体的尺寸效应,可以参考文献(N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem., 1995, 99, 16646-16654)。

图5 (α h ν)1/2对h ν作图求出二氧化钛晶粒的能隙

图5为以(α h ν)1/2对 h ν作图求出二氧化钛晶粒的能隙。样品为TALH 在100oC 水解24h 所得到的沉淀经水洗三遍后在分散在去离子水中,经过150oC 水热处理的二氧化钛湿沉淀经过超声分散后所得胶体并经过1:125稀释,二氧化钛的浓度约为0.08g/L 。

实验步骤:

(1) 观察所本实验室提供的二氧化钛胶体和悬浊液的外观差别,并作好实验记录。

(2) 在做吸收光谱时,所使用的是标准样品台,所使用的是1cm 的标准石英比色皿。在使用前检查石英比皿外观是否清洁,如不清洁需要用专用清洗剂清洗并用擦镜纸擦干净。

(3) 安装专门作液体样品的标准样品台后,确认样品台下面的钮子开关已拨至右边位置,打开光度计主机电源开机。

(4) 点击Windows 界面【开始】键,选择程序项目中的【紫外窗口】,运行【TU-1900配置】软件,显示界面如下,选择【附件】中的【标准样品池】项,选择结束后确认退出。运行紫外窗口下【TU-1901 UVWIN 】程序进行整机初始化。

(5) 仪器自检结束后,选择参数设置。

* 选择【应用】菜单的【光谱测量】项,仪器进入光谱扫描功能。

* 选择【配置】菜单的【参数】项,弹出扫描参数设置窗口,如图6所示。

图6 扫描参数设置

* 在扫描参数窗口,设置波长范围,开始波长为850nm,结束波长为230nm。光度方式选择A。然后确认退出。

* 选择【应用】功能中的【暗电流校正(0%T)】项,在“请在样品池空白比色皿”的提示下,将空白比色皿,然后确认进行暗电流校正。

* 校正结束后,提示是否保存校正结果,确认保存并返回。

(6) 基线校正

暗电流校正完后,在工作波段范围内做基线校正,过程如下:

* 将装有参比溶剂的比色皿分别放在两个样品池中。

* 用鼠标将主菜单功能设到“应用菜单”。选择“基线校正(100%T)”。并确认。

(7) 测量:记录0.00A线以便确认0.00A线的平直度,最后开始测量二氧化钛胶体样品和二氧化钛悬浊液样品。

注意:在整个测量操作期间,小心不能触摸附件内的镜面

(8) 保存数据,也可将数据转换为TXT文件,在其它绘图软件上作图。

(9) 注意比较两个谱图的差异,并分析差异的原因(二氧化钛的浓度是相同的,为何有如次大的差异?)。

(10) 将样品池中的样品倒出,洗净。

(11) 关闭电脑主机,关闭分光光度计主机。准备下一组实验。

2、无机非金属粉末的漫反射光谱

实验步骤:

(1) 断开光度计主机电源。

(2) 打开样品室盖,上提并移去标准样品室架,然后将该附件安装上并压牢。

(3) 将附件的电缆线接到光度计的前部下侧的前放板的接口上。并拧紧固定螺钉。

(4) 将前放板上的钮子开关拨到左边(积分球)位置。图7示意了积分球附件的接线,打开光度计主机电源。

主机

积分球附件

电缆线

开关

图7 积分球安装

注意:

①绝对禁止用手触摸镜子,积分球附件的放置环境要绝对防尘。

②积分球附件要轻拿轻放,大的机械震动会引起积分球内壁硫酸钡涂层的剥落。 ③当要使用标准样品室时,将钮子开关拨至右边位置。

(5) 操作:应首先把两个标准白板分别装在积分球的样品光和参比光两侧的出口位置,将钮子开关拨至左边位置,点击Windows 界面【开始】键,选择程序项目中的【紫外窗口】,运行【TU-1900配置】软件,显示界面如下,选择【附件】中的【积分球】项,同时选择样品池设置中的【S/R 】项,漫反射测量请选择【R/S 】项,光谱带宽选择 5.0nm ,选择结束后确认退出。操作界面如图8所示。运行紫外窗口下【TU-1901 UVWIN 】程序进行整机初始化。

图8 积分球安装后启动电脑主机设置附件

(6) 基本操作

①首先将标准白板安装在积分球的样品光和参比

光两侧的出口处,标准白板是用随机配给的硫酸钡粉

末压制而成的。它们可以用随机配给的滚花头螺钉固

定在积分球上(如图9所示)。

②暗电流校正

整机自检正常进入后,对全波段(850nm ~230nm)

进行暗电流校正(0%R 校正),过程如下:

* 选择【应用】菜单的【光谱测量】项,仪器

进入光谱扫描功能。

* 选择【配置】菜单的【参数】项,弹出扫描

参数设置窗口,如图10所示。

* 在扫描参数窗口,设置波长范围,开始波长

为850nm ,结束波长为230nm 。光度方式选择R%。

然后确认退出。

图9

标准白板的安装 图10 扫描参数设置

* 选择【应用】功能中的【暗电流校正(0%T)】项,在“请在样品池插入黑挡块”的提示下,将样品光侧的标准白板取下,或用光栏测量时,将光栏板安上,然后确认进行暗电流校正。

* 校正结束后,提示是否保存校正结果,确认保存并返回。

③基线校正

暗电流校正完后,在工作波段范围内做基线校正,过程如下:

* 在样品光和参比光两侧安好标准白板。用光栏测量时,应将光栏板和样品侧的标准白板重叠安上。

* 用鼠标将主菜单功能设到“应用菜单”。选择“基线校正(100%T)”。并确认。

④测量

建议用户记录100%R线以便确认100%R线的平直度,最后开始测量未知样品。

注意:在整个测量操作期间,小心不能触摸附件内的镜面

(7) 漫反射测量:

①对全波段进行暗电流校正。

②对工作波段进行基线校正,而后将样品光侧的标准白板换为待测样品,进行测量(见图11)。

图11 漫反射测量图12 压装粉末样品

③对于粉末样品,用玻璃棒将它们压

制到粉末样品架上,并且压制的粉末要完

全充满整个样品槽内(如图12)。

(8) 光学结构:该附件的光学系统如图

13所示,样品光以0°角进入积分球,而参

比光以8°角进入积分球,利用光度计主机

的R/S光通道交换功能,可在样品光侧测

得漫反射,而在参比光侧测得全反射和透

射。

各部件说明:①积分球球体,②积分

球球体固定螺钉,③光电倍增管(安装在积

图13 光学系统

参比光

样品光

分球支板下面),④样品光侧的样品支架,⑤参比光侧的样品支架,⑥反射镜M1,⑦反射镜M2,⑧反射镜M3,⑨光电倍增管信号线。

图14 各部件的说明

(9) 按照图12所示,将二氧化钛粉末在仪器专用的槽中压成片,注意压实,避免粉末脱落污染仪器。先试着垂直放置,粉末不会落下就可以取下左边的标准白板,将待测样品装上。

(10) 在电脑主上点击“开始”,仪器开始自动扫描并记录。

(11) 实验结果与数据处理:得到的是反射率,可以在软件的工作界面上转换成A 模式,这也是国际上专业论文中常用的表示方法。将图直接粘贴到WORD中,也可转换成TXT文件,再用作图软件绘图。

(12) 影响实验结果的因素:漫反射光谱有很好的重复性,只要粉末压实结果有很好的重现性。

4.玻璃、有机玻璃和透明胶片的透过率和全反射测量:

(1) 按照无机非金属粉末的漫反射光谱中的(1)到(6)操作做好测定的准备工作。需要注意的是第(5)步中应选中样品池设置中的【S/R】项,而在漫反射测量需选择【R/S】项。运行紫外窗口下【TU-1901 UVWIN】程序进行整机初始化。

(2) 全反射测量:全反射测定也是测定R%,玻璃的反射率在可见光区为10%左右。基线校正结束后,把样品侧的标准白板更换为待测样品(如图15所示),并用样品压板固定。若用光栏测量,应将样品固定(粘)在光栏板上,再将光栏板用滚花头螺钉固定在积分球上。

(3) 玻璃、有机玻璃和透明胶片的透过率测量:基线校正结束后,将待测样品固定在积分球的入射窗(见图16),对于薄片型样品,用户可用配件固定样品。

图15 全反射测量图16 透过率测量

五、实验数据处理和思考题

1、将的胶体的消光光谱保存,也可将两张谱图叠在一幅图中,直接粘贴到WORD中。

光谱的数据也可转换成TXT文件,再用作图软件绘图。胶体有很好的稳定性,实验结果有很好的可重现性。悬浮液并不稳定,倒入样品池之前需要振荡尽量保持较好的悬浮性。解释悬浮液消光光谱再现性差的原因。

2、胶体与悬浮液的二氧化钛浓度相同,为何其消光光谱有较大的差异,结合实验原理

来讨论哪个对光的散射更强?

3、根据数据结果来求二氧化钛的带隙(间接半导体)?

4、记录粉末的漫反射光谱,粉末的DRS光谱明显不同于胶体和悬浮液的消光光谱,

为什么?

5、玻璃、有机玻璃和透明胶片都有一定程度的全反射,这对有些应用是不利的,查阅

文献看看有哪些方法可减少这些材料的全反射(电视机屏幕、显示器屏幕的全反射影响视觉效果,玻璃全反射引起的光污染等)?

6.在玻璃、聚合物膜中选择一个材料,测定并记录其透过率和全反射率。注意透过率与全反射测定样品的放置位置是不同的。同一个样品选择两种模式测定的结果也会有差异,为什么?

七、实验报告撰写要求

在试验报告撰写时,除常规内容外,还应讨论下列内容:

1、解释吸收光谱和消光光谱的区别,这什么情况下吸收光谱等同于消光光谱?

2、胶体的概念是什么?根据瑞利散射原理,介质中颗粒的大小与光的波长接近时,散

射率最高。胶体中仍有一些散射,部分悬浮液的散射较胶体中更强烈。实验中提供的二氧化钛颗粒尺寸约为400到800nm,结合这些知识讨论实验结果

3、透过率和全反射率是不同的,光照射到一个介质中后,入射光的能量等于透过光+

反射+散射(漫反射)的能量之和,注意用这些知识解释思考题6。

材料的光学性能测试

材料科学实验讲义 (一级实验指导书)东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

性能测试方案

XXX项目 性能测试方案

修订记录

目录 1项目简介 (1) 1.1测试目标 (1) 1.2测试范围 (1) 1.3性能测试指标要求 (2) 1.3.1 交易吞吐量 (2) 1.3.2 交易响应时间 (2) 1.3.3并发交易成功率 (2) 1.3.4资源使用指标 (2) 2测试环境 (3) 2.1网络拓扑图 (3) 2.2软硬件配置 (3) 3测试方案 (5) 3.1交易选择 (5) 3.2测试数据 (5) 3.2.1 参数数据 (5) 3.2.2 存量数据 (6) 3.3资源监控指标 (6) 3.3.1台式机 (6) 3.3.2服务器 (6) 3.4测试脚本编写与调试 (6) 3.5测试场景设计 (6) 3.5.1典型交易基准测试 (6) 3.5.2典型交易常规并发测试 (7) 3.5.3稳定性测试 (8) 3.6测试场景执行与数据收集 (9) 3.7性能优化与回归 (9) 4测试实施情况 (10) 4.1测试时间和地点 (10) 4.2参加测试人员 (10) 4.3测试工具 (10) 4.4性能测试计划进度安排 (11) 5专业术语 (12)

1 项目简介 1.1测试目标 通过对XXXXXX系统的性能测试实施,在测试范围内可以达到如下目的: 了解XXX系统在各种业务场景下的性能表现; 了解XXX业务系统的稳定性; 通过各种业务场景的测试实施,为系统调优提供数据参考; 通过性能测试发现系统瓶颈,并进行优化。 预估系统的业务容量 1.2测试范围 XXX系统说明以及系统业务介绍和需要测试的业务模块,业务逻辑图如下:

本公司服务器环境以及架构图 为了真实反映XXXX系统自身的处理能力,本次测试范围只包(XXX服务器系统和Web服务系统、数据库服务器系统)。 1.3性能测试指标要求 本次性能测试需要测试的性能指标包括: 1、交易吞吐量:后台主机每秒能够处理的交易笔数(TPS) 2、交易响应时间(3-5-8秒) 3、并发交易成功率99.999% 4、资源使用指标:前置和核心系统各服务器CPU(80%)、内存占用率(80%)、Spotlighton 数据库;LoadRunner压力负载机CPU占用率、内存占用率 1.3.1 交易吞吐量 根据统计数据,XXX系统当前生产环境高峰日交易总量为【】万笔。根据二八原则(80%的交易量发生在20%的时间段内),当前生产环境对主机的交易吞吐量指标要求为:TPS_1 ≥【】 * 80% / (24 * 20% * 3600) = 【】笔/秒 为获取系统主机的最大处理能力,在本次性能测试中可通过不断加压,让数据系统主机CPU利用率达到【】%,记录此时的TPS值,作为新主机处理能力的一个参考值。 1.3.2 交易响应时间 本次性能测试中的交易响应时间是指由性能测试工具记录和进行统计分析的、系统处理交易的响应时间,用一定时间段内的统计平均值ART来表示。 本次性能测试中,对所有交易的ART指标要求为: ART ≤ 5 秒 1.3.3并发交易成功率 指测试结束时成功交易数占总交易数的比率。交易成功率越高,系统越稳定。 对典型交易的场景测试,要求其并发交易成功率≥ 99.999% 。 1.3.4资源使用指标 在正常的并发测试和批处理测试中,核心系统服务器主机的资源使用指标要求:CPU使用率≤ 80% 内存使用率≤ 80%

GB T 5137.2-2002汽车安全玻璃试验方法第2部分:光学性能试验

GB/T 5137.2-2002 (2002-12-20发布,2003-05-01实施) 前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”; 本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件

性能测试常用分析及标准

服务响应的时间标准 参考了业内比较通行的“2-5-10原则”——当然你也可以为自己的测试制定其他标准,只要得到企业内的承认就可以。所谓的“2-5-10原则”,简单说,就是当用户能够在2秒以内得到响应时,会感觉系统的响应很快;当用户在2-5秒之间得到响应时,会感觉系统的响应速度还可以;当用户在5-10秒以内得到响应时,会感觉系统的响应速度很慢,但是还可以接受;而当用户在超过10秒后仍然无法得到响应时,会感觉系统糟透了,或者认为系统已经失去响应,而选择离开这个Web站点,或者发起第二次请求。 针对基础数据库添加企业信息: 添加10家企业,9家成功,1家失败,失败详细信息 Action.c(62): Error -26612: HTTP Status-Code=500 (Internal Server Error) for "http://202.117.99.211/basedatabasesite/PSInfo/IndustryFact/PSBaseInfoAdd.aspx? PSClassCode=1&%3f" Monitor name :Windows Resources. Cannot access data for measurement Processor|% Processor Time|_Total on machine 202.117.99.211. Details: 检测出一个含有负分母值的计数器。 Hint: Check that there is such a measurement on the machine (use the Add Machine dialog box) (entry point: CNtMeasurement::GetNewData3). [MsgId: MMSG-47295] 功能名称:企业基本信息维护,添加企业基本信息 10用户模拟并发操作: 系统响应时间:最短1.078秒最长4.901秒,属于可接受范围 资源使用情况: 内存分析: 其中: Handle Count(process _total)值由71030变化为71515 差值485bytes private bytes 值由2442407936变化为2469638144差值27230208bytes 变化范围约3M committed bytes 值由2625691648 变化为2652794880 差值27103232

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

材料表征和性能测试过程中用到的仪器设备

材料表征和性能测试过程中用到的仪器设备 1.材料表征:材料的防腐蚀性能 表征方式:电化学阻抗谱 效果:得到材料的电容、电阻、电感等信息,获得材料的防腐蚀机理 需要注意的问题:保证基材的面积固定 表征方式:极化曲线 效果:获得材料腐蚀时的腐蚀电流密度、极化电阻、腐蚀电位、腐蚀速率等信息 需要注意的问题:保证基材的面积固定 表征方式:盐雾试验 效果:加速试验,获得材料耐腐蚀的耐久性 需要注意的问题:注意盐水浓度的变化 2. 材料表征:材料的成分分析 表征方式:X射线能谱 效果:得到材料的元素组成 需要注意的问题:样品不要太大,能放进样品室 表征方式:X射线光电子能谱 效果:得到材料的元素组成及价态或化合态 需要注意的问题:样品不能大于2mm厚,仅能测试表面元素,可以利用溅射一层一层的测试 表征方式:X射线衍射 效果:得到聚苯胺材料的掺杂状态及结晶状态 表征方式:紫外光谱 效果:得到聚苯胺材料的掺杂状态 需要注意的问题:要能溶于某种溶剂 表征方式:核磁共振谱 效果:获得分子结构 需要注意的问题:能溶于特定的溶剂 表征方式:裂解色谱 效果:得到聚合物材料的结构 需要注意的问题:裂解温度要适合 表征方式:凝胶渗透色谱 效果:得到聚合物材料的分子量 需要注意的问题:样品溶于特定的溶剂

1.表征方式:NMR 效果:有机样品的结构鉴定,常用的H谱,C谱,能够得到样品分子中H的种类,杂化类型,数量,主链C的信息等。 需要注意的问题:分为液体核磁和固体核磁 2. 表征方式:GC-MS,LC-MS: 效果:质谱一般联用气相、液相更为有用,用于分析有机小分子成分,有强大的谱库可以定性和定量分析样品组成。 需要注意的问题:对样品极性、溶解性和气化温度等有要求。 3.表征方式:ICP-MS,ICP-AES,ICP-OES等 效果:可以精确得到样品中某种无机金属元素含量,特别是微量金属元素含量; 需要注意的问题:需将样品首先溶解在溶液中,常用硝酸、盐酸、王水、其他各种有机酸作为溶解酸,得保证样品中的重金属可以溶。 4. 表征方式:EDS 效果:可以定性定量分析样品中元素,虽然有机元素如C、N、O等也可以分析,但对元素序数更大的无机元素分析更为精确。 需要注意的问题:EDS是SEM或TEM的附件,样品需按照SEM或TEM制样要求进行制备,所以制样要求较高。 5. 表征方式:EELS 效果:可以定性定量分析样品中元素,范围较EDS更大,同时分辨率较EDS高好几个数量级,做MAPPING分析时真正在纳米尺度上可以表征元素的分布; 需要注意的问题:EELS对TEM配置要求更高,一般TEM不含该附件,不是通用测试手段。 6. 表征方式:TGA-DSC-FTIR,或GC-MS: 效果:TGA可以对有机无机样品重量随温度变化进行记录,表征样品热稳定性,定量分析样品组成等,联用DSC可以分析样品随温度变化热焓效应,分析样品熔点,分界点,化学反应热量等,联用红外或气质可以分析热分解产物成分。 需要注意的问题:单独TGA样品用量5-10mg,但膨胀性样品用量必须减少,储能材料、炸药等不能做TGA或者只能用极微量样品测试,联用红外或气质需适当增加样品用量降低信噪比和本底干扰。 7.表征方式:AFM,AFM-IR联用 效果:AFM可以对样品表面形貌进行真正意义上的3维分析,AFM和红外联用可以同时对AFM图上任意一个区域进行红外官能团分析,做官能团的mapping,对复合材料、多层材料、微观相分离物质非常有效。 需要注意的问题:样品要求必须平整光滑,否则可能损坏探针,与红外联用时需保证样品不含水。 8. 表征方式:BET 效果:分析多孔材料比表面积,孔型,孔径,孔分布等,催化、粉体制备等领域常用仪器。 9.表征方式:GPC 效果:聚合物材料常用表征,可测出聚合物几种分子量,但需根据自身样品特点选择不同的填充柱和溶剂。 10.表征方式:离子色谱 效果:对常见阴离子如F-、Cl-、Br-、NO2-、NO3-、SO42-、PO43-和阳离子如Li+、Na+、NH4+、K+、Mg2+、Ca2+等进行定性定量分析,与ICP等手段组合应用是分析利器。

性能测试报告范例

测试目的: 考虑到各地区的用户数量和单据量的增加会给服务器造成的压力不可估计,为确保TMS系统顺利在各地区推广上线,决定对TMS系统进行性能测试,重点为监控服务器在并发操作是的资源使用情况和请求响应时间。 测试内容 测试工具 主要测试工具为:LoadRunner11 辅助软件:截图工具、Word

测试结果及分析 5个用户同时生成派车单的测试结果如下: Transaction Summary(事务摘要) 从上面的结果我们可以看到该脚本运行47秒,当5个用户同时点击生成派车单时,系统的响应时间为41.45秒,因为没有设置持续运行时间,所以这里我们取的响应时间为90percent –time,且运行的事物已经全部通过

事务概论图,该图表示本次场景共5个事务(每个用户点击一次生成派车单为1个事务),且5个事务均已pass,绿色表色pass,如出现红色则表示产生error

从上图可以看到服务器的CPU平均值为14.419% ,离最大参考值90%相差甚远;且趋势基本成一直线状,表示服务器响应较为稳定,5个用户操作5个900托运单的单据对服务器并没有产生过大的压力。

“Hits per Second(每秒点击数)”反映了客户端每秒钟向服务器端提交的请求数量,这里服务器每秒响应9,771次请求;如果客户端发出的请求数量越多,与之相对的“Average Throughput (吞吐量)”也应该越大。图中可以看出,两种图形的曲线都正常并且几乎重合,说明服务器能及时的接受客户端的请求,并能够返回结果。 按照上述策略,我们得出的最终测试结果为: 生成派车单: 1个用户,300个托运单点击生成派车单,响应时间7.34秒 5个用户,900个托运单点击生成派车单,响应时间41.45秒 单据匹配: 单用户1000箱,20000个商品,上传匹配时间8秒 五个用户2500箱,40000个商品,同时上传匹配耗时2分25秒 自由派车: 单条线路917个托运单下载,响应时间1分40秒 上述结果是在公司内网,测试环境上进行的测试,可能与实际会有偏差

材料的光学性能测试10页word

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月 一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子

高分子材料力学性能

高分子材料力学性能 姓名:程小林学号:5701109004 班级:高分子091 学院:材料学院 研究背景:在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 將是21世纪最活跃的材料支柱.高分子材料在我们身边随处可见。在我们的认识中,高分子材料是以高分子化合物为基础的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。今天,我想就高分子材料为主线,简单研究一下高分子材料所具有的一些方面的力学性能。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分

子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶 研究理论:高分子材料的使用性能包括物理、化学、力学等性能。对于用于工程中作为构件和零件的结构高分子材料,人们最关心的是它的力学性能。力学性能也称为机械性能。任何材料受力后都要产生变形,变形到一定程度即发生断裂。这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。同时, 环境如温度、介质和加载速率对于高分子材料的力学行为有很大的影响。因此高分子材料的力学行为是外加载荷与环境因素共同作用的结果。聚合物材料力学性能是材料抵抗外加载荷引起的变形和断裂的能力。 在力学性能方面,它的高弹性、粘弹性和其力学性能对时间与温度强烈的依赖关系,是这类材料与金属材料显著的差别。高分子材料可以分为工程塑料、橡胶和合成纤维三大类,其中工程塑料可作为工程结构材料使用。工程塑料是热塑性材料和热固性材料总称。按力学性能可分为两类,一类是塑性很好,延伸率可达几十~几百%,一部分热塑性材料属于这种情况;一类是比较脆,其拉伸过程简单,拉伸曲线与铸铁类似,热固性材料都属于这种情况。 高分子材料拉伸试件一般为矩形截面的板状试件。试件形状和尺寸的设计可参考金属材料。 聚合物材料的力学性能通过材料的强度、刚度、硬度、塑性、韧

光学高分子材料简述及性能指标

光学高分子材料简述及性能指标 光学高分子材料种类繁多,应用也不尽相同,但一般都包含三大类技术指标:光学性能、机械性能、热学性能。 光学性能主要包括折射率和色散、透过率、黄色指数及光学稳定性。 折射率和色散是光学材料的最基本性能。在透镜设计中,为使透镜超薄和低曲率必须寻求高折射率的光学材料,而校正色差要求有两组阿贝数不同的材料,即冕牌系列(低色散,阿贝数>50)和火石系列(高色散,阿贝数<40)。光学玻璃的折射率和色散有较大的选择余地,而光学塑料的选择范围却十分有限,尤其是冕牌系列光学塑料。透明塑料折射率的测定最常用的方法是折射仪法。阿贝折射仪是最广泛用于测定折射率的折射仪。 透过率是表征树脂透明程度的一个重要性能指标,一种树脂的透过率越高,其透光性就越好。透过率的定义为:透过材料的光通量(T2)占入射到材料表面上的光通量(T1)的百分率。任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以超过95%。 聚合物光学材料在紫外和可见光区的透光性和光学玻璃相近,在近红外以上区域不可避免的出现碳氢振动所引起的吸收。通常,光学塑料在可见光区透光率的损失主要由以下三个因素造成:光的反射;光的散射;光的吸收。 黄色指数是无色透明材料质量和老化程度的一项性能指标,由分光光度计的读数计算而得,描述了试样从无色透明或白色到黄色的颜色变化。这一实验最常用于评价一种材料在真实或模拟的日照下的颜色变化。而对于透明塑料材料来说,由于原料纯度或加工条件等因素的影响,可能自身带有一定颜色。 光学树脂如同多数有机物质一样存在着耐候和耐老化问题,因此树脂的结构和加工工艺以及使用环境对树脂的光学性能有较大的影响。在一定使用期限内,光学参数的稳定性尤为关键,这个指标直接决定产品的使用性能。采用人工加速老化中的全紫外线老化的方法检测树脂的光学稳定性。全紫外线老化法主要模拟阳光中的紫外线.全紫外线强度比相应太阳紫外强度高几倍。正是短波紫外线对有机材料老化起了主要作用,这样会大大地提高了老化加速率,也是全紫外老化的最突出优点。同时可以进行温度、湿度、雨淋等环境因素的模拟。这一老化方法其紫外强度等参数可以监控,试验重复性好。 韧性(耐冲击性能)和表面硬度(耐磨性)是光学高分子材料的重要机械性能。 冲击强度是衡量材料韧性的一种强度指标。冲击强度是使材料在冲击力的作用下折断,通常把折断时截面吸收的能量定义为材料的冲击韧性。冲击实验主要有弯曲梁式(摆锤式)冲击、落锤式冲击和高速拉伸试验三类。 无定型聚合物的韧性主要与其分子结构有关。主链上酯键、醚键、碳-碳键可以自由旋转,因而材料具有较好的韧性,如PC是光学塑料中抗冲击性能最好的材料;带有较大

密封材料检测标准密封材料测试标准定稿版

密封材料检测标准密封 材料测试标准 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

密封材料检测标准密封材料测试标准 世界建筑密封材料的总趋势是用量持续增加,产品向高功能的弹性体密封膏方向发展,而低档油性嵌缝膏的使用比例不断下降,逐步退出市场,中档密封膏将有适度的发展。 随着优质防水材料的采用和对防不机理认识的深化,防水系统的使用期大大延长,SBS改性油毡屋面使用20年后变化很小,PVC防水片材已有成功使用30年的记录,EPDM 和金属屋面的使用期可达40年~50年以上,实行防水保证期制度的条件已经成熟。英国、法国、德国对屋面防水实行10年保证期。美国分别实行5年、10年、15年、20年的屋面保证期。日本规定,屋面、阳台、走廊、浴室叠层油毡防水的保证期为10年。 检测产品 防震缓冲包装材料:用聚苯乙烯、低密度聚乙烯、聚氨酯和聚氯乙烯制成的泡沫塑料。 密封材料:密封剂和瓶盖衬、垫片等,用作桶、瓶、罐的封口材料。 检测项目 1、阻隔性能:有机气体透过率、包装膜高低温气体透过率、氧气透过率、二氧化碳气体透过率、氮气透过率、空气透过率等; 2、机械性能:拉伸强度与伸长率、剥离强度、热合强度、冲击强度、撕裂强度、摩擦系数、耐蒸煮测试、包装密封性能; 3、卫生性能:溶剂残留、邻苯类增塑剂、重金属含量、相容性、高锰酸钾消耗量

等; 4、缓冲材料的缓冲性能:静压力、动态冲击、振动传递率、永久变形 特性 密封材料一般应具有良好的物理和机械性能、回弹性高、压缩永久变形小、密封可靠、加工方便和使用寿命长。硅橡胶密封剂能耐高温和低温、耐辐射、耐真空、无污染、无毒;聚硫橡胶密封剂具有优异的耐航空燃料性能,还有就是耐高温、耐高压、耐摩擦、耐压,这些都是密封行业的主导方向,密封材料的质量直接影响机械身设备的生产效率,假如买到不合适的产品,对设备的使用效率有很大的影响。建议各位领导及各位同仁在选择密封材料的时候慎重选择,尽量使用品牌产品,因为品牌产品代表的是一个责任,也是一个生产厂家的实力。 应用 航空航天工业还要求密封材料能适应一些特殊的环境要求,硅橡胶密封剂能耐高温和低温如耐真空、耐辐射、无污染、无毒、耐高低温和耐航空燃料和火箭推进剂等介质的腐蚀。航空航天工业中使用的密封材料主要有:聚硫橡胶、硅橡胶和聚氨酯密封剂,主要用于机翼和机身整体油箱的密封。要用于各种密封舱的密封。聚氨酯密封剂的超低温性能良好,主要用于火箭推进剂液氢、液氧的连接缝。飞机的座舱、窗门、仪表舱、炮弹舱、引射器、电插头、电子元件和电磁铁的灌封也都使用密封剂。 要求 密封性能的优劣,很大程度上取决于密封材料的性能。了解各种密封材料的性能,正确选用密封材料,是正确设计、使用密封的首要问题。早期的密封材料,主要是织物、矿

(整理)材料的光学性能测试.

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

材料性能测试

材料性能测试 拉伸:1.什么是弹性变形?弹性变形有何特点?弹性变形的实质是什么? 概念:材料受载后产生变形,卸载后这部分变形消失,材料恢复到原来状态的性质,性能指标有弹性模量、比例极限和弹性极限、弹性比功等。 特点:弹性变形的重要特征是其可逆性,即金属在外力作用下,先产生弹性变形,当外力去除后,变形随即消失而恢复原状,表现为弹性变形可逆性特点。在弹性变形过程中,不论是在加载期还是卸载期,应力应变之间都保持单值线性关系,且弹性变形量比较小,一般不超过1%。本质:材料产生弹性变形的本质,概括说来,都是构成材料的原子(离子、分子)自平衡位置产生可逆位移的反映。原子弹性位移量只相当于原子间距的几分之一,所以弹性变形量小于 2、如何解释金属材料的弹性变形过程? 3、弹性变形与弹性极限有何区别?弹性极限与弹性模量的区别。前者是材料的强度指标,它敏感地取决于材料的成分、组织及其他结构因素。而后者是刚度指标,只取决于原子间的结合力,属结构不敏感的性质。 4、什么是弹性比功?提高材料弹性比功的途径有哪些? 5、什么是屈服?影响屈服强度的因素有哪些?内在因素:晶体结构(位错阻力不同)。晶界和亚结构(细晶强化、晶界强化),溶质元素(固溶强化),第二相(第二相强化),外在因素有温度、应变速率和应力状态等。6.。什么是应变硬化?金属材料的应变硬化有何意义?意义1)应变硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全;2)应变硬化和塑性变形适当配合可使金属进行均匀塑性变形;3)应变硬化是强化金属的重要工艺手段之一,可以单独使用,也可与其他强化方法联合使用,对多种金属进行强化,尤其对于那些不能热处理强化的金属材料;4)应变硬化还可以降低塑性,改善低碳钢的切削加工性能。 7、细化金属晶粒既可提高强度,又可提高塑性,这是为什么?8、什么是超塑性?产生超塑性的条件是什么?超塑性有何特点?9、什么是韧性断裂、脆性断裂?各有何特点?(1)韧性断裂:①明显宏观塑性变形;②裂纹扩展过程较慢; ③断口常呈暗灰色纤维状。④塑性较好的金属材料及高分子材料易发生韧断。脆性断裂:①无明显宏观塑性变形;②突然发生,快速断裂;③断口宏观上比较齐平光亮,常呈放射状或结晶状④淬火钢、灰铸铁、玻璃等易发生脆断。 10、什么是解理断裂、剪切断裂?各有何特点?剪切断裂:①切应力下,沿滑移面滑移分离而造成的断裂。②分为纯剪切断裂和微孔聚集型断裂。③纯剪切断裂:断口呈锋利的楔形。④微孔聚集型断裂:宏观上呈暗灰色、纤维状;微观上分布大量“韧窝”。解理断裂:①正应力下,原子间结合键破坏,沿特定晶面,脆性穿晶断裂。②微观特征:解理台阶、河流花样和舌状花样。③裂纹源于晶界。11、试用双原子作用力模型推导材料的理论断裂强度。 12、试述Griffith裂纹理论分析问题的出发点及思路,指出该理论的局限性。13、什么是应力状态软性系数?利用最大切应力与最大正应力的比值表示它们的相对大小,称为应力状态软性系数,记为α14、比较布氏、洛氏、维氏硬度试样的优缺点及应用范围。15、什么是冲击韧度?低温脆性?蓝脆?冲击韧性:材料在冲击载荷下吸收塑性变形功和断裂功的能力,是材料强度和塑性的综合表现。低温脆性现象:在低温下,材料的脆性急剧增加,实质:温度下降,屈服强度急剧增加16、影响冲击韧性和韧脆转变温度的因素有哪些?17、什么是磨损?磨损包括哪几种类型18、磨损过程包括哪几个阶段?各阶段有何特点?19、提高材料耐磨性的途径有哪些?20、什么是蠕变?按照蠕变速率的变化情况,可将蠕变过程分为哪三个阶段?各个阶段的特点是什么?21、蠕变变形机理包括哪几种?22、影响金属高温力学性能的因素主要有哪些?23.什么是热膨胀?热传导?极化?大多数物体都会随温度的升高而发生长度或体积的变化,这一现象称为热膨胀。材料的内部存在温度梯度时,热能将从高温区流向低温区,这一过程称为热传导。极化:介质在外加电场的作用下产生感应电荷的现象.24.电介质有哪些主要的性能指标?介电常数、介电损耗、介电强度.25. 什么是介电损耗?电介质为什么会产生介电损耗?电介质材料在交变电场作用下由于发热而消耗的能量称为介电损耗。原因:电导(漏导)损耗:通过介质的漏导电流引起的电流损耗。极化损耗:电介质在电场中发生极化取向时,由于极化取向与外加电场有相位差而产生的极化电流损耗。介电损耗越小越好。26. 什么是透光率和雾度?透光率是指透过材料的光通量与入射材料的光通量的百分比。雾度是由于材料内部或外表面光散射造成的云雾状或浑浊的外观,是散射光通量与透过材料总光通量的百分比。27.透光性与透明性有何区别与联系?①透光率表征材料的透光性,但透光性与透明性是两个不同的概念。②透光性只是表示材料对光波的透过能力。③透明性却是指一种材料可使位于材料一侧的观察者清晰无误地观察到材料另一侧的物体的影像。④只有透光率高且雾度小的材料才是透明性好的材料。28. 金属材料均匀腐蚀和局部腐蚀程度的指标有哪些?均匀腐蚀:腐蚀速率的质量指标。腐蚀速率的深度指标.局部腐蚀:腐蚀强度指标;腐蚀的延伸率指标。29. 金属腐蚀的防护措施有哪些?30. 什么是老化?高分子材料在加工、使用、贮存过程中,受到光、热、氧、潮湿、水分、机械应力和生物等因素影响,引起微观结构的破坏,失去原有的物理机械性能,最终丧失使用价值,这种现象称为老化。31. 材料热稳定性的衡量指标是什么?测试方法有哪些?热稳定性是材料的重要性能。高分子受热分解破坏,物理机械性能丧失。通常用热分解温度来衡量其热稳定性。热重分析(TGA)差热分析(DTA)差示扫描量热(DSC)

有机化学研究方向

有机合成化学 研究从较简单的前体小分子到目标分子的过程和结果的科学。 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2.具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3.资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4.学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。 天然产物化学和化学生物学 在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。 1.生理活性物质的提取、分离、纯化、分析、富集和结构表征、生源途径、功能和构效关系、结构修饰改造;生物大分子(及其模拟物)的快速序列和构象分析、合成和应用。 2.化学(全)合成;复杂天然分子的合成化学研究;生物合成方法。 3.传统资源利用和中药药效成分的研究;可降解生物质的利用。 4.微(痕)量、易变活性成分的研发;生物活性小分子和生物活性大分子(糖、核酸、肽、酶、蛋白质)及靶分子间的相互作用、识别和信息传递、调控。 金属有机化学 研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。 1.金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。 2.导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。 药物化学和农药化学 研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。 1.高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学库设计。 2.生化信息学的应用和创新、仿生及先导药物的发现、开发。 3.非传统机制的药物合成、分析和功能测试, 有机新材料化学 研究以有机化合物为基础的新型分子材料的开发的科学。 1.有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。 2.具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。 3.功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。 有机分离分析化学 研究有机物的分离、定性定量分析和结构解析的科学。 1.基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。 2.复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。

高三化学有机化学基础专题检测卷(有答案)

高三化学有机化学基础专题检测卷(有答 案) 化学的成就是社会文明的重要标志,小编准备了高三化学有机化学基础专题检测卷,希望你喜欢。 1. (10分)(2019上海高考改编) 异构化可得到三元乙丙橡胶的第三单体。由A(C5H6)和B经DielsAlder反应制得。DielsAlder反应为共轭双烯与含有烯键或炔键的化合物相互作用生成六元环状化合物的反应,最简单的DielsAlder反应是+ 。 完成下列填空: (1)DielsAlder反应属于________反应(填反应类型);A的结构简式为__________。 (2)B与Cl2的1,2-加成产物消去HCl得到2-氯代二烯烃,该二烯烃和丙烯酸(CH2=CHCOOH)聚合得到的聚合物可改进氯丁橡胶的耐寒性和加工性能,写出该聚合物的结构简式_________________。 (3)写出实验室由的属于芳香烃的同分异构体的同系物制备的合成路线。(合成路线常用的表示方式为A B 目标产物) 2.(14分)(2019广东高考)脱水偶联反应是一种新型的直接烷基化反应,例如: 反应①: (1)化合物Ⅰ的分子式为__________,1 mol该物质完全燃烧

最少需要消耗____________mol O2。 (2)化合物Ⅱ可使__________溶液(限写一种)褪色;化合物 Ⅲ(分子式为C10H11Cl)可与NaOH水溶液共热生成化合物Ⅱ,相应的化学方程式为________________。 (3)化合物Ⅲ与NaOH乙醇溶液共热生成化合物Ⅳ,Ⅳ的核磁共振氢谱除苯环峰外还有四组峰,峰面积之比为 1∶1∶1∶2,Ⅳ的结构简式为______________。 (4)由CH3COOCH2CH3可合成化合物Ⅰ。化合物Ⅴ是 CH3COOCH2CH3的一种无支链同分异构体,碳链两端呈对称结构,且在Cu催化下与过量O2反应生成能发生银镜反应的化合物Ⅵ。Ⅴ的结构简式为__________,Ⅵ的结构简式为____________。 (5)一定条件下,与也可以发生类似反应①的反应,有机产物的结构简式为____________。 3.(15分)(2019安徽高考)PBS是一种可降解的聚酯类高分子材料,可由马来酸酐等原料经下列路线合成: (1)AB的反应类型是________;B的结构简式是___________。 (2)C中含有的官能团名称是________;D的名称(系统命名)是___________。 (3)半方酸是马来酸酐的同分异构体,分子中含1个环(四元碳环)和1个羟基,但不含OO键。半方酸的结构简式是 ________________。

材料分析测方法

材料分析测试方法 一、课程重要性 二、课程主要内容 三、本课程教学目的基本要求 四、本课程与其他课程的关系 材料分析测试方法 二、课程的主要内容 材料分析的基本原理(或称技术基础)是指测量信号与材料成分、结构等的特征关系。 采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法。 1、X-射线衍射分析:物相成分、结晶度、晶粒度信息 2、电子显微镜:材料微观形貌观察 3、热分析:分析材料随温度而发生的状态变化 4、振动光谱:分子基团、结构的判定 5、X-射线光电子能谱:一种表面分析技术,表面元素分析 6、色谱分析:分析混合物中所含成分的物理方法 三、课程教学目的和基本要求 本课程是为材料专业本科生开设的重要的专业课。 其目的在于使学生系统地了解现代主要分析测试方法的基本原理、仪器设备、样品制备及应用,掌握常见测试技术所获信息的解释和分析方法,最终使学生能够独立地进行材料的分析和研究工作。 四、本课程与其他课程的关系 本门课程是以高等数学、大学物理、无机及分析化学、有机化学、物理化学、晶体学等课程为基础的,因此,学好这些前期课程是学好材料现代分析测试方法的前提。 同时,材料现代分析测试方法又为后续专业课程如材料合成与制备方法、陶瓷、功能材料、高分子材料等打下基础。 X 射线衍射分析 X射线物理基础 晶体学基础:几何晶体学、倒点阵 X射线衍射原理:X射线衍射线的方向和强度 晶体的研究方法:单晶、多晶的研究、衍射仪法 X射线衍射分析的应用 物相分析 晶胞参数的确定 晶粒尺寸的计算等 X 射线衍射分析 需解决的问题 科研、生产、商业以及日常生活中,人们经常遇到这种问题:某种未知物的成分是什么?含有哪些杂质或有害物质?用什么方法来鉴定? X射线衍射分析(简称XRD)的原理?仪器组成?样品要求? XRD除物相分析外,还能检测分析物质的哪些性能? 如何从XRD所给出的数据中提取更多的信息?(包括成分、结构、形成条件、结晶度、晶粒度等)

相关文档
最新文档