线性代数第二章矩阵(答案解析)

线性代数第二章矩阵(答案解析)
线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵

系 专业 班 姓名 学号

第一节 矩阵及其运算

一.选择题

1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2

1

,0,0,21(

=C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T

+ (B )E (C )E - (D )0

3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.?

??

? ??---=???? ??--+????

??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32???

??

??--56125252781314

3.=????? ??????? ??-127075321134????

?

??49635

4.=?????

?

? ??---???? ??-20413121013

143110412???? ?

?---6520876

三、计算题:

设????

? ?

?--=11

1111

111

A ,4

???

?

? ??--=150421321B ,求A AB 23-及B A T

;2294201722213

2222222222092650850311111111

1215042

132111111111

1323????

? ??----=????

?

?

?---????? ??-=??

??? ??---?????

?

?--????? ??--=-A AB .09265085015042132111111111

1????

? ??-=????? ??--????? ??--===AB B A A A A T

T ,则对称,由

线性代数练习题 第二章 矩 阵

系 专业 班 姓名 学号

第二节 逆 矩 阵

一.选择题

1.设*

A 是n 阶矩阵A 的伴随矩阵,则 [

B ] (A )1

-*

=A A A (B )1

-*

=n A

A (C )*

*

=A A n

λλ)( (D )0)(=*

*A

2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B |

3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A )

A A λλ= (

B )A A λλ= (

C )A A n λλ= (

D )A A n λλ=

4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

(A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =2 二、填空题:

1.已知A B AB =-,其中????

??-=1221B ,则?????

? ??-=12

1

211A 2.设???

?

??=???? ??12643152X ,则X = ????

??-40132 3.设A ,B 均是n 阶矩阵,2=A ,3-=B ,则6

421

n

B

A -=-*

4.设矩阵A 满足042

=-+E A A ,则)2(2

1

)

(1

E A E A +=-- 三、计算与证明题:

1. 设方阵A 满足022

=--E A A ,证明A 及E A 2+都可逆,并求1

-A 和1

2-+)(E A

;2

)2(

2)(0212E

A A A E E A A E E A A E A A -=?=-?=-?

=---可逆,且

.4

3)2(2)2)(43(4)2)(3(04)2(3)2(023)2(0

212E

A E A E A E

E A E A E

E A E A E E A E A A E A E A A E A A --

=++?=+--?-=+-?=++-+?=--+?=---可逆,且

2. 设???

?

? ??---=14524

3121A ,求A 的逆矩阵1-A 解:设3)(ij a A =,则

,

24

321)

1(,12

31

1

)

1(,02

41

2

)

1(,14452

1)1(,615

11)1(,21412)1(,

324

54

3)1(,131523)1(,414243

3332

3323

1313

2232

22221213113211211-=-=-=---==---==--==--==---=-=--=-=--=-=--=

++++++++A A A A A A A A A

从而????

? ??-----=214321613024*

A .

又由

26

141

26

14512

3

00121

4

524

3

1211

312=--=

--+----=c c c c A

则?

???

? ??-----==-1716213213012*

1

A A A

3. 设???

?

?

??-=32

1011

330A 且满足B A AB 2+=,求 B ????

?

??-=????? ??---?=-?+=321011330121011332)2(2B A

B E A B A AB

.

??

??

? ??-+??

???

??---????? ??--?????

?

??-----?????

??-++?????

?

?----?????? ??----0111003210103300010111003210100110113011100352310011011)21

(022

20035231

00110

1133011035231001101123211213303320110113211210110113303322132323131221r r r r r r r r r r r r r

则????

?

??-=-=-011321330)2(1

A E A B

线性代数练习题 第二章 矩 阵

系 专业 班 姓名 学号

第三节(一) 矩阵的初等变换

一、把下列矩阵化为行最简形矩阵:

()()()??

?

??

?

?

??------÷-÷-÷??????? ??-----------???????

?

?---------221002210

022100343115341010500663008840034311323124330232214

533343

11432141312r r r r r r r r r

??

?

?

?

?

?

?

?----???????

?

?-----000000000

02210

03201

130********

02210034311212423r r r r r r

二、把下列矩阵化为标准形:

.

??

?

??

?

?

??--------???????

??------????????

??------7675012988

01111

04202

132347310382

37313

24202

13473103823420217313214131221r r r r r r r r ??

??

?

??

??---????????

??-----410002120

01111

04202

1212004100

0111104202

158432423r r r r r r ??

?

?

?

?

?

??----???????

??---+--410002020

02001

04002

12141000202003011040

021232

414243r r r r r r r r

??

??

?

?

?

??-+-???????

??--???????

?

?---+010*******

00010

00001

4241000

10100

20010

00

00121

41000202002001000

001243253221c c c c r r r r 三、用矩阵的初等变换,求矩阵的逆矩阵

???????

??-----=12102

32112201023A ??

??

?

?

?

??-----????????

?

?-----100012100001

10230010122

00100

232110001210010023210010122

00001102331r r ??

?????

?

?----????????

??-----0010122003015

94010

0121001002

321100012100301594000

1

0122

00100232134213r r r r

线性代数知识点总结第二章

线性代数知识点总结 第二章 矩阵及其运算 第一节 矩阵 定义 由m n ?个数()1,2, ,;1,2, ,ij a i m j n ==排成的m 行n 列的数表 11121212221 2 n n m m mn a a a a a a a a a 称为m 行n 列矩阵。简称m n ?矩阵,记作111212122 211 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? ,简记为() ()m n ij ij m n A A a a ??===,,m n A ?这个数称为的元素简称为元。 说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。 扩展 几种特殊的矩阵: 方阵 :行数与列数都等于n 的矩阵A 。 记作:A n 。 行(列)矩阵:只有一行(列)的矩阵。也称行(列)向量。 同型矩阵:两矩阵的行数相等,列数也相等。 相等矩阵:AB 同型,且对应元素相等。记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。 单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可 表示为E )(课本P29—P31) 注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。 第二节 矩阵的运算 矩阵的加法 设有两个m n ?矩阵()() ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +, 规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++?? ? +++ ? += ? ? +++?? 说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。(课本P33) 矩阵加法的运算规律 ()1A B B A +=+; ()()()2A B C A B C ++=++

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

2.4直接三角分解法

§4 直接三角分解法 一、教学设计 1.教学内容:Doolittle 分解法、Crout 分解法,紧凑格式的Doolittle 分解法、部分选主元的Doolittle 分解法。 2.重点难点:紧凑格式的Doolittle 分解法、部分选主元的Doolittle 分解法。 3.教学目标:了解直接三角分解法的基本思想,掌握基本三角分解法及其各种变形。 4.教学方法:讲授与讨论。 二、教学过程 在上节中我们用矩阵初等变换来分析Gauss 消去法,得到了重要的矩阵LU 分解定理(定理 3.1,3.2)。由此我们将得到Gauss 消去法的变形:直接三角分解法。直接三角分解法的基本想法是,一旦实现了矩阵A 的LU 分解,那么求解方程组b x =A 的问题就等价于求解两个三角形方程组 (1)b y =L ,求y ; (2)y x =U ,求x 。 而这两个三角形方程组的求解是容易的。下面我们先给出这两个三角形方程组的求解公式;然后研究在LU A =或LU PA =时,U L ,的元素与A 的元素之间的直接关系。 4-0 三角形线性方程组的解法 设 ????? ???????= nn n n l l l l l l L 21222111, 11121222n n nn u u u u u U u ??????=???????? 则b y =L 为下三角形方程组,它的第i 个方程为 ),2,1(11,22111 n i b y l y l y l y l y l i i ii i i i i i i j j ij ==++++=--=∑ 假定0≠ii l ,按n y y y ,,,21 的顺序解得: ??? ?? ? ?=+-==∑-=) ,,3,2(/1111 11n i l b y l y l b y ii i i j j ij i 上三角形方程组y x =U 的第i 个方程为

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

列主元三角分解法在matlab中的实现

列主元三角分解法在matlab中的实现 摘要:介绍了M atlab语言并给出用M atlab语言实现线性方程组的列主元三角分解法,其有效性已在计算机实现中得到了验证。 关键词:M atlab语言;高斯消去法;列主元三角分解法 0前言 M atlab是M atrix Laboratory(矩阵实验室)的缩写,它是由美国M athwork公司于1967年推出的软件包,现已发展成为一种功能强大的计算机语言。它编程简单,使用方便,在M a tlab环境下数组的操作与数的操作一样简单,进行数学运算可以像草稿纸一样随心所欲,使计算机兼备高级计算器的优点。M atlab语言具有强大的矩阵和向量的操作功能,是Fo rtran和C语言无法比拟的;M a tlab语言的函数库可任意扩充;语句简单,内涵丰富;还具有二维和三维绘图功能且使用方便,特别适用于科学和工程计算。 在科学和工程计算中,应用最广泛的是求解线性方程组的解,一般可用高斯消去法求解,如果系数矩阵不满足高斯消去法在计算机上可行的条件,那么消元过程中可能会出现零主元或小主元,消元或不可行或数值不稳定,解决办法就是对方程组进行行交换或列交换来消除零主元或小主元,这就是选主元的思想。 1 定义 列主元三角分解:如果A为非奇异矩阵,则存在排列矩阵P,使PA=LU,其中L为单位下三角矩阵,U为上三角阵。列主元三角分角法是对直接三角分解法的一种改进,主要目的和列主元高斯消元法一样,

就是避免小数作为分母项. 2 算法概述 列主元三角分解法和普通三角分解法基本上类似,所不同的是在构造Gauss 变换前,先在对应列中选择绝对值最大的元素(称为列主元),然后实施初等行交换将该元素调整到矩阵对角线上。 例如第)1,,2,1(-=n k 步变换叙述如下: 选主元:确定p 使{}1)1( max -≤≤-=k ik n i k k pk a a ; 行交换:将矩阵的第k 行和第p 行上的元素互换位置,即 . 实施Gauss 变换:通过初行变换,将列主对角线以下的元素消为零.即 3 列主元三角分解在matlab 中的实现

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

第四章线性方程组直接法,矩阵三角分解

第四章 习题答案 1。用Gauss 消去法解方程组 1231231 2323463525433032 x x x x x x x x x ++=?? ++=??++=? 解:方程组写成矩阵形式为12323463525433032x x x ?????? ? ? ? = ? ? ? ? ? ????? ?? 对其进行Gauss 消去得12323441 4726002x x x ?? ???? ? ? ? ?-= ? ? ? ? ? ?????-?? 得方程组12312323 32346 131 44 822 24 x x x x x x x x x ++=?=-???? -=-?=????=?-=-?? 2。用Gauss 列主元素消去法解方程组 1233264107075156x x x -?????? ? ? ?-= ? ? ? ? ? ?-???? ?? 解:因为第一列中10最大,因此把10作为列主元素 1233264107075156x x x -?????? ? ? ?-= ? ? ? ? ? ?-??????12r r ????→1231070732645156x x x -?????? ? ? ?-= ? ? ? ? ? ?-???? ?? 21 3113 10122 31070716106101055052 2r r r r x x x +-? ??? ? ?-?? ? ? ? ? ????→-= ? ? ? ? ? ??? ? ?????23 r r ????→123107075505221 61061010x x x ? ??? ? ?-?? ? ? ? ? ?= ? ? ? ? ? ? ?? ? ?-????

矩阵与线性代数计算

第三章 矩阵与线性代数计算 MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。 3.1矩阵的定义 由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。 ???? ??????=m n m m n n a a a a a a a a a A 2 1 222 21 11211 当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵; 当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。 3.2矩阵的生成 1.实数值矩阵输入 MATLAB 的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。 不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: 【例3-1】矩阵的生成例。 a=[1 2 3;4 5 6;7 8 9] b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

线性代数第二章矩阵练习题

第二章 一、选择题 1、计算13230102-???? +? ??? ???? 的值为(C) A 、-5 B 、6 C 、3003?????? D 、2902-?? ???? 2、设,A B 都就是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的就是(D) A. 11AB B A --= B 、 11A B BA --= C 、 1111A B B A ----= D 、11B A A B --= 3、初等矩阵(A) A. 都就是可逆阵 B 、所对应的行列式值等于1 C 、 相乘仍就是初等阵 D 、相加仍就是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C) A. ()2r B = B 、()2r B < C 、 ()2r B ≤ D 、()1r B ≥ 二、判断题 1、若,,A B C 都就是n 阶矩阵,则()k k k k ABC A B C =、 (×) 2、若,A B 就是n 阶反对称方阵,则kA 与A B +仍就是反对称方阵、(√) 3、矩阵324113A ??=? ???与矩阵2213B ?? =?? ?? 可进行乘法运算、 (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =、 (×) 三、填空题 1、已知[]456A =,123B ?? ??=?????? ,求AB 得_________ 。 2、已知1 2n a a A a ???? ??= ? ???? ? O (0,1,2,,i a i n ≠=K ),则1A -= (32) 12 11 1n a a a ????????????????????? ? O 12n +

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

三 矩阵直接三角分解法

矩阵直接三角分解法 1、实验目的: 求解方程组Ax=b A=[1 2 -12 8; 5 4 7 -2; -3 7 9 5; 6 -12 -8 3], b=[27; 4; 11; 49] 2、实验步骤: 添加库函数 #include "stdafx.h" #include "math.h" 3、代码: #include "stdafx.h" #include "math.h" void main() { float x[4]; int i; float a[4][5]={1,2,-12,8,27,5,4,7,-2,4,-3,7,9,5,11,6,-12,-8,3,49}; void DirectLU(float*,int,float[]); DirectLU(a[0],4,x); for(i=0;i<=3;i++)printf("x[%d]=%f\n",i,x[i]); } void DirectLU(float*u,int n,float x[]) {

int i,r,k; for(r=0;r<=n-1;r++) { for(i=r;i<=n;i++) for(k=0;k<=r-1;k++) *(u+r*(n+1)+i)-=*(u+r*(n+1)+k)*(*(u+k*(n+1)+i)); for(i=r+1;i<=n-1;i++) { for(k=0;k<=r-1;k++) *(u+i*(n+1)+r)-=*(u+i*(n+1)+k)*(*(u+k*(n+1)+r)); *(u+i*(n+1)+r)/=*(u+r*(n+1)+r); } } for(i=n-1;i>=0;i--) { for(r=n-1;r>=i+1;r--) *(u+i*(n+1)+n)-=*(u+i*(n+1)+r)*x[r]; x[i]=*(u+i*(n+1)+n)/(*(u+i*(n+1)+i)); } }

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

自考04184线性代数(经管类)讲义第二章 矩 阵

第二章矩阵 2.1矩阵的概念 定义2.1.1由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的数表 用 大小括号表示 称为一个m行n列矩阵。 矩阵的含义是:这m×n个数排成一个矩形阵列。 其中a ij称为矩阵的第i行第j列元素 (i=1,2,…,m;j=1,2,…,n),而i 称为行标,j称为列标。第i行与第j列的变叉位置记为(i,j)。 通常用大写字母A,B,C等表示矩阵。有时为了标明矩阵的行数m和列数n,也可记为 A=(a ij)m×n或(a ij)m×n或A m×n

当m=n时,称A=(a ij)n×n为n阶矩阵,或者称为n阶方阵。n阶方阵是由n2个数排成一个正方形表,它不是一个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。只有一阶方阵才是一个数。一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。n阶方阵的主对角线上的元素a11,a22,…,a nn,称为此方阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。 元素全为零的矩阵称为零矩阵。用O m×n或者O(大写字)表示。 特别,当m=1时,称α=(a1,a2,…,a n)为n维行向量。它是1×n矩阵。 当n=1时,称为m维列向量。 它是m×1矩阵。 向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。 例如,(a,b,c)是3维行向量,

是3维列向量。 几种常用的特殊矩阵: 1.n阶对角矩阵 形如或简写 为(那不是A,念“尖”)的矩阵,称为对角矩阵, 例如,是一个三阶对角矩阵, 也可简写为。 2.数量矩阵 当对角矩阵的主对角线上的元n阶数量矩阵

线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;2294201722213 2222222222092650850311111111 1215042 132111111111 1323???? ? ??----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )* * =A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

线性代数第二章矩阵(答案)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + ( B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;229 42017222132222222222092650850311111111 1215042 132111111111 1323???? ? ? ?----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )**=A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

相关文档
最新文档