往复压缩机气阀故障混合诊断方法研究

往复压缩机气阀故障混合诊断方法研究
往复压缩机气阀故障混合诊断方法研究

往复压缩机气阀故障混合诊断方法研究

发表时间:2018-12-18T10:01:00.073Z 来源:《基层建设》2018年第33期作者:秦琦

[导读] 摘要:往复压缩机在石油石化行业中应用广泛。

重庆建峰工业集团检修分公司重庆 408601

摘要:往复压缩机在石油石化行业中应用广泛。其中气阀承担着输送介质的重要任务,需要频繁开启,易出现故障,因此分析气阀故障信息对机组安全运行非常重要。由于气阀阀片薄板结构及周期性冲击力造成气阀高频振动,产生信号冲击和调制现象。往复压缩机的多分量调幅调频振动信号包含气阀故障信息,对振动信号有效分析可以诊断气阀故障。然而往复压缩机振源复杂,干扰因素众多,机组故障点被隐藏于干扰因素当中,造成往复压缩机故障诊断困难。

关键词:往复压缩机;气阀故障;混合诊断方法;

往复压缩机故障多发的部位基本上是由动力传递部分、气体进出及其密封部分及辅助部分3大部分组成。导致往复式压缩机故障的各种因素所占的百分比气阀是往复式压缩机故障率最高的部件,由气阀原因导致的压缩机故障约占故障总数的36%。

一、研究现状

往复压缩机是工业上应用量大、面广的一种重要通用机械,其故障诊断比较复杂,对于其故障诊断技术的研究一直以来都得到了国内外学者的广泛关注。例如,在国外,美国学者曾经利用气缸内侧的压力信号图像判断气阀故障及活塞环的磨损;捷克学者根据对千余种不同类型的压缩机建立了常规性参数数据库,确定评定参数,以判断压缩机的工作状态等。在国内,有些专家对往复压缩机的缸盖振动信号进行过简单的分析,也有人在缸盖振动信号对缸内气体压力的影响方面进行过研究,尤其是近几年来,人工智能领域的专家系统和神经网络技术在往复压缩机故障诊断方面的应用以及一些专家学者对压缩机的常规性能参数的监测和控制方面所做的工作,目的都是为了改变目前压缩机操作人员用耳听、眼看、凭借经验判断故障的局面。然而,由于往复压缩机结构复杂、激励源多等特点,鉴于当前研究现状以及上述研究资料表明,计算机技术的不完善和人工智能领域的专家系统和神经网络技术的初步使用,使得故障诊断技术目前还只是处于第3阶段的整理完善和向第4阶段的过渡时期,至今尚无一套像旋转机械那样成熟的、得到人们普遍认可和广泛应用的诊断系统,以供选择并获得往复压缩机工作状态的有效特征参数。仅仅采取先凭经验或设想去确定和试凑特征参数,然后再进行实验验证的方法是不充分的,且不能找出最优特征参数,离实际应用还存在一定距离,这同往复压缩机在工业中的重要地位是不相称的。

二、往复压缩机气阀故障混合诊断方法

1.气阀故障机理。在大型往复压缩机中,环状气阀使用最为普遍。环状阀属于自动阀,即气阀开启与闭合不是由专门机构来操纵,而是靠阀门两侧的压力差来实现。环状阀由阀座、升程限制器、阀片、缓冲片、弹簧、气阀螺栓和螺帽等组成。阀片是气阀的关键件,在吸气或排气的结束,起关闭气流通道的作用,与阀座一起形成密封结构;阀座是气阀的主体,它与升程限制器一起构架了气阀组件的空间,在吸气或排气的结束起关闭气流通道的作用;升程限制器对阀片具有导向及限制升程的作用;弹簧的作用是在升程中缓冲阀片与升程限制器的撞击,在回程中辅助阀片自动复位并保证密封。锈蚀、积碳和磨损等会造成阀座密封面失效,导致气阀泄漏等故障发生。升程限制器升程过小,气体通道截面小,降低压气效率,升程过大,阀片冲击大,影响阀片寿命。阀片失效的主要形式是变形与折断,阀片的失效几乎全部都与弹簧的失效(折断或严重锈蚀)有关。弹簧的失效,引起阀片工况的变化,阀片受力不均,开启、闭合冲击力变大,可能使阀片在短时间内变形或断裂。阀片工作时要承受交变与冲击载荷,需要有较高的硬度和足够的韧性抗疲劳的能力。阀片发生故障会导致气体通道不能正常开启与关闭,因而造成气体泄漏与回流,造成压缩机吸、排气温度及压力变化;而阀片碎片进入气缸将对活塞—气缸体系造成严重破坏,导致拉缸等严重故障发生。

2.气阀故障诊断。气阀故障诊断常用4 类信号进行故障分析:温度

信号、振动信号、压力信号、噪声信号。一种信号由于监测不同机组部位,又可分为多种类型,比如温度信号就可以分为吸、排气腔温度、缸内气体温度、阀体温度和缸体温度等信号。由于4 类信号对于气阀故障诊断效果不同,因此对于不同的机组情况及诊断需求,应合理选择4 种信号中的一种或者几种类型。用于气阀故障诊断较为理想的信号包括气缸振动信号,气缸缸内压力信号,吸、排气腔温度信号。这里故障诊断采用气缸振动信号和吸、排气腔温度信号用于气阀故障监测与诊断。获取这2 种信号使用的传感器安装便利,易于工程实施;吸、排气腔的气体温度变化不大,容易测量,而且对故障的反应较为敏感;气缸振动信号中有明显的冲击成分,冲击信号的变化可以有效地反映气阀运行状况。同时,将监测振动的加速度传感器安装在十字头部位既可以正常监测气缸振动,也可以有效监测十字头运行状况。由于石化企业很多老式往复压缩机设计时没有在气缸预留压力传感器安装孔,压力传感器安装不便,因此不采用气缸缸内压力信号作为监测诊断信号。

3.阀片断裂故障诊断。某企业由电机驱动的6 缸M 型卧式往复压缩机,介质为氢气,气阀采用环状阀。该机组4#气缸十字头部位安装加速度撞击传感器,监测到振动峰值开始有明显上升趋势,同时4#气缸气阀阀盖部位安装温度传感器监测吸气腔内温度出现升高趋势。状态监测系统针对气阀故障监测在气阀阀盖部位安装温度传感器监测气阀吸气腔、排气腔温度,在十字头部位安装加速度传感器监测十字头及缸体振动。(1)4#缸外吸温度4 开始有升高趋势,其它3 个吸气阀监测温度无明显变化,此时4#气缸十字头部位振动只有微小增大,没有表现出异常振动,可以判断23 日开始,4#气缸外吸温度2 气阀已经出现一些故障,但问题表现不明显。(2)气阀温度趋势图分析:4#气缸外吸温度2,外吸温度4 都开始明显升高,外吸温度2 达到55℃,外吸温度4 达到95 ℃。分析后认为:吸气阀漏气,气缸排气阶段经过压缩后的高温高压气体通过故障吸气阀进入吸气腔,到下一个循环的吸气过程,出现故障的吸气阀吸入上一循环漏入吸气腔的高温高压气体,导致外吸温度2、外吸温度4 吸气温度异常升高。(3)缸体振动趋势图分析:4#气缸振动出现明显增大趋势,该机组4#气缸正常运行状态时,振动峰值值为50 m/s2,10月6 日振动峰值达到111 m/s2,并且有持续上升情况,最高振动值达到250 m/s2。该机组4#气缸正常工作时振动波形图,横坐标角度为曲轴转动角度,0°表示活塞外死点(即活塞离曲轴旋转中心最远距离处)。根据往复压缩机工作原理以及该机组运行状况可知:正常运行状况下,4#气缸盖侧吸气阀在曲柄转角达到50°左右时开启,在振动波形上表现为冲击增大,峰值大约60 m/s2,轴侧吸气阀在曲柄转角达到230°时开启,在振动波形上表现为冲击增大,峰值大约40 m/s2。缸体振动冲击值结合气阀温度趋势图分析可以初步判定气阀阀片断裂、变形等故障可能性较大。

往复压缩机气阀阀片断裂故障特征在气阀温度和缸体振动波形上都会有比较明显的体现,但由于此时故障一般已经达到晚期阶段,如果不能及时对故障进行排除一旦碎片掉入缸道可能会导致活塞损坏或拉缸等严重问题。通过对往复压缩机故障诊断分析,验证该方法的有

压缩机故障过热分析

压缩机故障分析-―过热 排气温度过高和电机高温表明压缩机存在过热问题。电机高温源于冷却不足、负载过大和电源问题;而排气温度过高的原因在于制冷剂的性质、回气温度、冷却方式、冷凝压力、压缩比等,此外COP对排汽温度有明显影响。过热对压缩机具有很大危害,它不仅会缩短电机寿命、降低润滑油的润滑性能、加速润滑油变质,还会增加能耗,最终会损坏压缩机。 压缩机过热、排气温度 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可*性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。 活塞环和活塞磨损后还容易引起回油困难和油压保护器动作。许多半封闭压缩机是*负压回油的,即曲轴箱压力低于电机腔压力时回油单向阀会打开,润滑油就能回到曲轴箱。活塞和活塞环磨损后,高压气体会泄漏到曲轴箱,曲轴箱负压状态受到破环,造成回油困难。这一问题常表现为:压缩机油位不断降低,最后油压保护器动作,压缩机停机,停机后油位会慢慢恢复。再次启动压缩机后,一切正常,但一段时间后上述现象再次出现。 此外,润滑油中混杂着细小的铁屑还会由于抽吸作用而聚集在油泵吸油管的油网外面,造成油网脏堵。 3. 电机过热 电机过热是相对于电机的正常工作温度而言的。电机正常工作温度不能超过其绝缘等级所对应的最高允许温度(见下表)。

往复式压缩机气阀故障及可靠性维修

往复式压缩机气阀故障及可靠性维修 摘要:本文介绍了往复式压缩机气阀故障的原因及机理,对气阀的可靠性维修进行分析,并提出预防气阀阀片损坏的措施,及早发现故障,延长压缩机气阀的寿命,保证压缩机的正常工作。 关键词:往复式压缩机;气阀;故障分析;可靠性维修 1 前言 压缩机广泛应用于制冷、化工、矿山、仪表等行业。气阀是压缩机的“心脏”,往复式压缩机的气阀故障占往复式压缩机故障总数的60%以上,若气阀发生故障,不仅对压缩机气缸有害,而且对其它生产设备及产品质量都带来不利的影响,所以,分析气阀损坏的原因和可靠性维修并提出预防措施,能延长气阀的使用寿命,保证压缩机的正常运行。 2 可靠性技术 广义的可靠性就是有效性,它是指可以维修的产品在某时刻具有或维持规定功能的能力。可靠性与维修性工程致力于研究、描述、度量以及分析系统的故障,目的是通过增加设计寿命,消除或减少出现故障的可能性好安全风险,减少停机时间,进而增加可用时间。 3 气阀的基本组成与工作原理 (1)气阀的基本组成:压缩机气阀由阀座、阀片、弹簧和升程限制器组成,如图1所示。(2)气阀工作原理 压缩机气阀均为自动阀。它借助于气缸工作腔和阀腔之间的气体压力差而开启,并由于受到进、排气过程中流经气阀的气流推力作用而上升;当推力大于弹簧的反作用力时,阀片停留在升程限制器上;反之,当气流推力小于弹簧力时,阀片便向下关闭。气阀正常的工作过程曲线如图2所示。 图1 气阀的基本组成图二气阀正常的启、闭工作过程曲线 4 往复式压缩机气阀工作特性及常见故障 要解决气阀的故障和可靠性维修,就要知道压缩机气阀的工作原理及特性。压缩机气阀由阀座、阀片、弹簧和升程限制器组成。压缩机气阀均为自动阀,戏、排气阀的工作原理相同,我们仅以进气阀工作为例,当余隙容积膨胀终了时,若气缸与阀腔之间的气体压力差Δp在阀片上的作用力大于弹簧力和一部分弹簧质量力时,阀片开启。阀片一旦离开阀座,便有气体通过此缝隙进入气缸,在流入气体的推力作用下,阀片继续上升直至撞到升程限制器。阀片撞击升程限制器时,会产生反弹力,如果反弹力与弹簧力之和大于气流推力,则阀片会出现反弹现象。正常情况下,反弹力比较轻微,阀片在气流推力作用下会再次贴到升程限制器上,阀片关闭。 气阀的失效形式主要是气阀阀片损坏、弹簧破损、气阀密封性差及介质造成的破坏。

往复式压缩机结构及故障处理

往复式压缩机 8.1 往复式压缩机的基本组成及工作原理 往复式压缩机又称活塞式压缩机,是容积型压缩机的一种。它是依靠气缸内活塞的往复运动来压缩缸内气体,从而提高气体压力,达到工艺要求。 往复式压缩机的结构见图8-1。 图8-1 2D6.5-7.2/150型压缩机 1-Ⅲ段气缸;2-Ⅲ段组合气阀;3-Ⅰ-Ⅲ段活塞;4-Ⅰ段气缸;5-Ⅰ段填料盒; 6-十字头;7-机体;8-连杆;9-曲轴;10-Ⅴ带轮;11-Ⅱ段填料盒; 12-Ⅱ段气缸;13-Ⅱ-Ⅳ段活塞;14-Ⅳ段气缸;15-Ⅳ组合气阀;16-球面支承8.1 往复式压缩机的基本组成 往复式压缩机系统由驱动机、机体、曲轴、连杆、十字头、活塞杆、气缸、活塞和活塞环、填料、气阀、冷却器和油水分离器等所组成。驱动机驱动曲轴旋转,通过连杆、十字头和活塞杆带动活塞进行往复运动,对气体进行压缩,出口气体离开压缩机进入冷却器后,再进入油水分离器进行分离和缓冲,然后再依次进入下一级进行多级压缩。往复式压缩机结构示意图如图8-2。 8.2 往复式压缩机的分类 1.按排气压力分类 (1)低压压缩机 0.2<P<0.98MPa (2)中压压缩机 0.98~9.8MPa (3)高压压缩机 9.8~98.0MPa

(4)超高压压缩机>98.0MPa 2.按消耗功率分类 (1)微型压缩机<10kW (2)小型压缩机 10~100kW (3)中型压缩机 100~500kW (4)大型压缩机>500kW 3.安排气量分类 (1)微型压缩机<1m3/min (2)小型压缩机 1~10m3/min (3)中型压缩机 10~60m3/min (4)大型压缩机>60m3/min 4.按气缸中心线的相对位置分类见图8-6。 图8-6 气缸中心线位置分类 (a)立式;(b)一般卧式;(c)对称平衡式或对动式; (d)V型角度式;(e)L型角度式;(f)W型角度式; (g)T型角度式;(h)、(i)扇型角度式;(j)星型角度式 (1)立式:气缸中心线与地面垂直。 (2)卧式:气缸中心线与地面平行,其中包括一般卧式、对置式和对动式(对置平衡式)。

往复压缩机常见故障分析及对策

2016届机械制造与自动化专业 毕业生毕业作业 课题名称:往复压缩机常见故障分析及对策学生姓名:张燕鸣 指导教师:卢学玉 江南大学网络教育学院 2016年7月

江南大学网络教育学院 毕业论文(设计)

目录 论文摘要 (4) 关键词 (4) 一.概述 (4) 二.液击过程分析 (4) 三.液击的判断方法 (5) 1.通过声音判断 (5) 2.通过观察进行判断 (5) 四.液击故障的现象 (5) 1.吸气阀片断裂 (5) 2.连杆断裂 (6) 3.电机烧毁 (6) 五.液击的原因分析 (6) 1. 回液 (6) 2.带液启动 (7) 3.冷冻机油太多 (7) 4. 设计时参数选择不当或使用不当 (7) 5.制冷剂充注方式方法不确 (7) 六.预防与处理对策 (7) 1.改善压缩机冷冻机油的回油途径 (8) 2.增加设备,使制冷剂气体和液体分离 (8) 3.设计合理的过度 (8) 4.安装曲轴箱加热器 (8) 5.抽空停机 (8) 七.结束语 (8) 感谢词 (9) 参考文献 (9)

往复压缩机常见故障分析及对策 摘要:往复式压缩机在制冷设备中比较常见,作为制冷系统中核心动力组成,因其所做机械运动是往复运动,在往复运动中压缩机运动部件会因摩擦时间长了而损坏;此外外部因素导致的压缩机发生故障和出现事故也屡见不鲜,主要针对往复式压缩机中的活塞式制冷压缩机最容易发生的故障之一液击进行详细的分析,液击现象出现后应该咋样判断,对液击形成的原因进行了说明,液击发生后应该咋样处理,防范和减少往复式压缩机出现的故障,对往复式压缩机长期的稳定的运行有所借鉴。 关键词:压缩机;制冷;液击;故障原因分析;排除措施 一.概述 往复式压缩机是把一定量的气体压缩后吸入和排出的一种容积式压缩机。它主要由机体、传动机构、压缩机构、润滑机构、冷却系统以及操作控制系统等构成。机体是往复式压缩机的基础部分,主要由机身、中体和曲轴构成;传动机构由离合器、联轴器或带轮以及连杆、曲轴等运动部件组成;压缩机构由气缸、活塞、进气阀门和出气阀门构成;润滑机构由油泵、油过滤器、油冷却器等构成;冷却系统主要有风冷和水冷两种,风冷由散热风扇和中间冷却器组成;水冷由冷凝器、管道阀门等组成;操作控制系统包括各种调节装置。仪器仪表、安全法以及各种保护装置。经过几十年的发展,往复式压缩机制造工艺已经很成熟、制造成本也越来越低,因此在冰箱、空调、冷库等还大量使用各种规格型号的往复式压缩机。因为其制造工艺比较成熟,结构相比螺杆、离心压缩机简单,而且对加工材料和压缩机的加工工艺要求比较低,费用节省,在各个领域得到广泛应用,能适应的压力范围和制冷量比较广,维修方便。但是,往复式压缩机在设备的使用过程中也存在着各种各样问题,如压缩机电机烧毁、压缩机的不正常震动和噪音、发生液击现象使零部件损坏、压缩机排气温度过高、压缩机密封故障导致的漏气、连杆活塞不正常的磨损等故障。这当中液击现象是往复式压缩机中最大的一种故障之一,严重时压缩机可能会受到伤害而损坏。 二.液击过程分析 在压缩机制冷系统中要是冷冻机油或制冷剂添加过多,系统蒸发器的热负荷就会不稳定,膨胀阀的调节的不合理,压缩机的吸气阀如果较快开启,制冷系统在设计的时候及设备安装调试的时候不合理等,都有可能会使压缩机产生液击现象。

往复式压缩机技术问答

往复式压缩机技术问答 1.什么叫增压机和循环机? 答:所谓增压机和循环机是按压缩机的工艺用途来区分的,增压机一般用于将某一相对低压系统的气体压缩后输入另一相对高压的系统,压缩比较大、流量较小,新氢压缩机为增压机; 而循环机一般用于将同一系统的气体升压后建立循环,压缩比相对较小、流量较大,循环氢压缩机为循环机。 2.压力、温度、容积三者有何关系? 答:压力、温度、容积三者之间有如下关系: ①一定量的理想气体,在一定温度下,容积与压力(绝压) 成反比,P1V1=P2V2; ②一定量的理想气体,当容积不变时,压力与绝对温度成 正比,P1/P2=T1/T2; ③一定量的理想气体,在一定压力下,容积与绝对温度成 正比,V1/V2=T1/T2。 3.什么是活塞行程? 答:活塞在气缸内作往复运动时所跨越的最大距离叫活塞行程。 4.什么叫气缸工作容积? 答:活塞在气缸中由一端止点移到另一端止点所让出来的空间,叫做气缸工作容积。内止点、外止点,气缸的盖侧、箱侧。 5.怎样计算气缸工作容积? 答:气缸工作容积可按下列公式计算:设D为气缸直径,米; S为活塞行程,米;d为活塞杆直径,米;则气缸工作容积为: ①对单动压缩机 V=лD2S/4 ②复动压缩机: V=л(2D2-d2)S/4 6.什么是压缩比? 答:压缩比是指压缩机排气终了时的终压力P2(绝对压力)与吸气终了时的初压力P1(绝对压力)之比。以ε示,即: ε=P2/P1 7.什么是气缸的有害空间? 答:气缸有害空间是指当压缩机的活塞在气缸中到达止点位置时,在活塞与气缸盖之间形成空间。这个有害空间又叫做余隙容积。 8.有害空间过大有什么不利? 答:气缸中有害空间的存在,使活塞不能将缸内气体全部无遗

制冷压缩机常见故障-电机烧毁

制冷压缩机常见故障-电机烧毁 【摘要】绕组烧毁是压缩机常见故障。绕组烧毁前的迹象不容易发现,而烧毁后一些导致烧毁的直接原因又被掩盖,给事后分析增加了难度。本文就电机负荷过大,电压异常,散热不足和绕组绝缘破坏几方面进行了分析,揭示了这些因素与电机损坏之间的关系。 【关键词】电机烧毁,绕组烧毁,压缩机故障, 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。 电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路; (3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1. 异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸

往复式压缩机的基本知识及原理

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理: 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。 5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。气缸设有支承,用于支撑气缸重量和调整气缸水平。 6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。 活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。活塞体的材料一般为铝合金或铸铁。

往复压缩机工程技术规定

往复压缩机工程技术规 定 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

往复压缩机工程技术规定1.总则 1.1范围 1.1.1本工程技术规定仅涉及由电动机驱动的往复活塞式压缩机组,并在遵循合同规定的有关标准、规范及数据表等的前提下,对往复活塞式压缩机及其附属设备等在涉及、制造、检验、试验、装运、供货范围、性能保证、卖方图纸和资料等方面提出主要补充、强调或限制性说明。 当使用本工程技术规定时,应结合工程项目对机组的要求进行相应调整或修改。 1.1.2本工程技术规定不包括以下往复活塞式压缩机: (1)组装式冷冻压缩机组; (2)移动式或者无十字头的单作用筒式压缩机组; (3)排气压力高于31.5MPa的往复活塞式压缩机。

1.2基本要求 1.2.1卖方应按照买方要求的标准、规范、数据表及本工程技术规定对机组承担全部合同责任。 对制造厂商应进行多元选择。在保证机组良好性能的前提下,应尽量降低机组的造价。 1.2.2除本工程技术规定外,还应按照GB标准。 1.2.3卖方对买方要求的标准、规范、数据表及本工程技术规定的任何偏离,均应以书面形式及时向买方澄清,并经买方认可后方能生效。 对有矛盾的条款应按照下列优先程序: (1)合同及其技术附件; (2)本工程技术规定; (3)采用的标准与规范; (4)卖方的报价书。

1.2.4所有的参数应采用国际单位制(SI)。 1.2.5卖方报价文件的语言种类应由买、卖双方商定。 1.2.6买方将参加卖方供货机组的部分检验和试验,但不解除卖方的全部合同责任。 1.2.7卖方应向买方提供供审查的图纸和资料,但卖方应对其所采购的机组承担全部责任。 1.3主要参考标准与规范(均应为最新版本) (1)API618一般炼油厂用往复式压缩机或与之等效的标准; (2)ASMEⅧ钢制压力容器; (3)GB150钢制压力容器; (4)GB151钢制管壳式换热器; (5)IEC电气设计。

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

往复式压缩机常见故障与排除

往复式压缩机常见故障原因及处理 往复式压缩相对于其他形式的压缩机来说运转部件较多,摩擦易损件也多,特别是多级压缩机,介质流程长,介质过流部件多,所以压缩机故障非常频繁,故障产生的原因常常是复杂多样,有些甚至是相互关联。因此必须经过细心的观察研究,甚至要经过多方面的试验,并依靠丰富的实践经验积累,才能判断出产生故障的真正原因所在。正是因为故障原因复杂多样,所以大致应从四个方面进行综合分析: 一、从监测仪表显示的故障例如温度、压力、振动、位移、功率方面显示的故障,首先要先检查仪器仪表监测系统,确保显示准确可靠; 二、由于工艺操作方面的原因造成的故障,例如共振引起的异常振动,介质纯度不够,杂质较多引起的系统堵塞故障等,找到故障根源,才能高效排除设备故障; 三、从设备本身部件的形状、位置、特征发生变化引起的自身故障,通常采用从简单到复杂、从局部到整体的排除方法逐一排除; 四、另外综合以上三点,还要注重平时设备运行时的巡回检查,收集相关设备运行记录信息,进行综合分析。 综合能力:作为设备检修人员来说,应该理解和掌握以下通用和常用的技能点: 一、材料线膨胀系数:(用于计算轴承、联轴器等盘状零部件冷热装配计算;相对运动部件配合间隙计算;) 二、零部件形位公差:(用于零部件装配的检测和控制标准) 三、零部件装配配合公差:(间隙配合、过渡配合、过盈配合,用于零部件装配的检测和控制标准) 四、润滑剂:(用于冷却、清洗、降低摩擦,避免或减少磨损) 精品

五、材料性能:(用于选用材料时考虑其承受温度、压力、耐腐蚀等的性能) 六、具备一定的制图,识图能力。 往复式压缩机常见故障产生的原因及处理措施如下: 精品

压缩机常见故障分析及处理方案

一、对于活塞式压缩机,什么事余隙容积?由哪几部分组成? 二、活塞式压缩机排气量不足的原因有哪些 (1)气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。 (2)填料函不严产生漏气使气量降低。其原因首先是填料函 本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气。一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 (3)压缩机吸排气阀的故障对排气量的影响。阀座与阀片间 掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化。阀座与阀片接触不严形成漏气而影响了排气量,一是制造质量问题,如阀片翘曲等,二是由于阀座与阀片磨损严重而形成漏气。 (4)气阀弹簧力匹配不好。弹力过强会使阀片开启迟缓,弹

力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到 功率的增加,以及气阀阀片和弹簧的寿命。同时,也会影响到气 体压力和温度的变化。 (5)压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧 也不行,会使阀罩变形损坏。一般压紧力p=kD2P2π/4,D 为阀腔直径,P2 为最大气体压力,k>1,一般取1.5~2.5,低压时k=1.5~2,高压时k=1.5~2.5。这样取k 值,实践证明是好的。气阀有故障,阀盖必然发热,同时压力也不正常。 三、活塞式压缩机排气温度高的原因有哪些?处理措施有哪些? 造成活塞压缩机机排气温度过高的原因如下: 1、一级吸气温度高。 2、级间冷却器冷却效率低,致使后一级的吸气温度高。 3、气阀有漏气现象,使排出的高温气体又漏回气缸,重新压缩后,排出温度就更高。 4、由于后一级漏气,本级的压缩比升高,致使排气温度升高。 5、活塞环磨损或质量不好,活塞两侧吸、排气之间相互窜气。 6、气缸水套及冷却水管上有水垢、水污,影响冷却效率。 故障解决方法: 1、在滤清器处搭阴棚或用淋水法降低一级吸气温度,夏天尤其就注意。当吸气温度超过额定值时,不能运转。 2、修理中间冷却器。

压缩机气阀材料性能对比分析

往复压缩机气阀材料性能对比分析 云天化国际云峰分公司合成氨厂朱波 【摘要】本文主要介绍了压缩机气阀阀片采用的传统材料金属及新型材料PEEK (聚醚醚酮)、钛材的材料的性能,对比其性能特点,综合分析三种材料在使用过程中的综合价值。根据实际工艺条件选择合适的阀片材料从而达到压缩机的持久连续运行。 关键词往复压缩机材料性能气阀阀片金属阀片 PEEK 钛合金1、压缩机气阀的工作原理及易损件分析 压缩机气阀由阀座、阀盖、阀片、弹簧和紧固螺栓组成,其工作过程是靠气缸内气体压力,进入气缸前气体压力与弹簧力形成压力差推动阀片的上下移动达到开启和关闭的状态,主要受力部件是气阀的阀片,易损件即为阀片,阀片的断裂会导致气阀阀座密封面受损,甚至落入压缩机气缸内导致活塞运动过程中发出异响甚至损坏活塞或缸体,故压缩机阀片材料的性能决定了压缩机气阀使用时间的关键因素,也是压缩机连续持久运行的有力保障。 2、几种压缩机阀片使用材料 金属材料 国内外所用阀片钢种牌号繁多. 我国目前常用的有30CrMnSiA , 50CrV , 4Cr13Mo , 3Cr13 , pH15-7M0 ,T10A 等,我们公司现使用的阀片材料为3Cr13。 3Cr13马氏体不锈钢是问世最早的一种不锈钢,一般在淬火状态下使用,具有强度高、硬度高、耐磨性好等特点。 (1)力学性能

PEEK材料 PEEK(聚醚醚酮)是芳香族结晶型热塑性高分子材料,其熔点为334℃,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳等特点。 (1)耐热性能:PEEK的熔点为334℃,未增强PEEK的热变形温度为135~160℃,玻璃纤维增强后PEEK的热变形温度250~300 ℃,长期使用温度为250 ℃,短期工作温度可达300℃。 (2)耐腐蚀性能:PEEK的耐腐蚀性与镍钢相似,除个别浓酸外,对通常的化学药品表现出极好的耐腐蚀性,即使在较高的温度下,它仍能保持良好的化学稳定性。 (3)耐水解性能:PEEK在23℃下饱和吸水率只有0.5%,可在300℃加压热水或蒸气中使用,在200℃热水(加压水)中可以连续使用。 (4)抗蠕变性能:PEEK具有优良的抗蠕变性能,即使在200℃以上的温度,仍能保持较高的拉伸强度和弯曲模量。 (5)耐疲劳性能:PEEK的柔韧性好,对交变应力的优良耐疲劳性是塑料中最出众的,可与合金材料媲美。 (6)力学性能:PEEK纯树脂一般不能直接应用,还必须添加某些填料、增强材料和助剂制成塑料形式方可应用。 钛合金材料TC1(Ti-2AL-15Mn) 钛合金是一种新型结构材料,它具有优异的综合性能,密度小,比强度和比断裂韧性高,疲劳强度和抗裂纹扩展能力好,低温韧性良好,抗蚀性能优异,某

往复压缩机故障诊断研究现状及展望

往复压缩机故障诊断研究现状及展望 往复式压缩机作为一种通用的重要机械在工业上有较为广泛的应用,然而在故障诊断方面较复杂,因此在故障诊断技术方面的研究一直都受到各界的广泛关注。文章主要阐述了往复压缩机现阶段的诊断技术并对往复式压缩机中常见的故障和机理进行了分析,进而提出了研究技术的难点以及今后发展的主要方向,希望对该方面的研究有所裨益。 标签:往复压缩机;故障诊断;研究 前言 目前,随着我国科学技术的不断发展,工厂的许多机械设备等都向着自动化的目标发展,带来的问题就是机械设备的复杂化使一些零部件之间一环扣一环,联系更加紧密。若是某一部分出现了故障就会导致整个设备的运行受阻,进而造成较大的经济损失,更严重的会造成人员的伤亡。所以,机械设备的正常运行过程中,若是能够及时正确的预报或是诊断出隐含的故障因素,能够使压缩机在保证完整的情况下检查出出现故障的部件,进而能够防止事故的出现,能为企业带来更高的经济效益。 1 往复压缩机故障诊断技术研究现状 每个企业在进行往复压缩机故障诊断技术的选择时,需要将每种技术实施过程中的可能性以及优缺点进行仔细的对比,必须要保证技术的科学合理才能进行下一步实施,进而挑选出最适合机械的故障诊断方法。 1.1 通过分析油液进行故障诊断的技术 在往复压缩机正常运行的过程中,只要涉及到两个运动的面发生接触就一定会引起磨损的现象。根据具体的实验数据可知,运行过程中的不同时间段,往复压缩机的润滑油会呈现出较大差异的衰败长度,磨损的微粒也会有明显不同的特征,主要从形貌、大小、分布以及数量上有所体现。所以,在润滑油中对于往复压缩机的相关信息都有所体现,进行油液的分析故障诊断就是根据这一原理。收集观察往复压缩机所使用的润滑油,再通过各种不同的检测措施,进而分析润滑油的使用状况以及是否携带或携带多少的磨损微粒等各项信息,能够综合评价出所使用的润滑油及设备放入磨损程度,相关的工作人员就能判断出潜在的故障存在。这种故障分析方法的分析的对象是润滑油的磨损微粒与机械性能衰败的信息,因此在实施此种故障诊断的技术之前首要的任务是对分析样品的收集,再进行检测得到数据,进而通过分析所得数据判断出故障的存在与否以及进行预防的方案。由于这一技术的综合性,要求往复压缩机中的零部件都具有不同且明显的特征,只有这样才能保证诊断结果的准确性。 1.2 进行参数测定的故障诊断技术

往复式压缩机气阀故障的分析与判断

往复式压缩机气阀故障的分析与判断 摘要:往复压缩机作为机械设备领域的一部分,由于其结构复杂,激励源多,对其实施故障诊断比较困难,尽管人们已对其开展了不少研究并取得了一些研究成果,但总的诊断水平还不是很高,这与其在生产中的应用现状是极不相符。本文主要对气阀故障诊断及实效形式和气阀故障信号的诊断等方面进行了分析探讨。 关键词:往复式压缩机气阀故障振动分析 往复式压缩机在石化企业中应用广泛,由于结构复杂,导致其出现故障的原因很多。在长期的生产实践中,人们发现,往复式压缩机最常见的故障零部件有气阀、活塞环、填料函以及一些联接件的摩擦副等,但往复式压缩机有60%以上的故障发生在气阀上,能够及时发现气阀故障对往复式压缩机故障的诊断相当重要。 一、往复式压缩机气阀故障诊断的过程 气阀是往复式压缩机重要的组成部件之一。气阀的作用是控制气缸中的气体吸入和排出,压缩机上的气阀都是启闭不用专门控制机构而靠气阀两侧的压力差来自动实现启闭的自动气阀。气阀出现故障可导致压比失调、排温升高、排气量降低等,严重时甚至可造成机组报废。因此,能够及时有效的检测气阀故障,对保证往复压缩机有非常重要的意义。往复式压缩机气阀故障的检测通常是根据阀盖的振动加速信号和阀腔内压力信号分析进行的。在气阀故障诊断中,振动测点通常选在阀盖上,主要是由于此处的振动响应对气阀故障的反映较其它位置更为敏感,另外从信息传输角度也可以看出由气阀到阀盖表面的振动传递路径最短,因而所测得的信噪比最高,信号收路径影响最小。 二、气阀故障诊断及实效形式 振动分析法是在对设备所产生的机械振动进行信号采集、数据处理后,根据振幅、频率、相位及相关图谱所进行的故障分析。由于环形阀结构复杂,零部件数量多,长期在高温下承受着交变冲击载荷,极易发生故障。对结构、材质、制造工艺和操作条件完全相同的气阀,使用寿命在理论上应该是相近的,即失效时间呈正态分布。气阀的阀座和升程限制器一般表现为使用后中长期故障,阀片和弹簧在使用中表现为中短期故障。其失效形式如下: 1.阀座的作用及失效形式 阀座是气阀的主体,它与升程限制器一起构架了气阀组件的空间。阀座与升程限制器开通气体通道,是气体必经之处;阀座上的同心凸台表面经磨削加工,与阀片共同构成对气体的密封结构。阀座失效主要是由于密封面的锈蚀、积碳和磨损造成的。对于天然气压缩机来说,由于压缩介质天然气是多种成分的混合气

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

压缩机常见故障分析

姓名:张少朋班级:过控09-1 班 学号:06092877

压缩机常见故障分析 压缩机常见故障分析(1)——电机烧毁电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。 电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加, 以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大, 是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 2.金属屑引起的短路 绕组中夹杂的金属屑是短路和接地绝缘值低的罪魁祸首。压缩机运转时的正常振动,以及每次启动时绕组受电磁力作用而扭动,都会促使夹杂于绕组间的金属屑与绕组漆包线之间的相对运动和摩擦。棱角锐利的金属屑会划伤漆包线绝缘层,引起短路。 金属屑的来源包括施工时留下的铜管屑,焊渣,压缩机内部磨损和零部件损坏(比如阀片破碎)时掉下的金属屑等。对于全封闭压缩机(包括全封闭涡旋压缩机),这些金属屑或碎粒会落在绕组上。对于半封闭压缩机,有些颗粒会随气体和润滑油在系统中流动,最后由于磁性聚集在绕组中;而有些金属屑(比如轴承磨损以及电机转子与定子磨损(扫膛)时产生的)会直接落在绕组上。绕组中聚集了金属屑后,发生短路只是一个时间问题。 3.接触器问题 接触器是电机控制回路中重要部件之一,选型不合理可以毁坏最好的压缩机。按负载正确选择接触器是极其重要的。 接触器必须能满足苛刻的条件,如快速循环,持续超载和低电压。它们必须有足够大的面积以散发负载电流所产生的热量,触点材料的选择必须在启动或堵转等

风冷式压缩机常见故障分析实用版

YF-ED-J1079 可按资料类型定义编号 风冷式压缩机常见故障分 析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

风冷式压缩机常见故障分析实用 版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 风冷式压缩机主机部件常见有三方面故 障:1、气路系统故障2、油路系统故障3、传 动机构故障。下面作一些系统分析 一、气路系统故障: 气路系统由空滤器、气伐、气缸、活塞、 活塞环、中冷器、调节伐、控制铜管、压叉、 顶杆、压盖、顶杆弹簧等零件组成。

1、一级气压低。可能原因:A、空滤器是否堵塞,拆除空滤进行观察,(这里特别提醒用户,每天下班拆下空滤芯,用空气吹除灰尘,防止灰尘进入气缸发生早期磨损)B、检查一级进气伐是否有伐片、弹簧断裂现象或结碳情况,若无,用柴油或煤油作渗漏试验。C、检查中冷器是否有堵塞现象,打开中冷器底部排污伐,看排出气流是否大,或用手指堵住,感觉压力是否较大。中冷器轻微堵塞,可用煤油或松香水浸泡24小时,重新装上即可。严重堵塞只能重新更换。(中冷器务必每天下班带压排污,这样可以保证中冷器内部清洁,防止因油污没有清除而产生结碳) 2、一级气压正常,二级气压低。可能原

相关文档
最新文档