关于不同金属吸收系数与材料原子序数的关系的研究

关于不同金属吸收系数与材料原子序数的关系的研究
关于不同金属吸收系数与材料原子序数的关系的研究

关于不同金属吸收系数与材料原子序数的关系的研究

周昕 0519032

摘 要 通过在架上放上相同厚度不同金属的吸收片附件,以及在X光出射缝处添加薄的金属吸收片二种方法来测量不同金属吸收系数与材料原子序数的关系。最后给出它们之间的依赖关系。

关键词 X射线 吸收系数 原子序数

一、引言

X射线的波长是在10 m到10 m范围内的电磁波,它的能量很高。它产生的原因是高速电子与原子中的内层电子相互作用是其跃迁到外层甚至脱离原子的束缚,从而在原子的内层形成空位,这时,外层电子向内层跃迁以填补空位,同时发出X光。实验上是通过阴极的高速电子在加速电场的加速下撞击金属Cu的阳极靶从而发出X光。

X射线的发现揭开了人类研究微观世界的序幕,X射线的研究在物理学从经典物理发展到量子物理学的过程中,起了十分重要的作用,X射线的应用使物理学、化学、生理学、医学等学科发生了重大的变化。[1]

实验书上未给出金属的吸收系数与材料原子序数的关系,所以研究它们之间的关系是非常有必要的,而且通过确定它们的系数及函数关系就可以不用测量就知道金属的吸收系数,了解金属的吸收系数对于X射线的透射有重要意义。

二、实验概述

实验仪器如下图所示,利用活动的支撑架及活动的接收器可以测量任意角度散射的X 光,并将接收器的数据传输到电脑中,然后用专门软件采集并进行处理。

[2]

在测量材料的衰减系数与原子序数的关系时,先用的是实验室的附件2,即相同厚度(0.05cm)不同种类的金属组成的一个吸收片,包括C、Al、Fe、Cu、Zr、Ag六种金属。将它们卡在实验支撑架上,然后通过支撑架的转动使得X光分别通过每种金属,同时接收器也一起转动。实验信号流程如下:

然后我用各种不同的金属吸收片添加在X光出射缝处,将透射的X光再通过NaCl晶体,记录下衍射谱。吸收片有Al、Fe、Cu、Zr、Mo、Ag,厚度分别为0.05cm, 0.05cm, 0.007cm, 0.005cm, 0.01cm,0.005cm。实验前要将金属片清洁,防止由杂质影响X光的透射。实验信号流程如下:

由于一开始对金属的吸收系数大概在什么范围没有什么概念,在做吸收附件的时候所以多次选择了X光管的管压、管流,才得到了较好的结果。管压太小,计数率太低导致X光通过原子序数较大的原子时衰减到接近零,这样结果就不精确了;管压太大,计数率超过5000也不准确,所以我们要调节使得计数率在5000以内,而且最小值不能太小。

三、结果与讨论

以下的表格1即为实验的测量数据。利用公式I=I *e ,因为T=I/I ,所以u=‐lnT/d,

d=0.05cm,而T=R/R ,R和R 就是计数率。这样就可列出各种金属的衰减系数。

吸收片 Z R/s T u/cm 无 0 4564.6 1.0000 0

C 6 4542.8 0.995 0.100

Al 13 3724.8 0.816 4.07

Fe 26 22.8 5.00*10 106

Cu 29 2.0 4.38*10 155

Zr 40 19.3 4.23*10 109

Ag 47 18.4 4.03*10 110 表1 不同材料(C、Al、Fe、Cu、Zr、Ag)的衰减系数及原子序数

图1是相同厚度(0.05cm)的六种材料(C、Al、Fe、Cu、Zr、Ag)的衰减系数与材料原子序数的关系。可以看出材料的衰减系数先是随着原子序数的增大而迅速增大,在Z=40时有一个突然的下降,然后又继续上升。而在图2 中对于前五个点用四次方拟合,得到的结果比较好,可见Z<40时,衰减系数与原子序数呈四次方关系。

图1 C、Al、Fe、Cu、Zr、Ag的u与Z的关系 图2 Z<40时u与Z的关系

在Z=40时,材料的衰减系数有一个迅速的下降,这是因为我们的测量范围太大,包括

了Z>40的金属原子的K层吸收边,如果我们缩小测量范围至远离K层吸收边的范围内,这

样Zr和Ag的衰减系数就会变大,理论上应该在前五个点拟合的曲线附近。但是我们实验中

由于管压范围在0‐35KV范围内,大部分的波长都在远小于K层吸收边的范围内,没法使X

光最小波长大于K层吸收边所对应的波长。而又没法将大于K层吸收边的波长都除去,所以

这种方法来测量材料的衰减系数与原子系数的关系不是很好,而且当无吸收片时计数率已经

达到四千多时,Cu的计数率依然只有2.0,这么小的计数率误差还是很大的。所以我们才用

第二种方法,即将吸收附件换成薄的吸收片这样可以增加X光的透射强度,增加计数率,从

而减小实验误差。

以下的表格2即是实验的测量数据,利用在远离吸收边时有经验公式:

t =[‐lnT/(ρ*x)‐0.2cm /g]*A/N A,A是原子的摩尔质量,N A是阿伏加德罗常数,T=R/R ,ρ是

金属的密度,X是金属片的厚度。这样就可以算出不同金属的质量吸收系数。

吸收片 Z X/cm R/s (在β=4.1 处)T t /10 λ /pm 无 0 0 591.0 1.000 0

Al 13 0.050 508.9 0.861 40.4 796.7

Fe 26 0.050 23.0 0.039 858 174.3

Cu 29 0.007 316.6 0.536 1320 138.1

Zr 40 0.005 275.6 0.466 4780 68.9

Mo 42 0.01 21.5 0.036 5260 61.9

Ag 47 0.005 102.6 0.174 5880 48.6

表2 各种金属吸收片的吸收系数及原子序数

图3是六种金属吸收片(Al、Fe、Cu、Zr、Mo、Ag)的吸收系数与原子序数的关系。

由它们的对数关系可知它们是四次方关系,金属的吸收系数随原子序数的增加而迅速增大,

即可写成:t =C Z ,C是常数。此时所有的点都比较好的分布在拟合直线两边。 因为我们

已经去除了K层吸收边 ,由上表知最小的λ 是48.6cm,而在U=35KV时,X光发射的最小

波长为λ =35.4pm,所以我们选取的λ要远小于48.6pm,又要大于35.4pm,然后我们选取

在β=4.1 处,此时λ=40.3pm。

l n (t a /10-24

c m )

lnz

图3 C 、Al 、Fe 、Cu 、Zr 、Mo 、Ag 的质量吸收系数与原子序数的关系(取对数后)

由图可知斜率为4.00789土0.29463,而且线性程度为0.99532,误差比较小,可以接受。

四、结论与分析

通过实验,了解到金属的质量吸收系数与其原子序数呈四次方关系,联系到以前实验中知道了吸收系数与X 光的波长呈三次方关系,我们可以写出等式:t =C λ Z ,C 是常数。[3]我们可以通过精确测量很多组t 及λ、Z 的值就可以确定常数C ,这样以后就不用去测量质量吸收系数,而可以直接由已知的λ,Z 得出,不仅更加精确,而且方便很多。如果要想确定C 值,可以将以上的测量数据代入到理论公式,可是这样得出的C 值不太精确,又上面图就可以看出线性程度较低,而且在原来测量吸收系数与X 光波长的关系时得到的斜率为2.70,与理论值3相差较多,所以也就没有继续做下去。如果能够提高实验室仪器的精度,常数C 还是可以精确测定的。

如果精确测定了C 值,那么以后就可以不用麻烦的测量金属的吸收系数了,二可以直接由X 光的波长及金属的原子序数就可以算出,即提高了精确度,又提供了方便。金属的吸收系数在有关X 光的实验中还是很重要的,经常会使用到,将一些常用的金属的吸收系数做成一张表可以为实验人员减少不少实验时间。

五、致谢

感谢搭档蒋东贤在实验上的帮助,并感谢物理系实验室提供的实验仪器让我完成了试验。

六、参考文献

[1]‐[2] 物理系实验室网站

[3] 实验室的X 光实验参考资料

Research about the relationship between different metal’s absorbing

coefficient and its atomic number

Zhou Xin 0519032

Abstract we use two ways to measure the relationship between different metal’s absorbing coefficient and its atomic number. One way is putting the absorbing piece of metal attachment with the same thickness and different kinds; the other is that adding thin piece of metal in where the X‐ray emits out. Finally, we will give their accurate relationship.

Key word X‐ray the absorbing coefficient the atomic number

根与系数的关系习题

一元二次方程根与系数的关系习题 一、单项选择题: 1.关于x 的方程0122=+-x ax 中,如果0

一元二次方程根与系数的关系典型例题

一元二次方程根与系数的关系 【同步教育信息】 一. 本周教学容: 一元二次方程的根与系数的关系 [学习目标] 1. 熟练掌握一元二次方程根与系数的关系(即:韦达定理及逆定理); 2. 灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程。 3. 在解题中锻炼分析、观察、归纳的能力和推理论证的能力; 4. 提高自己综合运用基础知识分析解决较复杂问题的能力。 5. 体会特殊到一般,再由一般到特殊的认识事物的规律,有意培养自己发现规律的兴趣,及树立勇于探索规律的精神。 二. 重点、难点: 1. 教学重点: 一元二次方程根与系数关系及其推导和应用,注意往往不解方程,用两根和与积或各系数就可解决问题,这时解了方程反而更麻烦。 2. 教学难点: 正确理解根与系数的关系,掌握配方思想,把某些代数式配成两根和与积的形式才能将系数代入。 【典型例题】 例1. 已知方程的一个根是,求它的另一个根及b的值。 分析:含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。 解:(方法一)设方程的另一根为,则由方程的根与系数关系得: 解得: (方法二)由题意: 解得: 根据韦达定理设另一根为x,则

点拨:解法一较简单,主要原因是突出了求解的整体性。 例2. 已知方程的两根为,求下列代数式的值: (1);(2);(3) 分析:若方程两根,则不解方程,可求出关于的对称式的值,只须将其配成含有、的形式。 解:由已知,根据韦达定理 (1) (2) (3) 点拨:体会配方思想,将代数式配成含有的形式,再代系数即可。 例3. 已知:是两个不相等的实数,且满足,那么求的值。

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间关系 从暑假开始,我们系统学习了一元二次方程解法及一元二次根判别式和一元二次方程根与系数之间关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中第六章解直角三角形. 一、基本内容 1.一元二次方程含义:含有一个未知数,且未知数次数最高是2整式方程叫一元二次方程. 2.一般形式:ax 2+bx+c=0(a ≠0) 3.解法: ①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)形式可直接开平方.如(3x-1)2=5两边开平方得: 513±=-x 513±=x 3 51,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=- x x 9 13191322+=+-x x 94)31(2=-x 3 231±=-x 3231±=x 3 1,121-==∴x x 此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式推导用这种方法. ③公式法:)0(2)0(02≥??±-=≠=++a b x a c bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)形式,将一元二次方程转化成ax+b=0,cx+d=0形式,变成两个一元一次方程来解. 4.根判别式:△=b 2-4ac b 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4a c ≥0 方程有实根. 有三种应用: ①不解方程确定方程根情况. ②利用方程根条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

一元二次方程的根与系数的关系教学设计

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0 ∴x1=2,x2=4 ∴方程的另一个根为4,m的值为3或-1. 法二:设方程的另一个根为x.

一元二次方程的根与系数的关系教学案(一)

一元二次方程的根与系数的关系教学案(一) 一、素质教育目标 (一)知识教学点: 掌握一元二次方程的根与系数的关系并会初步应用. (二)能力训练点: 培养学生分析、观察、归纳的能力和推理论证的能力. (三)德育渗透点: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.培养学生去发现规律的积极性及勇于探索的精神. 二、教学重点、难点、疑点及解决方法 1.教学重点:根与系数的关系及其推导. 2.教学难点:正确理解根与系数的关系. 3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系. 三、教学步骤 (一)明确目标 一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知

一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程 1.复习提问 (1)写出一元二次方程的一般式和求根公式. (2)解方程①x2-5x+6=0,②2x2+x-3=0. 观察、思考两根和、两根积与系数的关系. 在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗? 2.推导一元二次方程两根和与两根积和系数的关系. 设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.

初三数学根与系数关系练习题

一元二次方程根的判别式与根与系数的关作业题 一、选择 1、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程 ( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、有实根 2、若方程02=++n mx x 中有一个根为零,另一个根非零,则n m ,的值为 ( ) (A ) 0,0==n m (B ) 0,0≠=n m (C ) 0,0=≠n m (D ) 0≠mn 3、若a x x ++3142为完全平方式,则a 的值为 ( ) A 61 B 121 C 361 D 144 1 4、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为 ( ) A 、0 B 、-1 C 、1 D 、±1 5、两根均为负数的一元二次方程是 ( ) A.4x 2+21x+5=0 B.6x 2-13x-5=0 C.7x 2-12x+5=0 D.2x 2+15x-8=0 6、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =??? ??2 2,则方程的两根 之比为 ( )

A 、0∶1 B 、1∶1 C 、1∶2 D 、2∶3 7、菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程:03)12(22=++-+m x m x 的根,则m 的值为 ( ) A 、-3 B 、5 C 、5或-3 D 、-5或3 二、填空: 8、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中, 无实根的方程是 。 9、关于x 的方程10422=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。 10、如果关于x 的一元二次方程042=+-kx x 有两个相等的负根,则_____=k ; 11、以1313-和+的根为方程是______________。 12、若两数和为3,积为-4,则这两个数分别为_____________。 三、解答 13、1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值: (1)2221x x + (2)21x x - (3)2222133x x x -+

最新根与系数的关系练习题87793资料

一元二次方程的根与系数的关系 姓名____________________ 号__________________ 01基fli训练 知识点1利用根与系数的关系求两根之间关系的代数式的值 1. 若X I、X2是一元二次方程X2+10X+16的两个根,则X1+X2的值是() A.-10 B.10 C.-16 D.16 2. 已知X1,X2是一元二次方程X2-4X+仁0的两个实数根,则X1X2等于() A.-4 B.-1 C.1 D.4 3.若X1,X2是一兀二次方程2X .-7X+4=0的两根,则X什X2与X1 ? X2的值分别是 () 7 c r 7 c77 c A.--,-2 B.-, 2C— ., 2 D. —, -2 2222 4.已知一?兀二次方程的两根分别是2和-3,则这个?兀二次方程是() 2 2 2 2 A.x -6x+8=0 B.x +2x?3=0 C.x -x-6=0 D.x +x-6=0 5. 已知X1、X2是方程X2-3X-2=0的两个实根,则(X1-2)(X2-2)= ___ 2 1 1 6. 若一元二次方程X -X-1=0的两根分别为X1、X2,贝V = 知识点2利用根与系数的关系求方程中待定字母的值 7. 若关于X的一元二次方程x2+bx+c=0的两个实数根分别为X1=-2 , X2=4 ,则b+c的值是() A.-10 B.10 C.-6 D.-1 8. 已知关于X的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是() A.-2 B.0 C.1 D.2 2 ______________ 9. 已知关于X的方程X +X+n=0有两个实数根-2, m.求m, n的值. 10. 不解方程,求下列方程的两根和与两根积: 2 2 2

根与系数的关系练习题 (1)

一元二次方程根与系数的关系练习题 一.选择题(共14小题) 1.下列一元二次方程中,两根之和为2的是() A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=0 2.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为() A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0 3.(2011?锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.12 4.(2007?泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.3 5.(2006?贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣1 6.(1997?天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣2 7.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则() A.3n2=16m2B.3m2=16n C.m=3n D.n=3m2 8.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=() A.365 B.245 C.210 D.175 9.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0 的两个实数根,则m的值为() A.﹣4 B.4C.8或﹣4 D.8 10.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为() A.2008 B.2009 C.2010 D.2011

根与系数关系

一元二次方程根与系数 对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么 则是的两根。一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。下面就对应用韦达定理可能出现的问题举例做些分 析,希望能给同学们带来小小的帮助。 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴解得; ∵方程(2)没有实数根,∴ 解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。 1

二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为,∵<0 ∴原方程有两个异号的实数根。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,(1)若,则方程有一正一负根;(2)若,,则方程有两个正根;(3)若,,则方程有两个负根. 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得当时,原方程均可化为:,解得: ∴方程的另一个根为4,的值为3或—1。 解法二:设方程的另一个根为,根据题意,利用韦达定理得: , 2

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间的 关系 我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元,从暑假开始我们将学习几何,二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次. 中的第六章解直角三角形一、基本内容的整式方程叫一元且未知数的次数最高是1.一元二次方程含义:含有一个未知数,2. 二次方程20) +bx+c=0(a一般形式:ax≠2.: 3.解法22如=b(b≥0)0)和(x+a)的形式可直接开平方:①直接开平方法形如 x.=b(b≥2: 两边开平方得(3x-1)=551?51??,?x?x5?x53?13x?1??21332 :② 配方法:例03x??2x?11222解:1?2x3x??xx?3311212?xx??? 939321412??x?(x)??3393121?,xx????x?121333因 为很多公式的推导用这种方,.但要掌握此类解法在解一元二次方程时,一般不用. 法?b??2)??0(?0axbx??c?0(a?)的求根公式是x:③公式法a2将一元二次方程转,:方程右边为零.左边分解成(ax+b)(cx+d)的形式④因式分解法. 变成两个一元一次方程来解化成ax+b=0,cx+d=0的形式,2-4ac =b根的判别式:△4.2. 方程有两个不相等实根b-4ac>0 2-4ac=0 方程有两个相等实根. b2-4ac<0 方程无实根. b2-4ac≥0 b方程有实根. 有三种应用: ①不解方程确定方程的根的情况. ②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m或k的取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完 全平. 来证<0Δ或>0Δ一定有,无论取何值k)或m(叙述不论,方式 cb2. +bx+c=0(a≠0)的根,则5.根与系数间的关系,某x,x是ax?x,x?x?x??212121aa: 应用. 求方程中m或k的值或另一根①不解方程,. 求某些代数式的值②不解方程,. 的取值范围m或k③利用两根的关系,求方程中. 使它与原方程有某些关系④建立一个方程,. ⑤一些杂题 : 二、本次练习: 填空题(一)22mx??x3mx?2x?m m=____. 1.关于x是一元二次方程的方程,则2常数化成一元二次方程的形式是____.其一次项系数是 2.将方程4x____,-kx+k=2x-1____. 项是222x=____. 则代数式(x+2)+(x-2)的值相等的值与8(x,-2)3.522 +( )=(x- )4.x?x 22k=____.

不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定-电子.

《仪器分析》教案 教学重点吸收工作曲线绘制 教学难点 吸收工作曲线绘制 参考资料仪器分析(第二版) 中国环境出版社 仪器分析技术华中科技大学出版社 现代仪器分析技术及应用中国石化出版社 一、高锰酸钾溶液的配制 1、理论知识 市售的KMnO 4试剂中常含有少量的MnO 2 和其它杂质,高锰酸钾在制备和贮存过程 中,常混入少量的杂质,蒸馏水中常含有微量还原性的物质,它们可与MnO 4 -反应而 析出MnO(OH) 2 沉淀,这些生成物以及光、热、酸、碱等外界条件的改变均会促进 的分解,因此KMnO 4 标准溶液不能直接配制。 为了配制较稳定的KMnO 4 溶液,常采用下列措施: (1)称取稍多于理论量的KMnO 4 溶液,溶解在规定体积的蒸馏水中。 (2)将配制好的KMnO 4 溶液加热至沸,并保持微沸1h,然后放置2~3 天,使溶液中可能存在的还原性的物质完全氧化。 (3)用微孔玻璃漏斗过滤,除去析出的沉淀。 (4)将过滤后的KMnO 4 溶液贮存于棕色试剂瓶中,并寸放在暗处,以待标定。如 需要浓度较稀的KMnO 4溶液,可用蒸馏水将KMnO 4 稀释和标定后使用,但不 宜长期贮存。 标定KMnO 4标准溶液的基准物很多,如Na 2 C 2 O 4 、As 2 O 3 、H 2 C 2 O 4 ·2H 2 O铁丝 等。其中以Na 2C 2 O 4 较为常用,因为它容易提纯,性质稳定,不含结晶水。Na 2 C

(1)温度:在室温下,这个反应的速率缓慢,因此常将溶液加热至70~ 85℃时进行滴定。但温度过高,若高于90℃,会使部分H 2C 2 O 4 发生分解: H 2C 2 O 4 → CO 2 + CO + H 2 O (2)酸度:酸度过低,KMnO 4 易分解为MnO 2 ;酸度过高,会促使H 2 C 2 O 4 分解,一般滴 定开始时的酸度应控制在0.5~1mol/L。 (3)滴定速度:开始滴定时的速度不宜太快,否则加入的KMnO 4 溶液来不及与 C 2O 4 -反应,即在热的酸性溶液中发生分解反应。 (4)催化剂:开始加入的几滴KMnO 4 溶液褪色较慢,随着滴定产物Mn2+的生成, 反应速率逐渐加快。因此,可于滴定前加入几滴MnSO 4 作为催化剂。 (5)指示剂KMnO 4 自身可作为滴定时的的指示剂,但使用浓度 0.002mol/LKMnO 4 溶液作为滴定剂时,应加入二苯胺磺酸钠或1,10-邻二氮非-Fe 指示剂来确定终点。 (6)滴定终点用KMnO 4 溶液滴定至终点后,溶液中出现的分红色不能持久,这 是因为空气中的还原性的气体和灰尘都能使MnO 4 -还原,使溶液的分红色逐渐消失。所以,滴定时溶液中出现的分红色如在0.5~1min内不褪色,就可认为已经达到滴定终点。 二、高锰酸钾溶液配制 1、配制过程 (1)KMnO 4标准溶液(0.02mol/L)的配制:称取KMnO 4 1.4g,溶于400ml 新煮沸放冷的蒸馏水中,置棕色玻璃瓶,摇匀,暗处放置7~14天,用垂熔玻璃漏斗,

《一元二次方程根与系数的关系》教案

《一元二次方程根与系数的关系》教案 教学目标: 1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。 2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。 3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。 教学重点: 一元二次方程的根与系数的关系及简单应用。 教学难点: 一元二次方程的根与系数的关系的推导。 数学思考与问题解决: 通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。 一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查) 【师生活动】: 教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。 学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。 【设计意图】: 本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。 【学案内容】: 1、方程:X 2+3X –4=0 (1)二次项系数是_____ ,一次项系数是______ ,常数项是______。 (2)解得方程的根X 1=______ ,X 2=______ 。 (3)则X 1+X 2=_______, 方程中 ()二次项系数 一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数 常数项=

根与系数的关系

一元二次方程的根与系数的关系 教学目的 1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用. 2.培养学生分析、观察以及利用求根公式进行推理论证的能力. 教学重点、难点 重点:韦达定理的推导和初步运用. 难点:定理的应用. 教学过程 一、复习提问 1.一元二次方程ax2+bx+c=0的求根公式应如何表述? 2.上述方程两根之和等于什么?两根之积呢? 二、新课讲解 一元二次方程ax2+bx+c=0(a≠0)的两根为 由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”) 如果ax2+bx+c=0(a≠0)的两个根是x 1,x2,那么 例1已知方程5x2+k x-6=0的一个根是2,求它的另一根及k的值. 讲解例1

例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和. 三、学生练习 1.下列各方程两根之和与两根之积各是什么? (1)x2-3x-18=0;(2)x2+5x+4=5; (3)3x2+7x+2=0;(4)2x2+3x=0. 2.方程5x2+kx-6=0两根互为相反数,k为何值? 3.方程2x2+7x+k=0的两根中有一个根为0,k 为何值? 4、已知两个数的和等于8,积等于9,求这两个数. 提示:这是一道“根与系数的关系定理”的应用题,要注意此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数. 四、课堂小结 1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理. 2.要掌握定理的四个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.三是已知方程求两根的各种代数式的值;四是已知两根的代数式的值,构造新方程; 五、布置作业: 1、本节不留书面作业。 2、探究性作业:课本55页探索。

根与系数的关系练习题

一元二次方程根与系数的关系习题 朱发栋 [准备知识回顾]: 1、一元二次方程 ) 0(02≠=++a c bx ax 的求根公式为 )04(2422≥--±-=ac b a ac b b x 。 2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=? (1) 当0>?时,方程有两个不相等的实数根。 (2) 当0=?时,方程有两个相等的实数根。 (3) 当0

变式训练: 1、已知1-=x 是方程0232=++k x x 的一个根,则另一根和k 的值分别是多少? 2、方程062=--kx x 的两个根都是整数,则k 的值是多少? 例2:设21x x 和是方程03422=-+x x ,的两个根,利用根与系数关系求下列各式的值: (1)2 22 1x x + (2))1)(1(21++x x (3)2 11 1x x + (4)221)(x x - 变式训练: 1、已知关于x 的方程01032=+-k x x 有实数根,求满足下列条件的k 值: (1)有两个实数根。 (2)有两个正实数根。 (3)有一个正数根和一个负数根。 (4)两个根都小于2。

根与系数关系知识讲解及练习

0b0a,如果方程有两个实数韦达定理:对于一元二次方,10?? 1)定理成立的条件说明:(b??x?x的负号与b)注意公式重的符号的区别(221a根系关系的几大用处 ①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;? 例如:已知方程2-5x+6=0,下列是它两根的是( x) -3 D. 3, 2, 3,-2 B. -2, 3 C. -2 A.②求代数式的值:在不解方 程的情况下,可利用根与系数的关系求关于x和x的代数式21的值,如;? ③求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式.? ④求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数. (后三种为主) (1)计算代数式的值 2x,x?2x?x2007?0的两个根,试求下列各式的值:是方程若例 211122?(x?5)(x?5)|x?x|xx?.(4) ; (2) ; (1) ; (3) 212112xx21x?x??2,xx??2007解:由题意,根据根与系数的关系得:21122222?2(?2007)?4018xx?(x??x)?(x?x2)?2 (1) 212112x?x11?2221????(2) xxxx?200720072211(x?5)(x?5)?xx?5(x?x)?25??2007?5(?2)?25??1972 (3) 212211 222?4(?2007)2)(??22008x)??(xx)x?4x????|xx|(x (4) 21122211说明:利用根与系数的关系求值,要熟练掌握以下等式变形: x?x112222212???4xx?xx?)?(xx2)?x??xx(x?xx)(,,, 212121212211xxxx2121.222,4?|x?x|)x(x??xx?xxxx22121112221112333等等.韦达定理体现了整体思想.)x?x)?3xxx?x(?(x?x21121212(2)构造新方程 为根的一元二次方程是。理论:以两个数 x+y=5 解方程组例??????????? xy=6??? 是方程z-5z+6=0 ,解:显然,xy=3 =2,z由方程①解得 z21=3 =2,y∴原方程组的2的两根① 解为 x11=2 =3,y???????????????? x22显然,此法比代入法要简单得多。)定性判断字母系数的取值范围(3一个三角形的两边长是方程的两根,第三边长为2,求k的取值范围。例 为的两根,则c=2 a、bb解:设此三角形的三边长分别为a、、c,且由题意知2-4 k≤0,k≥4或×△=k-4×22≥为所求。∴

根与系数之间关系应用一

2013根与系数关系应用 一.填空题(共30小题) 1.(2012?泸州)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为_________.2.(2012?鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= _________. 3.(2011?苏州)已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于_________. 4.(2011?德州)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=_________. 5.(2010?雅安)已知一元二次方程x2﹣mx+m﹣2=0的两个实数根为x1、x2,且x1x2(x1+x2)=3,则m的值是 _________. 6.(2010?芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=_________. 7.(2010?成都)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为_________. 8.(2009?天津)若分式的值为0,则x的值等于_________. 9.(2008?鄂州)已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=_________. 10.(2007?芜湖)已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_________.11.(2007?宿迁)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则|x1﹣x2|=_________.12.(2006?株洲)已知a、b是关于x的方程x2﹣(2k+1)x+k(k+1)=0的两个实数根,则a2+b2的最小值是_________.13.(2006?日照)已知,关于x的方程x2+=1,那么x++1的值为_________.14.(2006?南充)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是_________. 15.(2001?甘肃)如果二次三项式3x2﹣4x+2k在实数范围内总能分解成两个一次因式的乘积,则k的取值范围是_________. 16.(2001?东城区)若2x2﹣5x+﹣5=0,则2x2﹣5x﹣1的值为_________. 17.(2000?辽宁)已知α,β是方程x2+2x﹣5=0的两个实数根,则α2+αβ+2α的值为_________. 18.(1999?温州)若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于_________.

根与系数的关系资料 系数公式

系数公式一元二次方程根与系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程及应用求根公式求出方程即根的判别式的两个根存在的三种情况,以,进而分解因式,。下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。一、根据判别式,讨论一元二次方程的根。例1:已知关于的方程(1)根,且关于的方程(2)方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。解:∵方程(1)有两个不相等的实数根,有两个不相等的实数没有实数根,问取什么整数时,∴解得; ∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。解得:所以,使方程(1)有整数根的的整数值是。说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。二、判别一元二次方程两根的符号。例1:不解方程,判别方程两根的符号。分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定既要求出判别式的值,又要确定或或的正负情况。因此解答此题的关键是:的正负情况。解:∵,∴△=--4×2×(--7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为,∵<0 ∴原方程有两个异号的实数根。说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中若>0,仍需考虑<0,所以可判定方程的根为一正一负;倘的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。例2:已知方程值。分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,的一个根为2,求另一个根及的先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。解法一:把代入原方程,得:即解得当,解得:时,原方程均可化为:∴方程的另一个根为4,的值为3或--1。解法二:设方程的另一个根为,根据题意,利用韦达定理得:, ∵,∴把代入,可得:∴把代入,可得:,即解得∴方程的另一个根为4,的值为3或--1。说明:比较起来,解法二应用了韦达定理,解答起来较为简单。例3:已知方程和比两根的积大21,求的值。有两个实数根,且两个根的平方分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。解:∵方程有两个实数根,∴△解这个不等式,得则,≤0 设方程两根为∵∴∴整理得:解得:又∵,∴ 说明:当求出意的。后,还需注意隐含条件,应舍去不合题四、运用判别式及根与系数的关系解题。例5:已知、是关于的一元二次方程零实数根,问和能否同号?若能同号,请求出相应的的两个非的取值范围;若不能同号,请说明理由,解:因为关于的一元二次方程有两个非零实数根,∴则有∴又∵、是方程的两个实数根,所以由一元二次方

中考数学专题 根与系数的关系_答案

专题 根与系数的关系 例1. 15 2 s ≥- 且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -< 例3. 设22 3,A βα = +22 3,B αβ= + 31004A B += ① A B -= ② 解由① ②联立的 方程组得 1 (4038 A =- 例 4. 0,s ≠Q 故第一个等式可变形为211()99()190,s s ++= 又1 1,,st t s ≠∴Q 是一元二次方 程 299190x x ++=的两个不同实根, 则11 99,19,t t s s +=-=g 即199,19.st s t s +=-= 故 41994519st s s s t s ++-+==- 例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20 (2) 由方程组得232,326(6),x y a z x y z az +=-=-+g 易知3,2x y 是一元二次方程 22()6(6)0t a z t z az --+-+=的两个实数根,0∴?≥, 即2223221440z az a -+-≤, 由z 为实数知,22'(22)423(144)0,a a ?=--??-≥ 解得a ≥故正实数a 的最小值为 (3) xy 与x y +是方程217660m m -+=的两个实根,解得11, 6x y xy +=??=? 或 6,()xy 11. x y +=?? =?舍原式=()()2 22222212499x y x y xy x y +-++=. 例6 解法一:∵ac <0,2=40b ac ?->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2, 且x 1<0

相关文档
最新文档