吸收系数计算

吸收系数计算
吸收系数计算

关于吸收系数的计算

吸收系数在光学和分析化学或者仪器分析中有着两种不同的表达方式。光学中的吸收系数概念是从光传播的物理推导得出的原始结论,具有线性条件下的普遍意义;分析化学中的关于紫外吸收光谱吸收定律的数学表达式是由光学中的原始公式推导出来的衍生公式。对于纯粹学化学的研究者而言,只学习了衍生的吸收公式,容易走入对不同材料吸收系数的计算的误区,从而得到错误的计算数据。根据自己在计算吸收系数时的经验,对于吸收系数的计算做如下总结,对自己和其他的初学者提供一些学习的参考资料。

一、光学中关于吸收系数的表述:

光在介质中传播时,光的强度随传播距离(穿透深度)而衰减的现象称为光的吸收。 光的吸收遵循吸收定律,关于吸收定律有两种形式的表述方式:

(1) 布朗-朗伯定律

光经过一定介质后的出射光强为:0L I I e α-=

I 0表示入射光强,L 表示光束垂直通过介质层的厚度,a 为一正常数,称为介质对该单色光的吸收系数。

介质的吸收系数a 的量纲是长度的倒数,单位是cm -1. 吸收系数a 的倒数(1/a)的物理意义是因介质的吸收使得光强衰减到原来1/e≈36.8%时,光所通过的介质厚度。 将布朗-朗伯定律两边积分得到:0

I L Ln I α-= 用1cm 的比色皿,则L=1cm ,得到吸收系数为:0I Ln

I α=- (2) 比尔定律

对于气体或溶解于不吸收的溶剂中的物质,吸收系数a 正比于单位体积中的吸收分子数,即正比于吸收物质的浓度c ,a=kc 。

因而吸收定律可以写成如下形式:kcl e I I -=0,式中k 是于浓度无关的常数。

选自:光学(修订版)(蔡履中 王成彦 周玉芳编著;山东大学出版社;2002年08月第2版)

二、分析化学中关于吸收系数的表述:

劳伯—比尔定律(Lambert-Beerlaw)是讨论吸收光能与溶液浓度和溶质层厚度之间关系的基本定律,是分光分析的理论基础。

劳伯—比尔定律适用于可见光、紫外光、红外光和均匀非散射的液体

(一) Lambert 氏定律 一束单色光通过透明溶液介质时,光能被吸收一部分,被吸

收光能的量与溶液介质厚度有一定比例关系(见图2—1)。

表达式为

这里I0为入射光强度

I为通过溶液介质后的光强度

L为溶液介质的径长(path length)

k为吸光系数(absorption coefficient)(g·cm-1)

(二)Beer氏定律以溶液介质浓度变化代替溶液介质厚度的改变,光能的吸收与浓度改变有类同的关系,即一束单色光通过溶液介质时,光能被溶液介质吸收一部分,吸收多少与溶液介质浓度有一定的比例关系。

得出下式:

这里C(Concentration)为溶液介质的浓度(g·L-1)

将Lambent氏定律和Beer氏定律合并,即(1)和(2)合并为

式中A(Absorbance)为吸光度

T(Transmittance)为透光度

(4)式也可表达为A=εcb (5)

式中ε(epsilon)称之摩尔吸光率(Molar absorptivity)(mol/L-1cm-1)

C(concentration)浓度(mol/L)

b(path length)溶液样品的长度cm(或比色皿内径长cm)

(5)式为lambert—Beer定律的物理表示式,其含义为一束单色光通过溶液介质后,光能被吸收一部分,吸收多少与溶液的浓度和厚度成正比。此式为分光分析法的基本计算式。

如果实验中溶液厚度b=lcm则A=ε C

图2—2表明,在溶液介质厚度一定的情况下,吸光度(A)、透光度(T)和溶液介质浓度(C)之间的关系。

摩尔吸光率(ε)实际上是物质在单位浓变和单位厚度下对入射光的吸光度,在一定波长下,ε越大表示物质对光的吸收越强。

三、布朗-朗伯定律与比尔定律的关系

光的吸收定律,U .S .P xXIV 版称Beel 定律,普通高校教材称“朗伯一比尔” “比尔一朗伯”定律。朗伯定律根据国标GB8322—87应称为朗伯一波格定律(Lambert —Bouguer ’s Law) ,它说明吸光与液层厚度的关系;比尔定律(Beel ’s Law)是说明吸光与溶液浓度的关系。两个定律合并后成为通用的光吸收定律――“朗伯一波格一比尔定律”。 光学和分析化学中关于吸收定律的异同点:

(1) 研究的出目的不同:光学研究的是光在传播时,由于介质的吸收造成了光的衰减,研究

目的在于光的吸收损失;分析化学中研究材料在不同的浓度下对于同一束光造成的吸收不同,研究材料的目的在于材料中吸收物质含量(浓度或者百分含量)。

(2) 所用到的公式不同:光学中用到是0

I Ln I α=-,计算过程中用自然对数。分析化学中用到的是bc A I I ε==-0

lg ,计算过程中用常用对数。常用对数和自然对数之间可以通过换底公式进行换算,但是要注意并不是就说能够通过换底就能够将两个不同领域的公式互换,毕竟他们研究的目的不同,所用到的常数项虽有联系但还是有差别的,不能混为一谈。

总之,在计算光的传播过程中的性能时要用光学中的计算公式,而要对化学物质进行定性或者定量分析则应用到分析化学的公式更为简便一些。

CEMS数据折算计算公式

Cems环保数据折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于折算系数为; 燃煤锅炉大于折算系数为; 燃气、燃油锅炉折算系数为 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中

SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 )其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

计算题

计算 1、分配系数分别为100和110的两组分,在相比(β=V m /V s )为5的色谱柱上分离,若使分离度R=1.0,需多长色谱柱?若使分离度R=1.5,又需多长色谱柱?(设理论塔板高度为0.65mm ) 解:(1)K 1=100,K 2=110,β=V m /V s =5,R=1.0,H=0.65mm к1= K 1(V s /V m )= K 1/β=100/5=20 к2= K 2(V s /V m )=K 2/β=110/5=22 α= K 2/ K 1=110/100=1.1 1 1422 +-= k k n R αα= √n/4×〔(1.1﹣1)/1.1〕×(22)/22+1=1.0 n=2116 H=L/n L=nH=2116×0.65×10- 3=1.38 m (2)R=1.5时 √n/4×022/23=1.5 2 1 2 221L L R R = L=3.11m 2、在1m 长的气相色谱柱上,某药物及其代谢产物的保留时间分别为5.80min 和6.60min ,两色谱峰的半峰宽分 别为0.23cm 和0.24cm ,空气的保留时间为1.10min ,记录纸速为0.50cm/min 。 计算:(1)代谢物的容量因子; (2)两组分的分离度; (3)以该药物计算色谱柱的有效塔板数; (4)在不改变塔板高度的条件下,分离度为1.5时所需柱长 解:L=1m ,t R1=5.80min ,t R2=6.60min ,t R0=1.10min ,u 0=0.50cm/min (W 1/2)1=0.23cm , (W 1/2)2=0.24cm

(1)к= t R2′/ t R0=(6.60﹣1.10)/1.10=5.00 (2)26.323 .085 .560.6)(2)2/1(122)2/1(1)2/1(12=-=-≈+-= W t t W W t t R R R R R (3)n eff =5.54(t R1′/(W 1/2)1)2 =5.54×〔(5.80﹣1.10)×0.50/0.23〕2 =578 (4)R 12/ R 22 = L 1/L 2 L 2 =(R 22/ R 12)L 1 =(1.52/3.262)×1 m =0.21 m 3、在一根3m 长的色谱柱上分析某样品,记录纸速为0.50cm/min ,得如下数据: 保留时间(t R )min ; 半峰宽(W 1/2)mm ; 峰高(h )mm ; 重量校正因子(以面积表示 f i ) 空气 1.0 内标物 6.8 2.0 2.43 1.00 待测组分 8.3 2.5 3.21 1.15 计算:(1)内标物与组分的分离度; (2)柱长为2m 时的分离度及内标物的半峰宽; (3)已知内标物在样品中的含量为2.55%,组分的含量是多少? 解:u = 0.50 cm/min ,L = 3m (1) R=2(t R2﹣t R1)/〔(W 1/2)1+(W 1/2)2〕=2(8.30﹣6.80)×0.50×10 / (2.0+2.5)=3.3 (2) 2 1 2 221L L R R = 69.23.33/2=?=R R 12/ R 22 = L 1/L 2 R 2= √2m/3m×3.3 =1.49 (3)A=1.065×W 1/2×h (2.0×2.43×1.00) / (2.5×3.21×1.15) = 2.55% / x% x% = 4.84%

吸收系数的测定

吸收系数的测定 一、实训目的 1、 了解填料吸收装置的基本流程及设备结构; 2、 掌握吸收系数的测定方法; 3、 了解空塔气速和喷淋密度对总吸收系数的影响; 4、 了解气体空塔流速与压强降的关系。 二、基本原理 根据传质速率方程: m Y A Y K N ?= 即;m Y A Y F K F N G ?== 所以; m Y Y F G K ?= , 通过实验分别测定和计算(单位时间吸收的组分量)、(气液两相接触面积)、(平均传质推动力)的值,便可代入上式计算得吸收系数的值。 1、 单位时间吸收的组分量G (Kmol/h ) )(21Y Y V G -= 上式中:V(惰性气体流量)用空气转子流量计来测定;Y 1(进塔气体组成)可通过测定进塔时氨及空气流量来计算得到;Y 2(出塔气体组成)采用化学法进行尾气分析测定和计算得到。 2、 气液两相接触面积F(m 2) z D a aV F ?? ==24 π 上式中:V —填料的总体积(m 3 ) Z —填料层高度(m) D —吸收塔的内径(m) a —有效比表面积(m 2/m 3) η/t a a = 式中:a t —干填料的比表面积(m 2/m 3) η—填料的表面效率,可根据最小润湿分率查图表(参看教材) 最小润湿分率=规定的最小润湿率操作的润湿率 式中:填料的最小润湿分率=0.08m 3/m 2.h(规定的最少润湿率) 操作的润湿率=W/a t (m 3/m 2.h) 式中:W —喷淋密度,每小时每平方米塔截面上的喷淋的液体量。 (塔截面积)(水的体积流量)水Ω= V W 3、 平均传质推动力 m Y ? 本实验的吸收过程处于平衡线是直线的情况下,所以可用对数平均推动力法计算 m Y ?。

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

绩效工资分配办法(薪酬权重系数)

某三甲医院案例:绩效工资分配办法(薪酬权重系数) 国有医院运行机制改革的主要内容之一是分配制度的改革。随着国家公务员工资体制的改革,事业单位的工资改革已摆到我们面前,而改革的主要内容是绩效工资。如何在医院复杂的人力资源分类状态下设计一套符合市场经济规律,又体现公立医院社会事业属性特点的绩效工资方案十分重要。湖南省郴州市第一人民医院经过近十年的探索,根据医院不同系列、不同岗位设计的绩效工资方案,极大地激发了员工的创造性和积极性,推动了医院的快速发展。现介绍如下: 一、各类人员薪酬权重系数的设计 权重系数是指用于指导制定各类人员所有分配到的薪酬总额之间的比例参考数值。确定各类人员的权重系数供设计各类人员薪酬总额标准时作参考。目前国家对医院各类员工之间的分配差距并无明确规范,也无量化标准,但设计时要体现向高风险、高技术、高强度劳动和贡献大的岗位倾斜,并且与管理要素、技术要素分配相结合。在实际操作过程中,参照以下原则进行:1、根据地方政府文件规定;2、根据地方劳动部门发布的各类人员工资指导意见;3、根据医院的实际情况:员工的承受能力、医院的改革成本、领导的期望目标等。(见表一、二) 二、临床科主任年薪设计 年薪制是一种有效的激励管理者的薪酬形式之一,是一种将目标任务、权力、利益、风险融合在一起的分配模式。由于它有预先设定的目标压力,又有达到目标后的利益,同时承担风险,管理者就能有计划、有措施地为完成目标任务发挥所能,并能有效地运用职权,最大限度地激发管理者的积极性。 医院是以临床和医技科室为核算单位。而临床科室更具有相对独立性和主动性,对临床科室管理者实行年薪制,推动临床科室全面发展,推动临床科室两个效益增加,就可全面带动医技科室和医院其他部门发展。

压实度计算公式

公式:压实度=试样干密度/标准干密度*100% 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示,压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 压实度是填土工程的质量控制指标,计算方法为: 1.先根据现场试验测得的湿密度和试验室测定的含水率求出的现场实际干密度,此为试样干密度,设为A密度。 2.然后由击实试验后所得的试样最大干密度,设为B密度。 3.实际压实度=A/B,用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。

简而言之,压实度=工地试件干密度/最大干密度(100%) 【压实度的概念】: 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 【压实度检测方法】: 1、挖坑灌砂法 挖坑灌砂法是检测压实度最常用的试验方法之一,本方法适用于在现场测定基层(或者底基层)、砂石路面以及路基土的各种材料压实层

吸收系数

序号 化 工 原 理 实 验 报 告 实 验 名 称: 学 院: 专 业: 班 级: 姓 名: 学 号 指 导 教 师: 日 期:

一、实验目的 1、熟悉填料塔的构造及操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 1、填料塔的流体力学特性 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。 图1 填料层压降-空塔气速关系示意图 气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图4-7中AB线,其斜率为1.8~2。当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB线几乎平行,但压降大于同一气速下干填料的压降,如图4-7中CD段。随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图(4-7)中DE段。当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。 2、体积传质系数T的测定 反映填料吸收塔性能的主要参数之一是传质系数。影响传质系数的因素很多,因而对

压实度计算公式

压实度计算公式 压实度是路基路面施工质量检测的关键指标之一,也是路基路面施工质量检查主控项目之一。表征现场压实后的密实状况,压实度越高,密实度越大,材料整体性能越好。而到底压实度是怎么计算的,又有哪些试验方法呢,下面一起来看看吧。 1、压实度计算 压实度又称压实系数。对于路基与路面基层:压实度是指工地实际达到的干密度与室内标准击实试验所得的最大干密度的比值,用百分率来表示; 对于沥青路面:现场实际达到的密度与标准密度的比值,用百分率来表示。 表达式: 压实度=现场密度/(室内最大干密度或标准密度)×100 从表达式中可以看出,要求压实度,就是要分别测出分子与分母值,再计算出比值。因此,测定压实度过程实际上是测定现场密度和室内最大干密度或标准密度的过程。 2、压实度检测方法 国内外大量研究表明,压实不足和压实均匀性不佳是造成沥青路面发生损坏的主要原因之一。统计表明,压实度每增加1%,路面承载能力相应的提高10%-15%,而压实的费用仅占总投资的1%-4%,所以,有效的压实是提高路面质量有效且经济的方法。 压实度作为公路施工与验收中反映施工质量的一项重要性能指标,其检测方法也受到广泛的关注并不断的发展。传统检测压实质量的方法主要包括:灌砂法、水袋法、环刀法、蜡封法、核子仪、无核密度仪、振动检测等。这些方法都不能

用于在线检测,价格昂贵,劳动量大。特别是核子密实度仪易受外界环境的干扰,且放射性物质对人体有伤害。 3、结语 压实度检测系统通过实时检测被压材料的压实状况,协助判断压实与否,避免欠压和过压,及时发现压实过程中存在的问题并采取相应措施加以解决,大大提高了压实质量和效率。随着压实度实时检测系统的不断发展,由它带动的智能化压路机也会持续发展,压实作业将更加高效,工程质量将得到不断提高。

废气产生量计算方法

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80 千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算:

压实度计算公式

1.压实度计算公式定义 压实密度,锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 2.压实密度计算方式 压实密度的计算公式:压实密度=面密度/材料的厚度 在锂离子电池设计过程中,压实密度=面密度/(极片碾压后的厚度—集流体厚度) ,单位:g/cm3 压实密度分为:负极压实密度Anode density(或称为阳极压实密度)和正极压实密度Cathode density(或称为阴极压实密度)。 3. 压实密度制作原理: 锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看

做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 实验得出以下结论:合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。在压实密度过大或过小时,不利于锂离子的嵌入嵌出。 现在常用的正极材料(钴酸锂、锰酸锂、磷酸铁锂、三元材料等)和负极材料(人造石墨、天然石墨、复合石墨等),由于材质不同,压实密度也有较大的差别。

分配系数和化学反应平衡常数的测定

西安交通大学实验报告 课程:物理化学实验 系别:化学系 专业班号: 组别: 实验日期:2016年3月 日 姓名: 学号: 交报告日期:2016年3月 日 同组者: 实验名称:分配系数和化学反应平衡常数的测定 一、 实验目的 (1)测定碘在四氯化碳和水中的分配系数。 (2)测定水溶液中碘与碘离子之间配合反应的标准平衡常数。 二、 实验原理 1. 碘在水和四氯化碳中分配系数的测定 在一定温度下,将一种溶质A 溶解在两种互不相溶的液体溶剂中,当系统达到平衡时此溶质在这两种溶剂中分配服从一定的规律。即如果溶质A 在这两种溶剂中既无解离作用,也无蒂合作用,则在一定温度下平衡时,该平衡可以表示如下: A(溶剂1) B (溶剂2) 根据相平衡规则,此时A 在这两种溶剂中的化学势相等。进一步根据溶质型组分的化学势表达式,,A 在这两种溶剂中的活度之比是一常数,可用K d 表示。若两种溶液都比较稀,则它们相对浓度之比近似等于K d ,称为分配系数; 12 12//c c c c c c K d ==θ θ 如果溶质A 在溶剂1和溶剂2中的分子形态不同,则分配系数的表示式就不同。例如,如果A 发生蒂合作用并主要以A n 形式存在,则该平衡可以表示为: A(溶剂1) nA (溶剂2) 其中n 是缔合度,它表明缔合分子A n 是由单分子组成的。此时分配系数可表示为: θ θc c c c K n d /)/(12= 若将I 2加入CCl 4和H 2O 这两种互不相溶的液体中,则会在这两相中建立如下平衡:

I 2 (H 2 O) I 2(CCl 4) 分别滴定CCl 4层和H 2O 层中I 2的浓度。 2. 在水溶液中碘与碘离子配合反应的标准平衡常数的测定 在水溶液中会发生配合反应并建立碘负离子与碘三负离子平衡,其平衡 常数可表示为: ) /()/() /(23 2 3 2 3 θ θθθγγγc c c c c c a a a K I I I I I I I I I ?? ?= ?= --- --- 若溶液比较稀,则溶液中各组分活度系数都近似为1,那么 θθθ c K c c c c K c I I I ?=??≈ -- 2 3 在一定温度和压力下,把浓度为c 的KI 水溶液与I 2的CCl 4溶液按一定比 例混合后,用滴定方法测得浓度后可得出水层中配合碘的浓度为d=(b+d)-b,进一步可得出水溶液中碘和碘离子配合反应的标准平衡常数为: b d c c d c K K c ?-?= ?=)(θ θ θ 三、 仪器和药品 150ml 分液漏斗3个,250ml 磨口锥形瓶3个,100ml 量筒1个,5ml 微量滴定管1支,20ml 移液管(有刻度)2个,5ml 移液管3支,25ml 移液管3支,CCl 4(分析纯),0.1mol/L 的KI 溶液,0.1mol/L 的Na 2S 2O 3溶液,I 2的CCl 4溶液(饱和),淀粉指示剂。 四、 实验步骤 (1) 先将三个洗净烘干的锥形瓶按实验表加入不同液体。 (2) 将上述装好溶液的锥形瓶塞号塞子,并剧烈摇动30min ,使碘在CCl 4 层和水层充分达到分配平衡。摇动时勿用手握瓶壁,以免温度发生变化,然后倒入分液漏斗静置。 (3) 待两层完全清晰后,用移液管吸取各样品的CCl 4层5ml 放入干净的锥 形瓶中,并用量筒加入KI 溶液10ml ,促使I 2被提取到水层中。摇动锥形瓶,然后用Na 2S 2O 3滴定。待淡至淡黄色时,加入淀粉指示剂继

吸收系数的测定[1]

吸收系数的测定 一、实验目的 1、了解填料吸收塔的构造,流程及其操作; 2、了解吸收剂进口条件(L,x2,t)的变化对操作结果的影响; 3、掌握气相总体积吸收系数(K Y a)的测定方法。 二、实验原理: 1、吸收塔的操作和调节 吸收操作的最终结果是表现在气体出口组成y2或回收率Ф上,因此降低y2(或提高Ф)是操作调节的目标。气体的进口条件(V,y1)是由前一工序决定的,吸收剂的进口条件(L,x2,t)是可控制和调节的。 (1)、吸收剂用量L的改变 这是常用的调节方法,当气体流量V不变,L增加,吸收速率N A增加,溶质吸收量增加,那么Y2减小,吸收率增大。当液相阻力较小(气膜控制)。L增大,吸收总系数变化较小或基本不变,溶质吸收量增加主要是平均推动力增大而引起;当液相阻力较大(液膜控制)L增大,吸收总系数大幅度增大,而平均推动力可能减小,但总的结果是使吸收率增大。 (2)、吸收剂入口温度t 温度降低使气体溶解度增大,相平衡常数m减小。对气膜控制过程,过程阻力1/K y a≈1/k Y a 。但平均推动力增大,吸收效果变好;而对液膜控制过程,过程阻力1/K Y a≈m/k X a将减小,平均推动力或许会减少,但总的结果是吸收效果变好,Y2减小。 (3)、进口浓度x2 x2降低,使塔顶推动力增大,全塔推动力增大,有利于吸收。这里有两种情况应注意(1)当L/V>m。气液两相在塔顶,接近平衡时,L增大,即L/V增大并不能使Y2明显降低,这时降低x2是有效的。(2)当L/V

压实度计算方法

压实度计算方法(灌砂法) 1、称取一定量的标准砂重m千克 2、称取土的重量m1千克 3、称取剩余砂的重量m2千克 4、试坑内实际消耗砂重M=m- m2- m3 (m3圆锥体砂重) 5、试坑体积V=M/P砂(P砂为标准砂的密度),则V即为土的体积 6、试样土的密度为P土湿= m1/V ( g/cm3) 7、求出试样土含水量W水(称取30~40克湿试样土,烧干后再称取重量,土中水的重量与干后土的重量比用百分数表示) 8、求试样干密度P干=P土湿/1+W水(1+W水通常用湿试样土重与干后土重之比求得) 9、压实度是干密度与最大干密度(试验求得)之比用百分数表示K=P干*100%/P大 10、例:灌砂筒与原有砂重为4000克,圆锥体内砂重为270克,灌沙筒与剩余砂重m2=2720克,量砂密度为1.42g/cm3,试坑内湿试样重1460克,求压实度。(称取30克试样,用酒精烧两遍后称重量为25.9克,P大为1.89g/ cm3) 解:M=4000-2720-270=1010克V=M/ P砂=1010/1.42=711.3 cm3 P土湿= m1/V=1460/711.3=2.05 g/ cm3 W水=(30-25.9)*100%/25.9=15.8% 1+ W水=30/25.9=1.158 P干=P土湿/1+W水=2.05/1.158=1.77 g/ cm3 压实度K= P干*100%/P大=1.77*100%/1.89=93.7% 压实度计算方法(环刀法) 一、环刀法适用于细粒土,所需仪器、设备为: 1、环刀:内径6~8cm 高2~3cm 2、天平:称量500g 感量0.1g ; 称量200g 感量0.01g 3、其它:切土刀、钢丝锯、凡士林、小铁锤 二、操作步骤: 1、测出环刀的容积V,在天平上称出环刀质量。 2、按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。 3、将环刀的刀口向下放在土样上面,然后用手或小铁锤将环刀垂直下压,边压边削使之土样上端伸满环刀为止,削去两端余土修平,两端盖上平滑的园玻璃片,以免水分蒸发。 4、擦净环刀外壁,拿去玻璃片,称取环刀加土的质量,准确至0.1g 三、注意事项: 1、密度试验应进行2次平行测定,两次测定的差值不得大于0.03g/cm3,取两次试验结果的算术平均值。 2、密度计算准确至0.01 g/cm3。 四、计算公式: 1、湿密度ρ0: ρ0=g/v=g1-g0/V (计算至0.01 g/cm3) 式中:ρ0---湿密度(g/cm3) g---土的质量(g) V ---环刀的体积(cm3) g1---环刀加土的质量(g) g0---环刀质量(g) 2、干密度ρ干ρ干= g0/1+ W水 式中:ρ干---干密度g0---湿密度W水---土的含水率(%) 计算与灌砂法相同

吸收系数测量方法

GB/T 28504.4—20XX 7附录A (规范性附录) 吸收系数测量方法 A.1范围 本方法适用于掺铒光纤吸收系数的测量。 A.2测量设备 A.2.1通则 吸收系数测试系统示意图见图A.1,应根据被测光纤的工作波段选择相应的测量仪器。测量仪器须经校准或检定合格,并在有效期内。宽带光源光谱分析仪 被测光纤 包层模剥除器图A.1 吸收系数测量系统示意图 A.2.2宽带光源根据测量波长选择合适的宽带光源,在测量范围内宽带光源的输出功率平坦度应小于5dB ,光源光功率应保证光纤不产生较强的ASE (放大自发辐射)光。 A.2.3光谱分析仪 接收经过光纤的光信号,分析并给出光谱特性。 A.3试样制备 A.3.1端面处理 剥去光纤两端的涂覆层,清洗干净,用专用光纤切割刀处理端面。 A.3.2光纤放置 将光纤均匀地绕在直径不小于165mm 的线轴上,缠绕时应避免出现扭曲。 A.4测试条件 在测量期间,环境条件应是标准试验大气条件: a)温度为15~35℃; b)相对湿度为25%~75%;

GB/T28504.4—20XX 8c)气压为86~106kPa。 A.5测试步骤 测试步骤如下: a)接通测量系统相关仪器的电源,按规定进行预热; b)把制备好端面的被测光纤接入测量光路,输入端对准光源,输出端接入光谱分析仪中,光纤的 长度为l1,单位为m; c)调整光路使得注入光信号达到最大值,固定被测光纤的输入端; d)用光谱分析仪测量经过被测光纤吸收后的输出光谱曲线F1,把该曲线保存在光谱分析仪中; e)在距离光纤输入端l0(一般为1m)处截断光纤并制备端面,再用光谱分析仪测量经过短段被 测光纤的输出光谱曲线F2; f)在光谱分析仪的dBm坐标系中得到曲线F3(F3=F2-F1),读出曲线上相应波长的光功率差T, 单位为dB。 A.6结果计算 吸收系数按公式(A.1)计算。 α ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉(A.1) 式中: α——吸收系数,单位为分贝每米(dB/m); T——光功率差,单位为分贝(dB); l1——光纤长度,单位为米(m); l0——光纤截断处距离输入端的长度,单位为米(m)。

在线监测折算值和过量空气系数

关于CEMS 中折算值和过量空气系数的说明 1、什么是折算值 按照GB13271 《锅炉大气污染物排放标准》的规定,实测的锅炉烟尘、二氧化硫、氮氧化物的排放浓度,必须执行国标GB/T16157规定,按下式进行折算: s C C αα?=' 式中: C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,mg/m 3; C ’ —标准状态下干烟气中颗粒物或气态污染物浓度,mg/m 3; α—在测点实测的过量空气系数; αs —有关排放标准中规定的过量空气系数。 实测过量空气系数按下式计算: 2 2121 O X -=α 式中:2O X —烟气中氧的体积百分数。 比如对于某锅炉,CEMS 仪表测得的SO2浓度为500mg/m3(C ’=500),O2浓度为8%(2 O X =8),则实测的过量空气系数α=21/(21-8)=1.6, 如果排放标准中规定了该锅炉的理论过量空气系数αs =1.4,则SO2折算后的排放浓度(折算值)为:500*1.6/1.4=571.4 mg/m3。

2、为什么要采用折算值 同样的锅炉,如果人为控制的进风量不同或烟道存在漏风口,则测得的污染物排放浓度将不同,同时氧气含量也是不同的。为避免因进风不同造成的测量值差异,对同种锅炉执行统一的标准,做到客观、公平地评判排污状况,排放浓度使用了折算值,通过过量空气系数对测量浓度进行修正。 比如上面举的例子,虽然仪表测得的SO2浓度为500mg/m3,但该锅炉的氧气超标了,存在漏风或空气过量的问题,浓度不能真实反映锅炉的状况,采用折算后,修正为571.4 mg/m3,漏风或空气过量的影响被消除了。 3、排放标准中规定的过量空气系数 所谓过量空气系数,即燃料燃烧时,实际空气供给量与理论空气需求量的比值。锅炉排放标准中规定的过量空气系数与锅炉类型和功率相关,具体规定为: 对于燃煤锅炉,功率小于等于45.5MW的,过量空气系数采用1.8,功率大于45.5MW的,过量空气系数采用1.4,对于燃气或燃油锅炉,过量空气系数采用1.2。 在实际描述中,有些锅炉的功率以t/h计,它与MW的换算关系为:0.7MW=1t/h,比如45.5MW的锅炉相当于65t/h的锅炉。 锅炉的过量空气系数越高,表明该锅炉的燃烧效率越低,因此燃煤锅炉的系数比燃油燃气锅炉要高,而小的燃煤锅炉的系数

灰土及回填土压实系数计算公式

灰土及回填土压实系数计算公式 环刀取样中,环刀法主要用来测定灰土的压实度或者说压实系数, 1、实际含水率计算公式:称湿土,记录数据,然后把土样烘干,记录数据。 湿土质量-干土质量的=水质量,水质量/干土质量*100%=含水率。 实际湿密度计算公式:环刀与土总质量-环刀质量=环刀内湿土质量,湿土质量/环刀体积=湿土密度。环刀体积计算方法:要用尺子测量环刀内径及内高,底面圆的面积*环刀高=环刀内体积。 实际干密度计算公式:干密度=湿密度/(1+含水率)。 压实度计算公式:压实度=实际干密度/该土样最大干密度*100% ,该土样最大干密度是试验室通过对该土样进行击实试验得出的。要想求压实度,首先要做该土样的击实试验。否则,想知道压实情况如何,就只能规定一个最小干密度,小于该最小干密度,为压实不合格。本工程规定:灰土压实系数≥0.96。 最少要压到0.9,一般建筑设计上取0.93。压实系数的意思就是相对理论压实的比例,1就是完全压实(当然这是不可能的)。 垫层压实系数A。为土的控制干密度与最大干密度的比值。可由公式表示:由试验室击实试验确定) 根据的定义:值越大,则土的控制干密度越接近最大干密度表明垫层的压实质量越好;反之,表明垫层的压实质量越差。因此,A的大小,表明了垫层的压实质量。所以A的大小成为灰土垫层的质量检验的一种手段,一般情况下,在地基主要受力层范围以内要求A≥0.97,在地基主要受力层范围以下要求A≥0.95,并且垫层的施工应保证每层A,符合设计要求后方可铺设上层土。 灰土氆层压实系数压实质量 A>1.0 1 灰土垫层A>1.0的实际存在 对于灰土垫层:从理论上讲A一定小于或等于1.0,因为土的控制干密度p。一定小于或等于最大干密度但是,实际上在灰土垫层质量检验的过程中,却存在着部分A>1.0的情况。随机抽取西安地区5项工程灰土垫层的质量检验结果,其A值的分布情况统计于表1。 表1的数据显示:无论灰土垫层A,值满足或不满足设计要求的情况下,部分A值均有可能大于1.0。而且即使有一部分A>1.0,A值仍然小于设计要求,灰土垫层的压实质量仍然较差。 因此,在灰土垫层质量检验中若出现A>1.0,并不意味灰土的压实质量就好。那么,在灰土垫层的质量检验过程中,怎样分析导致A>1.0的具体原因,正确评价灰土垫层压实质量的好坏呢我们应当明确影响灰土垫层A值主要因素,分析导致A>1.0具体原因,“对症下药”综合判断灰土垫层的压实质量。 2 影响灰土垫层值大小的几个因素 为土的控制干密度与最大干密度的比值。归纳起来,影响灰土垫层值大小的因素有下面几个。 (1) 同时影响大小的因素:灰土垫层的材料及配合比,同时影响着土的控制干密度大小。灰土垫层使用的材料(灰、土)不同。的大小就不相同。使用的材料重度越大,就越大,反之越小。其中土的影响程度较大,灰的影响程度较小。灰土的配合比不同的大小也不相同。灰土的配合比越小,由于土比灰重,就越大,反之越小。例如其他条件相同时,1:9灰土的肯定大于3:7灰土的。 (2)影响大小的因素:灰土垫层分层铺设、碾压,压实厚度一般介于15~20cm之间,垫层每一层随着深度的增加,压实的能量越小,压实质量相对越差。因此测定的环刀取样点离垫层每一层顶面越近,A的值就越大,反之越小。 (3)影响大小的因素:A是由试验室击实试验确定的,不同的击实能量,试验得出不同,击实能量越大,相应的越大。因此,在击实试验上按击实能量,规定了轻型击实试验和重型击实试验两种,并规定了相应的试验方法,其得出的也不相同。 (4)其他一些影响因素:A值还受着其他因素的影响。例如灰土垫层铺设完成的时间对的影响,击实试验的击实速率、试验误差对|p。的影响,人为因素对和的影响等,相对而言,这些影响较小。 3 导致灰土垫层A>1.0的原因

8弯矩分配法分配系数计算过程及结果8

弯矩分配法分配系数计算过程及结果: 6第层各节点的弯矩分配系数 I 节点 0.000 μ=上 4415.780.43644415.78420.42 i i i μ?= = =+?+?下下下 4420.420.56444420.42415.78 i i i μ?= = =+?+?IO 下 O 节点 0.000 μ=上 4415.78 0.313442415.78420.42228.58 i i i i μ?= = =++?+?+?下 下下 4420.42 0.404442415.78420.42228.58 i i i i μ?= ==++?+?+?左 左下 4428.58 0.283442415.78420.42228.58 i i i i μ?= ==++?+?+?右 右下 U 节点 0.000 μ=上 4415.780.35644415.78428.58 i i i μ?= = =+?+?下下下 4428.580.64444428.58415.78 i i i μ?= = =+?+?OU 下 第5、4层各节点的弯矩分配系数 H 、G 节点 4415.78 0.304 444415.784 15.78420.42 i i i i μ?= = =++?+?+? 上 上下上 4415.78 0.304444415.78415.78420.42 i i i i μ?== =++?+?+?下 下下上 4420.42 0.392444415.78415.78420.42 H N G M i i i i μ?= = =++?+?+?、下上 N 、M 节点

0.2384442415.78415.78420.42228.58 i i i i μ= = =+++?+?+?+?上 上下上 4415.78 0.2384442415.78415.78420.42228.58 i i i i i μ?= ==+++?+?+?+?下 下下上 4420.42 0.3084442415.78415.78420.42228.58 i i i i i μ?= = =+++?+?+?+?NH 、MG 下上 4228.58 0.216 4442415.784 15.78420.42 228.58 i i i i i μ?= = =+++?+?+? +?NT 、MS 下 上 T 、S 节点 4415.78 0.262 444415.784 15.78428.58 i i i i μ?= = =++?+?+? 上 上下上 4415.78 0.262444415.78415.78428.58 i i i i μ?= = =++?+?+?下 下下上 4428.58 0.47644415.78415.78428.58 i i i μ?= = =+?+?+?TN 、SM 下 第3层各节点的弯矩分配系数 F 节点 4415.78 0.266 444415.784 23.11420.42 i i i i μ?= = =++?+?+? 上 上下 上 4423.11 0.390444415.78423.11420.42 i i i i μ?= ==++?+?+?下 下下上 4420.42 0.344444423.11415.78420.42 i i i i μ?= = =++?+?+?FL 下上 L 节点 4415.78 0.2154442415.78423.11420.42228.58 i i i i i μ?= = =+++?+?+?+?上 上下上 4423.11 0.3144442415.78423.11420.42228.58 i i i i i μ?= ==+++?+?+?+?下 下下上 4420.42 0.2774442415.78423.11420.42228.58 i i i i i μ?= = =+++?+?+?+?LF 下上

吸收系数计算

关于吸收系数的计算 吸收系数在光学和分析化学或者仪器分析中有着两种不同的表达方式。光学中的吸收系数概念是从光传播的物理推导得出的原始结论,具有线性条件下的普遍意义;分析化学中的关于紫外吸收光谱吸收定律的数学表达式是由光学中的原始公式推导出来的衍生公式。对于纯粹学化学的研究者而言,只学习了衍生的吸收公式,容易走入对不同材料吸收系数的计算的误区,从而得到错误的计算数据。根据自己在计算吸收系数时的经验,对于吸收系数的计算做如下总结,对自己和其他的初学者提供一些学习的参考资料。 一、光学中关于吸收系数的表述: 光在介质中传播时,光的强度随传播距离(穿透深度)而衰减的现象称为光的吸收。 光的吸收遵循吸收定律,关于吸收定律有两种形式的表述方式: (1) 布朗-朗伯定律 光经过一定介质后的出射光强为:0L I I e α-= I 0表示入射光强,L 表示光束垂直通过介质层的厚度,a 为一正常数,称为介质对该单色光的吸收系数。 介质的吸收系数a 的量纲是长度的倒数,单位是cm -1. 吸收系数a 的倒数(1/a)的物理意义是因介质的吸收使得光强衰减到原来1/e≈%时,光所通过的介质厚度。 将布朗-朗伯定律两边积分得到:0 I L Ln I α-= 用1cm 的比色皿,则L=1cm ,得到吸收系数为:0I Ln I α=- (2) 比尔定律 对于气体或溶解于不吸收的溶剂中的物质,吸收系数a 正比于单位体积中的吸收分子数,即正比于吸收物质的浓度c ,a=kc 。 因而吸收定律可以写成如下形式:kcl e I I -=0,式中k 是于浓度无关的常数。 选自:光学(修订版)(蔡履中 王成彦 周玉芳编著;山东大学出版社;2002年08月第2版) 二、分析化学中关于吸收系数的表述: 劳伯—比尔定律(Lambert-Beerlaw)是讨论吸收光能与溶液浓度和溶质层厚度之间关系的基本定律,是分光分析的理论基础。 劳伯—比尔定律适用于可见光、紫外光、红外光和均匀非散射的液体 (一) Lambert 氏定律 一束单色光通过透明溶液介质时,光能被吸收一部分,被吸

相关文档
最新文档