弱磁场测量方法解读

弱磁场测量方法解读
弱磁场测量方法解读

弱磁场测量方法的研究

杨阳胡超陈冬梅戴厚德阳万安

中科院深圳先进技术研究院

摘要磁场测量技术是研究磁现象的重要手段,在国防、工业、医疗、交通等领域有广泛的应用。随着电子信息技术的进展,磁场测量有向弱磁方向发展的趋势。本文根据当前磁场测量的现状以及发展趋势,介绍常见的弱磁场测量基本原理和方法;并针对我们开发的基于3轴AMR 磁传感器HMC1043和单片机的手持式智能三轴磁场测量与定位仪,用实例介绍有关弱磁场测量的技术手段。关键词弱磁场,测量,3轴磁场传感器

1 前言

磁场测量技术是研究磁现象有关物理现象的重要手段,已经逐渐形成为一门独立的科学。在科学研究、国防建设、工业生产、医疗仪器、日常生活等领域,磁场测量常常起着越来越重要的作用。磁场测量是一门历史悠久并且不断发展的技术科学[1],是电磁测量技术的一个重要分支。远在公元一千年前,我们的祖先就知道了指南针有极性,并将其制成罗盘用于旅行和航海,这可称为世界上第一个磁场测量的仪器[2]。目前,由于磁测量技术的广泛应用,大大丰富了磁测量的内容,该技术几乎涉及所有的电测量方法。利用了各种电磁现象,发展了许许多多的技术应用;并且随着电子技术、计算机技术、自动化技术、冶金工艺、机械制造与工艺技术的发展,磁场测量已经走向小型化、电子化、数字化、和自动化,性能大为改善,磁场测量已向宽量程和高精度发展,特别是弱磁场的测量。弱磁场测量为磁技术的应用开辟了新的领域,如人体体内磁目标的跟踪定位。

针对这一趋势,我们设计了手持式智能三轴磁场计以对弱磁场进行测量。设计中采用低功耗、高灵

敏度、和高线性度的霍尼韦尔HMC1043三轴AMR(各

向异性磁阻)磁场传感器,并通过单片机和其它放大控制电路,准确的测量出目标空间3维磁场的强度,判断出磁场的极性,该磁场计还特别适合弱磁场的测量。

本文以下内容将介绍磁场特点及测量原理、基本测量方法、手持式智能三轴磁场检测仪的设计,最后给予总结。

2 磁场与测量原理

磁场测量技术所涉及的范围很广,从被测磁场

强度范围看,它可以从10-15T (特斯拉)至103T 以上;从其频率看,它包括直流、工频、高频、及各种脉冲;从测量技术所应用的各种原理来看,它涉及到电磁效应、光磁效应、压磁效应、热效应等各种效应;从测量中所采用的技术来看,它包括指针仪表、数字仪表直至电子计算机的系统测量。磁场测量包括磁参数和磁性材料磁特性的测量。磁参数的测量指的是磁场强度和磁通的测量。磁性测量一般是指的材料试样的测试,用以反映磁性材料的磁性参数。目前在国内厂家对于磁性测量的装置相对较多,但对于磁参数测量的装置生产的相对较少。因此,研究和发展高精度、灵敏度强、稳定性好、使用简单,成本低廉的磁场测量装置有着深远的意义。

对宏观磁场和磁性材料进行磁学量测量的仪器。通常按测量对象不同分为两大类。

第一类仪器用于测量磁场强度、磁通密度、磁通量、磁矩等表征磁场特征的物理量。典型仪器有磁通计、磁强计、磁位计等。这类仪器的工作原理可分三种:第一种是利用磁的力效应,用于测量地磁场强度和检验磁性材料;第二种根据法拉第的电磁感应定律,由感应电动势求出磁通的变化,再导出各种待求的磁场量;第三种利用磁致物理效应(如霍尔效应等)来测量磁通密度,对静止的或变动的磁场量均适用。

第二类仪器用于测量磁导率、磁化强度、磁化

曲线、磁滞回线、交流损耗等磁性材料的特性,例如磁导计、爱波斯坦仪等。这类仪器所依据的原理与第一类相似,但所能达到的准确度受到材料样品的几何尺寸及磁特性的一致性等因素的影响。不同磁场测量仪器具有不同的磁场测量范围,其电路设计也各有不同。对于弱磁场测量,具有代表性的仪器有:无定向磁强计、感应线圈磁强计、质子旋进磁强计、光泵磁强计、超导量子磁强计、磁通门磁强计、霍尔磁强计等。

弱磁场测量技术与其应用之间存在着相互依赖、又相互促进的关系,在不同的应用场合,根据特点和要求,需要不同的测试技术[3]。如在空间磁场测量领域,大量应用磁通门法、感应线圈法进行地质勘探、大地测量、地震预报、测试地磁场;在铁磁探测领域主要采用磁通门和光泵法测量地下管道及电缆接头,测试屏蔽效果等;在磁性测试中应用磁通门法和感应线圈法,测量钢管的磁导率,岩样的磁矩,以及磁性材料的矫顽力;在生物测磁领域,主要采用磁通门法和超导量子磁强技术,这一点正受到医学界的重视;在国防军事和宇航事业中,主要采用磁通门法[4]、超导量子技术和光泵法进行探空、探潜、引爆、控制飞行器的姿态,测试空间及星际磁场;此外还应用多通道磁通门磁强计进行舰船的消磁效果的测试,无损探伤、位移、转速的测试,车型、车速的检测以及交通控制等。

3 磁场测量的方法

磁场测量方法是在电磁理论、电子技术和物理学的基础上建立起来的[5][6]。通常磁场测量以磁场强度的测量为主,测量方法较多,所采用的方法随样式的不同而异。中等强度场磁导计的磁场强度有的可以根据磁化绕组的电流计算得到,也可以通过探测线圈用感应法测量;强场磁导计和电磁铁的磁场强度可以用霍尔效应特斯拉计测量,也可以用感应法测量。磁测量的方法可以概括为以下几种: 1)磁—力法

磁—力法是利用在被测磁场中的磁化物体或者载流线圈与被测磁场之间相互作用的机械力来测量磁场的方法[7]。它可以测量较弱的磁场,仪器的分辨率可以达

到10-9T 以上。它主要用于地震预报、地磁变化和磁暴观测等方面,也可以用于检测岩样的磁性。

2)电磁感应法

电磁感应法是一种基于法拉第电磁感应定律的经典而又简单的的磁场测量方法[8]。感应电压与磁场强度成正比,能够直接测量与探测线圈交链的刺痛变化,从而能够测得线圈体积内平均的磁场强度值。它是一种应用十分广泛的方法,其测量范围是10-3~103T 。应用电磁感应法测量恒定磁场时,可以通过探测线圈的移动、转动或者震动来产生磁通变化。 3)磁通门法

磁通门法是利用高导磁铁心在饱和交变励磁下选通调制铁心中的直流磁场分量,并将直流磁场转变为交流电压输出而进行测量的一种方法。磁通门现象是一种普遍存在的电磁感应现象[9][10]。近年来,随着低矫顽力、低损耗、低磁致伸缩、高导磁率、高饱和磁效应和高矩形比软磁材料的研究和出现,磁通门技术被迅速应用到各个新的领域,特别是计算机技术的应用,磁通门技术实现了智能化,达到了新的水平。磁通门对弱磁场(如大地磁场)测量十分有效,应用领域涉及到磁场检测、电磁参数检测、工程检测、载体方位姿态测量与控制等。基于磁通门测试技术的测磁装置的显著特点是灵敏度高、简单、可靠、经济,而且探头可以做得很小,但它主要适用于测量弱磁场。 4)电磁效应法

电磁效应法[11]是利用金属或半导体中通以电流,并在外磁场的同时作用下产生的电磁效应来测量磁场的一种方法。其中,霍尔效应法应用最广,它可以测量10-7~10T 范围内的恒定磁场。 5)磁阻效应法

利用半导体材料(InSb ,或 InAs)的电阻大小随磁场变化的特性。相应的产品有普通磁阻、各向异性磁阻AMR 、以及巨磁磁阻GMR 。通过电桥电路,磁阻的变化即可转换为电压或电流输出。磁阻元件和霍尔元件相似,成本价格低,便于大量使用。但通常,AMR 和GMR 有比霍尔元件更高的灵敏度,更适宜于弱磁场的检测。 6)磁共振法

自从1946年伯塞尔(E.M.Purcel )和布洛奇(F.Bloch等人分别提出了核磁共振的吸收法和感应法并用于磁场的精密测量以来,磁共振的测量技

术得到了非常广泛的发展[12]。磁共振法是利用物质量子状态变化而精密测量磁场的一种方法,其测量对象一般是均匀的恒定磁场,是目前在磁场绝对测量方法中精度最高的。用核磁共振测量磁场的主要缺点是在整个测量范围内要更换好几种不同共振频率的探头,因而不便于进行连续测量,且其测量精度还与磁场的均匀度有关。 7)超导效应法

超导效应法是利用弱耦合超导体中约瑟夫森效应的原理测量磁场的一种方法,它可以测量0.1T 以下的恒定磁场或交变磁场[13]。超导效应法有极高的灵敏度,用它可以制成梯度计,在地质勘探、大地测量、计量技术和生物磁学等方面有重要的作用。

8)磁光效应法

法拉第磁光效应法是以激光为光源进行测量强脉冲磁场的一种方法[14],它可以用来测量恒定磁场、交变磁场和冲磁场。磁光效应法主要应用于低温下的超导强磁场的测量。

随着电子技术的发展,光电磁通计、电子磁通计和数字磁通计等自动化测量设备得到了广泛应用,这使得对磁特性测量有了长足的进步。尤其是相关测试仪器技术改进,如虚拟仪器的应用,使得磁测量的手段得到很大提高[15]。

4 手持式智能三轴磁场检测仪

目前,市场上的磁场检测仪尺寸都比较大,价格昂贵,为此我们设计手持式智能三轴磁场检测仪,设计内容如下。

4.1 传感器的选择

低强度磁场传感器通常检测1 G 以下的磁场。由于目标磁场比地磁场(0.5-0.6G小得多,并且地磁场的微弱变化均比低强度磁场传感器测量范围大,因此在低强度磁场传感器的设计中必须充分考虑并抵消这种影响。

传感器是磁场计的关键部分,其性能直接决定仪器的基本测试精度、线性度和测量范围。本设计

采用Honeywell HMC1043型三轴磁阻传感器(见图1)。该传感器是一种小型3-轴表面安装的传感器器件,尺寸小(3mm ×3mm ),灵敏度高

(1mv/v/guass)、可靠性好,可用来测量地球磁场的方向和从-6gauss(高斯)到6 gauss(高斯)

的磁场强度[16]

。适用于低弱磁场的传感。而且成本效益好,节省安装空间,适宜于定向、导航系统、磁强测量、和电流传感等应用。

HMC1043 型三轴磁阻传感器的基本单元为磁敏电阻,四个磁敏电阻组成一个惠斯通电桥。磁敏电阻阻值的大小随着外加磁场和电阻内部电流的变化而变化。磁敏电阻阻值的变化将引起电桥输出电压的变化。因此经过传感器,将磁信号转换成容易测量的电压信号输出。每个HMC1043 型磁阻传感器内部由3组正交垂直的磁敏电阻组成电桥,可以测量空间一点的三个正交方向的磁场分量。采用电桥可以补偿温度对于磁敏电阻的影响。除了电桥电路外,传感器还有两个芯片内的磁耦合的(接线)条,偏置条和设置/重置条,用于磁场偏置(零点)调整和磁畴重新校准。磁场偏置调整可以调整电路输出以消除传感器的失调、地磁影响或环境磁场的影响;传感器工作时受到强磁影响会传感器工作态发生变化,磁畴重新校准可以使传感器恢复到理想的工作状态,保持与定标状态一致的灵敏度。HMC1043内部电路及设计的PCB 如图2所示。

图1 霍尼韦尔HMC1043型传感器

4.2 系统设计

本系统主要由三轴磁阻传感器、信号调理放大

电路、AD 转换电路、微控制器和显示电路组成。系统总体框图如图3所示。

三轴磁阻传感器把X 、Y 、Z 传感轴方向的入射磁场强度转化为三个差动电压输出,完成了从较难测量的磁场强度到容易测量的模拟电压信号的转换。

信号调理放大电路的作用是对于传感器输出的较为弱的电压信号进行放大,从而便于测量。模数转换电路将放大后的模拟电压信号转换为数字信号输出。单片机AT89S52作为MCU 控制单元,用于接收ADC 的结果进行数据处理,以及提供外部时钟,作为通道选择和ADC 模式的控制端,并实现各种处理和运算。LCD 用于显示处理后的磁

场强度数据和符号。通讯模块用于连接其它计算机或检测接口的通讯。

根据上述的思路,我们设计相关电路和PCB 板,组成实际的仪器,如图4所示:

图4三轴磁场计总体设计

经过实际的测量,表明本磁场计可以达到测量精度为1mGauss,而且传感器的复位设计,能保证磁场计长时间工作的灵敏度和精度。 4.3 低强度磁场的测量

霍尼韦尔的HMC1043传感器灵敏度很高,而且可使用芯片内部的电流代替外部线圈来产生置位/复位强磁场,使传感器可以恢复到理想的状态。所以,可以准确地测量微小的磁场变化,特别适宜于低磁场强度的测量,可以精确测量空间中某一位置的三轴低强度磁场。该传感器体积小,且有5M带宽,频率特性较好,既可以测量恒定的磁场,又可以测

量低强度交变磁场[17]

5. 小结

本文讨论了弱磁场测量技术有关研究及进展,并对国内外磁场检测的方法与应用技术进行了介绍。并着重介绍了一种我们设计的手持式三轴磁场计,及其内部采用的传感器电路设计方法。对弱磁场检测的研究表明,磁场测量的应用领域极其广泛。为适应日益发展的需要,我们要重视对磁场测量技术中的一些理论问题和新的方法进行研究,推出高性能的磁场测试仪器。

图3 系统总体结构框图

图2传感器内部电路和PCB 图

参考文献

[1] 毛振珑编.磁场测量.原子能出版社,1985 [2] 王德芳,叶妙元.磁测量.北京:机械工业出版社,1990 [3] 李大明.弱磁场测量技术进展.物理,1975.(5) [4] F.Pridahl.the Fluxgate

Magnetometer.J.Phys.E:Sci,Instrum.Vol.12.No.4 [5]

B.E.Kane,A.S.Dzurak,G.R.Facer,et al.Measurement Instrumentation for Electrical Transport Experiments in Extreme Paulsed Magnetic Fields Generated by Flux Compression.Review of Scientific Instruments,1997,68(14:3843~3860

[6] 哈工大仪表所.磁场测量技术的最新发展和展望,1976. (5)

[7] 李大明.磁场的测量.北京:机械工业出版社,1993.31-3

[8] 李大明.磁场测量讲座.电测与仪表,1989.(10)/(11/(121990.(1/(2/(3/(4/(5

[9] W.Bornhofft and G.Trenkler,Magnetic field sensors:Fluxgate sensors.In Sensors,Vol.5 1990 pp153~203 [10] 吴嘉惠,师文康.磁通门技术在检测中的应用.仪表技术与传感器,2000.(12)

[11] 李大明.弱磁场测量仪器的进展和应用.电测与仪表,1985.(1) [12] 冯蕴深.磁共振原理.北京:高等教育出版社,1992 [13] 秦葆瑚.高精度磁测方法指南.中南工业大学出版社,1988

[14] 石磊,邱爱慈,王永昌等.法拉第磁光效应法测量强脉冲磁场.应用激光,2000,20(1):7~9

[15] 将秉植.磁场测量的方法与动向.电测与仪表,1993.(9)

[16] 霍尼威尔公司,三轴磁传感器HMC1043用户资料https://www.360docs.net/doc/6516475157.html,/prodinfo//sensor-magnetic/datasheet/06-SJ011C-hmc1043.doc

[17] 金惕若.空间磁场的测量[J].测控技术,2000,19(11:32-35

圆线圈与亥姆霍兹线圈轴线上磁场的测量

圆线圈与亥姆霍兹线圈轴线上磁场的测量 加灰色底纹部分是预习报告必写部分 圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。 【实验目的】 1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理; 2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理; 【实验仪器】 1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件): 2.仪器技术参数: ① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =; ② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±; ③ 数显式特斯拉计:μT 1 ,μT 1999~0 2 ,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程; ④ 测试平台:mm 160300?; ⑤ 交流市电输入: Hz 50 %,10V 220AC ±。 【实验原理】 1. 磁阻效应与磁阻传感器: 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

磁场测量的原理和元件

磁场测量的原理和元件 磁场是无形的,在实际检测中,通常是将磁场转换成电信号然后实现自动化处理,从而实现无形磁场的可视化。磁电转换原理和元件有以下几种: 1.感应线圈 感应线圈的原理:通过线圈切割磁力线产生感应电压,而感应电压的大小与线圈匝数、穿过线圈的磁通变化率或者线圈切割磁力线的速度成线性关系。感应线圈测量的是磁场的相对变化量,并对空间域上的高频率磁场信号更敏感。 2.磁通门 磁通门传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量的弱磁场的一种传感器,其原理是建立在法拉第电磁感应定律和某些材料的磁化强度M与磁场强度H的非线性关系上。使用磁通门传感器的仪器有磁通门高斯计,如磁通门高斯计GF600,能精确测量微弱的磁场,仪表无须调零,是测量弱磁场最好的选择,但磁通门传感器不能长期暴露在高磁场环境下,使用环境应低于100G(10mT)。 3.霍尔传感器 霍尔传感器是根据霍尔效应制作的一种磁场传感器,测量绝对磁场大小。 霍尔效应从本质上讲是运动的带点粒子在磁场中收到洛伦兹力作用引起的偏转,从而形成霍尔电势V=K H①·I·B。以霍尔传感器开发出来的仪器有霍尔效应高斯计,常用的有手持式高斯计G100,具有精度高、温度补偿功能强、零点漂移小和磁场测量反应速度快等优点。 4.磁敏电阻 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。 常用的元件有磁敏电阻、磁敏二极管、磁敏三极管等。 5.磁共振法 原子核磁性的直接和精密的测量是利用核磁共振的方法。核磁共振是原子核磁矩系统在相互垂直的恒定磁场B和角频率ω的交变磁场的同时作用下,满足ω=γ②B时,原子核系统对交变磁场产生强烈吸收(共振吸收)现象。 除了上述介绍的几种方法外,还有磁光克尔效应法、磁膜测磁法、磁致收缩法、磁量子隧道效应法、超导效应法等。 ①元件的灵敏度,它表示在单位磁场和单位控制电流下霍尔电势的大小 ②为原子核的磁旋比,即原子核的磁矩与角动量之比。

量子弱磁场共振分析仪使用手册

量子弱磁场共振分析仪使用手册 一、前言 1.原理说明 人体是大量细胞的集合体,细胞在不断的生长、发育、分化、再生、死亡,细胞通过自身分裂,不断自我更新。成人每秒大约有2500万个细胞在进行分裂,人体内的血细胞以每分钟大约1亿个的速率在不断更新,在细胞的分裂、生长等过程中,构成细胞最基本单元的原子的原子核和核外电子这些带电体也在一刻不停地高速运动和变化之中,也就不断地向外发射电磁波。人体所发生的电磁波信号代表了人体的特定状态,人体健康、亚健康、疾病等不同状态下,所发射的电磁波信号也是不同的,如果能测定出这些特定的电磁波信号,就可以测定人体的生命状态。 量子医学认为人生病最根本原因是原子核外电子的自旋和轨道发生变化,继而引起构成物质的原子变化,再引起生物小分子的变化,再引起生物大分子的变化,接着引起整个细胞的变化,最后引起器官的变化。因为电子是一个带电体,当原子核外电子的自旋和轨道发生变化时,原子对外发出的电磁波就会发出变化,人体疾病和身体营养状况变化所发生的电磁波变化,其能量是极其微弱的,通常只有毫微高斯至微高斯,通过手握传感器来测定微弱磁场的频率和能量,经仪器放大、计算机处理后与仪器内部设置的疾病、营养指标的标准量子共振谱比较,输出相应的量价值,其量价值的大小标志着疾病性质、成份和营养水平等。这就有点类似于收音机收听电台的原理,空中有很多无线电波,如果要收听某个指定的电台,那就要把收音机调至该频率,这时就发生共振,就能收听到该电台,量子共振就是利用该原理进行检测。 2.什么是量子弱磁场共振分析仪 [量子弱磁场共振分析仪]是涉及医学、生物信息学、电子工程学等多学科高科技创新项目。它以量子医学为理论基础,运用先进的电子设备采集人体细胞弱磁场,进行科学的分析,对被测者的健康状况和主要问题做出分析判断,并提出规范的防治建议。[量子弱磁场共振分析仪]是身体全方位健康保健咨询和前言保健科学的个体化指南,具有全面、无创、实用、简便、快捷、经济、易于推广普及等特点和优势,随着科研工作的深入和发展,对人类健康事业将会做出更大贡献,有着广阔的开发和应用前景。

《大学物理实验》2-11实验十一 亥姆霍兹线圈磁场测定

实验十一 圆线圈和亥姆霍兹线圈磁场测定 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。 当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1.学习和掌握弱磁场测量方法, 2.验证磁场迭加原理, 3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。 二、实验原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为: 2 0223/2 2()R B N x μ?= +I ? (1) 式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N B ?= 200μ (2) (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上

某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: O ?? ???????????????????????++??????????????++=??2/3222/322 202221x R R x R R NIR B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 为: ' 00 3/285N I B R μ??= (4) 三、实验仪器 FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。 图3 实验装置图 1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱 四、实验内容和步骤 1.仪器调试 (1)开机后应预热10分钟,再进行测量; (2)将两个线圈和固定架按照图3所示简图安装。大理石台面(图3中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

测量磁感强度的五种方法.

测量磁感强度的五种方法 程和界 李木成 磁感强度B 是物理学中的一个重要物理量。磁感强度的测量是一个与课本知识有关的设计性实验,而现在的高考题型重点考查学生的理解能力和计算能力,随着高考的深入,磁感强度的测量必将以探索性实验、设计性实验出现在高考题中,着重考查学生的设计能力和创新能力。为此,下面就高考中出现的以磁感强度的测量为背景而编制的试题进行分类归纳,介绍磁感强度的测量的五种方法,为即将到来的高考提供一些借鉴。 一、利用电磁感应的原理进行测量 把一个很小的线圈与测量电量的冲击电流计G 串联后放在待测处,然后改变线圈的状态使线圈产生感应电流,测出感应电量Q ,就可以算出该处的磁感强度B 。 例1. 如图1所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电量Q ,就可以算出线圈所在处的磁感应强度B 。已知测量线圈共有N 匝,直径为d ,它和表G 串联电路的总电阻为R ,则被测处的磁感强度B 为多大? 解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得: E N t N B d t ==?? ????Φ??222π 由欧姆定律得:I Q t E R ==? 由上述二式可得:B QR Nd = 22 π 二、利用物体的平衡原理进行测量 利用安培秤测出安培力的大小F ,然后根据安培力的公式F BLI =就可以算出磁感强度B 。 例2. 安培秤如图2所示,它的一臂下面挂有一个矩形线圈,线圈共有N 匝,它的下部悬在均匀磁场B 内,下边一段长为L ,它与B 垂直。当线圈的导线中通有电流I 时,调节砝码使两臂达到平衡;然后使电流反向,这时需要在一臂上加质量为m 的砝码,才能使两臂再达到平衡。求磁感强度B 的大小。

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

10讲义(磁场描绘)

10讲义(磁场描绘)

实验 磁场的描绘与测量 【实验目的】 1.了解感应法测量磁场的原理. 2.研究载流圆线圈轴向磁场的分布,加深对毕 奥-萨伐尔定律的理解. 3.描绘载流圆线圈轴向平面上的磁力线和亥姆 霍兹线圈的磁场均匀区. 【实验仪器】 亥姆霍兹线圈,探测线圈,磁场描绘仪信号源, 交流毫伏表,数字万用表,坐标纸等. 【实验原理】 1. 载流圆线圈轴线上磁场的分布 根据毕奥一萨伐尔定律,载流圆线圈轴线r r P dB ' x α α α α dB o 图1 B x 图2

上任一点P(见图1)的磁感应强度为: 322012I X B R R μ-????=+?? ??????? (1) 式中I 为圆线圈中的电流强度,R 为线圈的半径,X 为P 点至圆心点的距离,μ0叫真空磁导率(μ0 =4π×10-7N·A -2).B ~x 曲线如图2所示. 显然,在圆心处(X=0)的磁感应强度为 00I B 2R μ=,所以, 32201B X B R -????=+?? ??????? (2) 2.磁场的测量 测量磁场的方法有多种,本实验采用感应 法,当线圈中输入交变电流时,其周围空间必定 有变化磁场,可利用探测线圈置于交变磁场中所 产生的感应电动势来量度磁场的大小,当线圈内 通以正弦交变电流时,则在空间形成一个正弦交 变的磁场,磁感应强度为:

B 的方向一致时,感应电动势为最大值: 2m U B = 所以,m B 与U 成正比. 因此,我们可利用毫伏表读数的最大值来测 定磁场的大小,为了减小系统误差,我们采用比 较法进行测量. 轴线上任意一点的U 值与圆心处的0 U 值之比为 322001U B X U B R -????==+?? ??????? (5) 由此可见,0U U 与0 B B 的变化规律完全相同,实验若能证明 32201U X U R -????=+?? ???????,也就证明了32201B X B R -????=+?? ???????, 便验证了毕奥一萨伐尔定律的正确性. 磁感应强度是一矢量,因此磁场的测量不仅 要测量磁场的大小,还要测出它的方向.磁场的 方向如何确定呢?磁场的方向,本来可用毫伏表 读数最大值时所对应的探测线圈法线方向来表

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量和磁倾角的方法,了解测量弱磁场的一种重要手段和实验方法,本仪器与其他地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平和铅直。内转盘相隔ο180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T ,分辨率可达8710~10--T ,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V ,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm. 3.直流恒流源 输出电流0—200.0mA 连续可调 4.直流电压表 量程0—19.99mV ,分辨率0.01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义和实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

地磁场水平分量的测量解读

实验二十九 地磁场水平分量的测量 1、教学目标 (1)学习测量地磁场水平分量的方法; (2)了解正切电流计的原理; (3)学习分析系统误差的方法 2、教学难点、重点 难点:地磁场的相关概念;正切电流计的原理。 重点:测量方法和测量公式。 3、实验室提供的仪器和用具 亥姆霍兹线圈(N=640匝,R=10cm ),地质罗盘(DL-I 型),直流稳压电源(DF173系列),电阻箱(ZX21型),直流电流表(0.5级,10Ma ),换向开关,水准器。 4、实验原理 4.1 地磁场与地磁要素 地球是一个大磁体,地球本身及其周围空间存着磁场叫做“地球磁场”又称地磁场,其主要部分是一个偶极场。地心偶极子轴线与地球表面的两个交点称为地磁极,地磁的南(北)极实际上是地心磁偶极子的北(南)极,如图1。地心磁偶极子的磁轴m m S N 与地球的旋转轴NS 斜交一个角度o 5.11,00≈θθ。所以地磁极与地理极相近但不 相同,地球磁场的强度和方向随 地点、时间而发生变化。 地球表面任何一点的地磁 场的磁感应强度矢量B 具有一定 的大小和方向。在地理直角坐标 系中如图2所示。O 点表示测量 点,x 轴指向北,即为地理子午 线(经线)的方向;y 轴指向东, 即为地理纬线方向;z 轴垂直于 地平面而指向地下。XOy 代表地 平面。B 在xOy 平面上的投影//B 称为水平分量,水平分量所指的 方向就是磁针北极所指的方向,即磁子午线的方向;水平分量偏离地理真北极的角度D 称为磁偏角,也就是磁子午线与地理子午线的夹角。由地理子午线起算,磁偏角东为正,西偏为负。B 偏离水平面的角度I 称为磁倾角。在北半球的大部分地区磁针的N 极下倾,而在南半球,则磁针的N 极向上仰,规定N 极下倾为正,上仰为负。B 的水平分量//B 在x 、y 轴上的投影,分别称为北向分量x B 和东向分量y B ;B 在Z 轴上的投影z B 称为垂直分量。故某一地点O 的地 磁要素有:⑴地磁场总磁感应强度B ,⑵磁倾角I ,⑶磁偏角D , ⑷水平分量//B ,⑸垂直分量z B ,⑹北向分量x B ,⑺东向分量y B 。 不难看出,它们是B 在各个坐标体系中的坐标值,比如z y x B B B ,,就是 图 1

螺线管内磁场的测量

实验九螺线管内磁场的测量在工业、国防和科学研究中经常要对磁场进行测量例如在粒子回旋加速器、受控热核反应、同位素分离、地球资源探测、地震预测和磁性材料研究等方面。测量磁场的方法较多从测量原理上大体可以分为五类力和力矩法、电磁感应法、磁传输效应法、能量损耗法、基于量子状态变化的磁共振法。常用的测量方法主要有冲击电流计法霍尔元件法、核磁共振法和天平法。练习一用冲击电流计法测量螺线管内磁场【实验目的】1学习用冲击法测量磁感应强度的原理和方法2学会使用冲击电流计3研究长直螺线管内轴线上的磁场分布4对比螺线管轴线上磁场的测量值与理论值加深对毕奥萨伐尔定律的理解。【实验仪器】冲击电流计、螺线管磁场测量仪、直流电源、直流电流表、电阻箱、滑线变阻器。【实验原理】1. 长直螺线管轴线上的磁场如图5.9.1所示设螺线管长为L半径为r0表面均匀地绕有N匝线圈放在磁导率为μ的磁介质中并通以电流I。如果在螺线管上取一小段线圈dL则可看作是通过电流为INdL/L的圆形载流线圈。由毕奥萨伐尔定律得到在螺线管轴线上距离中心O为x的P点产生的磁感应强度dBx 为3202rrLINdLdBx 5.9.1 图5.9.1长直螺线管轴的结构图OP2LLx0r21dLdBxrd 由图5.9.1可知0sinrrsinrddL代入式5.9.1得到dLμINdBxsin2 5.9.2 因为螺线管的各小段在P点的磁感应强度方向均沿轴线向左故整个螺线管在P点产生的

磁感应强度21coscos2sin22121LNIdLNIdBBx 5.9.3 由图5.9.1可知5.9.3式还可以表示为 212022*********rxLxLrxLxLLNIBx 5.9.4 令x0得到螺线管中点O的磁感应强度2120204rLNIB 5.9.5 令xL/2得到螺线管两端面中心点的感应强度2122202LNIBLr 5.9.6 当L≥r0时由式5.9.5和式5.9.6可知BL/2≈B0/2。只要螺线管的比值L/r0保持不变则不论螺线管放大或缩小也不论线圈的匝数N 和电流I为多少磁感应强度相对值沿螺线管轴的分布曲线不改变。 2. 用冲击电流计测量磁场的原理如图5.9.2所示设探测线圈匝数为n平均截面为S线圈的法线与磁场方向一致当K1倒向一边使螺线管中通过电流的I。当K1突然断开时螺线管内的磁通突然改变探测线圈中的感应电流i通过冲击电流计G若测出在短时间内的脉冲电流所迁移的电量就可求得该点的Bx值。由法拉第电磁感应定律可知在探测回路中产生感应电动势ddt 5.9.7 设探测回路的总电阻为R则通过冲击电流计的瞬时感应电流为1diRdt 5.9.8 图5.9.2测量螺线管内磁场电路图GA-1R2RgR1KER在磁通变化的时间内通过冲击电流计的总电量0000111dQidtdtdRdtRR 5.9.9 实验时把通过螺线管的电流由I突变为0即把K1断开使磁通量发生改变则有0t时0xBnSt0代入5.9.9式有xBnSQR 5.9.10 因此只需测量出R及Q就可以算出Bx。Q值可以通过DQ-3/4型智能冲击电流计直接测出为了测出探测回路的

弱磁场测量仪器的进展和应用解读

电源同频的和不同频的交流分量也都有相应的限制。界上至少有二十几个研究小组在开展这方面的工作〔〕。在环境的杂散磁场中的磁场影响最大千扰磁场 , 。 , 随时间作单调变化、用噪声源 , 测量人体磁场时 , 为消除各种 , 例如 , 离高压线较近的工频电车汽车的移动。、一方面可以采用磁屏蔽的办法另一附近有火车、方面也可以利用一次或二次微分形式的梯度探头。大型机电设备的动作等造成的干扰磁场。、赫尔辛基工业大学建成了目前最好的磁屏 , , 测量环境杂散磁场直流分量或波动的最简蔽室〔。〕该室除用于测量人体的心磁图和脑单仪器是磁通门磁强计它的灵敏度高测量的范围宽偿力 , 、磁图外还可用于研究磁场对细菌生长的作用。可以直读、有的仪器还带有地磁场补。以及某些化学反应中磁化率的变化测试磁场的变化很方便同时也可以用质需要和赫姆霍茨。由于环境污染而造成的矽肺病场可达。一 , 其稳态磁 , , 子旋进磁强计〔〕这种磁强计有很高的分辨 , , 。以上 , 。沉积在肺中的磁性物质很。 , 但是测量的范围很有限难用射线测出场较高 , 而利用磁场测量可以判明工线圈配合起来使用应线圈法来测量

示。。操作和计算也较复杂 , 并且可用作了解肺功能缺陷的手段除用测量外 , 由于肺磁测量环境杂散磁场交流分量一般利用感还可以利用高。其中最简单的是利用平均值电压表 , 灵敏度的磁通门梯度计来测量四、为了有较高的灵敏度 , 可采用匝数多展望弱磁场测量技术和弱磁传感器的应用十分的感应线圈 , 。并接到积分器、放大器后再显或者用高灵敏度的数字磁通表来直接测量广泛对于有严重干扰的杂散磁场 , , 在最近十几年来已经有了很迅速的发 , 必须找出其 , 展。展望未来的十年 , 弱磁场磁强计也必然会。来源而消除掉。对于无法消除的杂散磁场。要成为磁测量仪器的开路先锋场测量技术的发展、今后 , 我国弱磁采取屏蔽的方法在一些国家的弱磁场试验室。至少有以下几方面任务 , 中都建设有大型的多层磁屏蔽室推广磁通门磁强计的应用、发展高灵 , , 有时候还要求知道某种设备内部器件的移敏的、小探头的梯度探头的等系列化形式一“ 动带来的干扰磁场以及仪器内部电路之间的干扰磁场、其测量上限要求扩展到工。霍尔效应磁强计量范围相接续。、名以便和变压器的漏磁场等等。 , 这时利用小型核磁共振磁强计等仪器的测 , 的磁通门探头是比较合适的、为此对探头的材料。、工艺和生物磁浏量 , 结构等都要作相应的研究和改进但是 , 。、虽然人们很早就认识到生物磁现象只有到的心脏、光泵磁强计在国外已经成为商品化的 , 年代初由于超导量子磁强计的出现大脑、、稳定仪器泛应用。在空间 , 、地面等不同条件下得到广才为人体磁场的测量提供了最可能的手段肺等器官都有微弱的磁场。人其国内今后应注重对仪器的稳定性和灵以期供给一批实用的商品化 , 敏度方面的研究仪器理学。、中有交变的也有稳态的“ ‘ ” , 例如 , 健康人的心脏磁场变化可达生的磁场为一伴随骨骼肌收缩产、。国外对人体磁场的研究已经深入到生。“ , 脑磁场在睡眠时为测量人体某些器 , 精神生理学和医学的领域 , 。国内急需商、‘ 、一‘吕睡醒时为。品化的并且希望能迅速应用到临床 , 官的磁场可以诊断一些疾病测量已成为引人注目的课题法国、因此人体磁场的目前 , 诊断中去由于人体磁场的研究和磁学生理学等都

磁场的描绘-

磁场的描绘- -实验十六磁场的描绘 一、实验目的 1(研究载流圆线圈轴向磁场的分布。 2(描绘亥姆霍兹线圈的磁场均匀区。 3(学习电磁感应法测量磁场的原理和方法。 二、实验仪器及材料 DH4501型亥姆霍兹线圈磁场实验仪(图16-1)。 图16-1 DH4501型亥姆霍兹线圈磁场实验仪 三、实验原理 1(载流圆线圈轴线上磁场的分布 根据毕奥-萨伐尔定律,通电载流圆线圈当其线圈截面尺寸与圆线圈半径相比可忽略不计时,它轴线上的某点的磁感应强度: 2NIR00, (16-1) B,223/22(R,x) -7 式中R为半径,N为线圈匝数,x为轴上某点到圆心O的距离, μ=4π×10H/m。轴线上磁00 场的分布如图16-2所示。本实验装置N=400匝,R=105 mm。 0 2(亥姆霍兹线圈的磁场分布 亥姆霍兹线圈是由线圈匝数N、半径R、电流I及方向均相同的两圆线圈串联组成,如图16-3所示。两圆线圈平面彼此平行且共轴,二者中心间距离等于它们

的半径R。设x为亥姆霍兹线圈中轴线上某点离两线圈中心O处的距离,根据毕奥-萨伐尔定律和磁场叠加原理,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: 33,,2211RR,,,, 222222,,BxBxBxNIRRxNIRRx()()()()(),,,,,,,,1200,,,, 2222,,,,33,,,,2222,,,,1RR,,,,,,222。 (16,NIRRxRx,,,,,,,,,,,,0,,,,222,,,,,,,,,,,,,,,, -2) 在x,0处(即两线圈中点处)的磁感应强度B(0)为: NINI8,,00 (16-3) B(0),,0.71553/2RR5 计算表明,当时,B和B间相对差别约万分之一,因此亥姆霍兹线圈能产生比较x,(R10)0 均匀的磁场。在生产和科研中,若所需磁场不太强时,常用这种方法来产生较均匀的磁场。 图16-2 载流圆线圈轴线上磁场的分布图16-3 亥姆霍兹线圈磁场分布 3(电磁感应法测磁场

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量与磁倾角的方法,了解测量弱磁场的一种重要手段与实验方法,本仪器与其她地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平与铅直。内转盘相隔 180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T,分辨率可达8710~10--T,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这就是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm 、 3.直流恒流源 输出电流0—200、0mA 连续可调 4.直流电压表 量程0—19、99mV ,分辨率0、01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义与实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别就是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量与垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维与三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 与电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别就是电流I 平行于M 与垂直于M 时的电阻率。当沿着铁镍合金带

物理学教程第11章恒定磁场

一、简单选择题: 1.下列哪位科学家首先发现了电流对小磁针有力的作用:( D ) (A)麦克斯韦(B)牛顿 (C)库仑(D)奥斯特 2.磁场对运动电荷或载流导线有力的作用,下列说法中不正确的是:( B )(A)磁场对运动粒子的作用不能增大粒子的动能; (B)在磁场方向和电流方向一定的情况下,导体所受安培力的方向与载流子种类有关; (C)在磁场方向和电流方向一定的情况下,霍尔电压的正负与载流子的种类有关; (D)磁场对运动电荷的作用力称做洛仑兹力,它与运动电荷的正负、速率以及速度与磁场的方向有关。 3. 运动电荷之间的相互作用是通过什么来实现的:(B) (A)静电场(B)磁场 (C)引力场(D)库仑力 4.在均匀磁场中,放置一个正方形的载流线圈,使其每边受到的磁力的大小都相同的方法有:(B) (A)无论怎么放都可以(B)使线圈的法线与磁场平行(C)使线圈的法线与磁场垂直(D)(B)和(C)两种方法都可以 5.电流之间的相互作用是通过什么来实现的( B ) (A)静电场(B)磁场 (C)引力场(D)库仑力 6.一平面载流线圈置于均匀磁场中,下列说法正确的是:(D)(A)只有正方形的平面载流线圈,外磁场的合力才为零 (B)只有圆形的平面载流线圈,外磁场的合力才为零 (C)任意形状的平面载流线圈,外磁场的合力和力矩一定为零 (D)任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定零 7.下列说法不正确的是:( A ) (A)静止电荷在磁场中受到力的作用 (B)静止电荷在电场中受到力的作用 (C)电流在磁场中受到力的作用 (D)运动电荷在磁场中受到力的作用

8.一根长为L ,载流I 的直导线置于均匀磁场B 中,计算安培力大小的公式是 sin F IBL θ=,这个公式中的θ代表: ( B ) (A )直导线L 和磁场B 的夹角 (B )直导线中电流方向和磁场B 的夹角 (C )直导线L 的法线和磁场B 的夹角 (D )因为是直导线和均匀磁场,则可令090θ= 7.磁感强度的单位是:( D ) (A )韦伯 (B )亨利 (C )牛顿/库伦 (D )特斯拉 8.在静止电子附近放置一条载流直导线,则电子在直导线产生的磁场中的运动状态是( D ) (A )向靠近导线方向运动 (B )向远离导线方向运动 (C )沿导线方向运动 (D )静止 9.下列说法正确的是:( B ) (A )磁场中各点的磁感强度不随时间变化,称为均匀磁场 (B )磁场中各点的磁感强度大小和方向都相同,称为均匀磁场 (C )磁场中各点的磁感强度大小和方向都相同,称为稳恒磁场 (D )稳恒磁场中,各点的磁感强度大小一定都相同 10.洛仑兹力可以:( B ) (A )改变运动带电粒子的速率 (B )改变带电运动粒子的动量 (C )对带电运动粒子作功 (D )增加带电运动粒子的动能 11.下列公式不正确的是:( D ) (A )03 d 4π I l r dB r μ?= (B )02 d 4π r I l e dB r μ?= (C )02 d sin 4π I l dB r μθ = (D )02 d sin 4π I l dB r μθ = 12.关于带电粒子在磁场中的运动,说法正确的是:( C ) (A )带电粒子在磁场中运动的回旋半径与粒子速度无关 (B )带电粒子在磁场中运动的回旋周期与粒子速度有关

弱磁场测量方法解读

弱磁场测量方法的研究 杨阳胡超陈冬梅戴厚德阳万安 中科院深圳先进技术研究院 摘要磁场测量技术是研究磁现象的重要手段,在国防、工业、医疗、交通等领域有广泛的应用。随着电子信息技术的进展,磁场测量有向弱磁方向发展的趋势。本文根据当前磁场测量的现状以及发展趋势,介绍常见的弱磁场测量基本原理和方法;并针对我们开发的基于3轴AMR 磁传感器HMC1043和单片机的手持式智能三轴磁场测量与定位仪,用实例介绍有关弱磁场测量的技术手段。关键词弱磁场,测量,3轴磁场传感器 1 前言 磁场测量技术是研究磁现象有关物理现象的重要手段,已经逐渐形成为一门独立的科学。在科学研究、国防建设、工业生产、医疗仪器、日常生活等领域,磁场测量常常起着越来越重要的作用。磁场测量是一门历史悠久并且不断发展的技术科学[1],是电磁测量技术的一个重要分支。远在公元一千年前,我们的祖先就知道了指南针有极性,并将其制成罗盘用于旅行和航海,这可称为世界上第一个磁场测量的仪器[2]。目前,由于磁测量技术的广泛应用,大大丰富了磁测量的内容,该技术几乎涉及所有的电测量方法。利用了各种电磁现象,发展了许许多多的技术应用;并且随着电子技术、计算机技术、自动化技术、冶金工艺、机械制造与工艺技术的发展,磁场测量已经走向小型化、电子化、数字化、和自动化,性能大为改善,磁场测量已向宽量程和高精度发展,特别是弱磁场的测量。弱磁场测量为磁技术的应用开辟了新的领域,如人体体内磁目标的跟踪定位。 针对这一趋势,我们设计了手持式智能三轴磁场计以对弱磁场进行测量。设计中采用低功耗、高灵 敏度、和高线性度的霍尼韦尔HMC1043三轴AMR(各

向异性磁阻)磁场传感器,并通过单片机和其它放大控制电路,准确的测量出目标空间3维磁场的强度,判断出磁场的极性,该磁场计还特别适合弱磁场的测量。 本文以下内容将介绍磁场特点及测量原理、基本测量方法、手持式智能三轴磁场检测仪的设计,最后给予总结。 2 磁场与测量原理 磁场测量技术所涉及的范围很广,从被测磁场 强度范围看,它可以从10-15T (特斯拉)至103T 以上;从其频率看,它包括直流、工频、高频、及各种脉冲;从测量技术所应用的各种原理来看,它涉及到电磁效应、光磁效应、压磁效应、热效应等各种效应;从测量中所采用的技术来看,它包括指针仪表、数字仪表直至电子计算机的系统测量。磁场测量包括磁参数和磁性材料磁特性的测量。磁参数的测量指的是磁场强度和磁通的测量。磁性测量一般是指的材料试样的测试,用以反映磁性材料的磁性参数。目前在国内厂家对于磁性测量的装置相对较多,但对于磁参数测量的装置生产的相对较少。因此,研究和发展高精度、灵敏度强、稳定性好、使用简单,成本低廉的磁场测量装置有着深远的意义。 对宏观磁场和磁性材料进行磁学量测量的仪器。通常按测量对象不同分为两大类。 第一类仪器用于测量磁场强度、磁通密度、磁通量、磁矩等表征磁场特征的物理量。典型仪器有磁通计、磁强计、磁位计等。这类仪器的工作原理可分三种:第一种是利用磁的力效应,用于测量地磁场强度和检验磁性材料;第二种根据法拉第的电磁感应定律,由感应电动势求出磁通的变化,再导出各种待求的磁场量;第三种利用磁致物理效应(如霍尔效应等)来测量磁通密度,对静止的或变动的磁场量均适用。 第二类仪器用于测量磁导率、磁化强度、磁化

相关文档
最新文档