裂纹类缺陷的评价

裂纹类缺陷的评价
裂纹类缺陷的评价

1.概述

这部分里,讨论的是设备中裂纹类缺陷的合于使用(Fitness-For-Service)评估过程,

裂纹类缺陷主要是用长度和深度来表征的平面缺陷,并具有锐角的根部半径。裂纹类缺陷可以是嵌入式的或是表面破坏。裂纹类缺陷的实例有平面裂纹、未熔合或焊缝的未焊透、尖锐的槽形局部腐蚀和与周围开裂相关的枝状裂纹类型等。

2.数据要求

1级评定中需要原始设备设计数据、维护以及操作历史、材料性质(仅需要材料的最小屈服强度和拉伸强度,及需要材料的许用应力)、裂纹特性

当对带有裂纹类缺陷的设备进行2或3级FFS评估

需要有效的输入数据。这些数据和应力状况的精确程度决定了该部分中的评定

过程的精确程度。输入数据应足以抵消NDE裂纹尺寸的不确定性、一般的开裂

机理及失效后果。

在进行FFS评估之前,必须完成表1所示的数据表,以确保相关因素都能被考虑到,并且能较好的合并到评定中。此表格中的数据不仅适用于1级或2级评估,一般情况

下也适用于3级评估。

3.评定技术以及要采取的措施

带有裂纹类缺陷的设备进行评定的评定过程及对于非扩展裂纹类缺陷2级评定过程见图1、2,由于评定方法比较类似,此处只列出一级评定的方法

1级评定

1级评定适用于满足前述限制条件下的设备。如下步骤可用来确定裂纹类缺陷的可接受程度。

a. 步骤1-根据操作、设计条件,确定评估时的载荷情况和温度。

b. 步骤2-由所测数据确定裂纹长度和深度。用前述的过程描述裂纹特性。

c. 步骤3-根据设备的几何形状和相对与焊缝的裂纹取向,从相关资料中确定评估所用的图形。

d. 步骤4-由步骤3选出的图形中,确定选择曲线。

T=38℃ (100℉)下绘制的,评定

e. 步骤5-确定参考温度。评定曲线在参考温度

ref

T=-9.4°C(15°F)用于钢板和经过正火热处理后的锻件。

时使用该值。

ref

f. 步骤6-确定裂纹最大允许长度。由步骤3确定的评估图,步骤1和步骤5中分别确定的评估温度和参考温度,用所应用的选择曲线确定裂纹最大长度。

g. 步骤7-评估结果-如果步骤6中确定的可允许裂纹尺寸大于或等于步骤2中确定的裂纹长度,则设备适合于继续使用。

如果设备不能满足1级评估要求,需要考虑以下措施或它们的组合:

a.改进分析数据,重复1级评定(即为了更好地描述裂纹尺寸特征,改进进行附加的NDE分析的数据,并为建立操作温度界线精确地确定未来的操作条件)。

b.对设备进行维修,更换该设备或让设备退役

c.进行2级或3级评估

4.剩余寿命分析

裂纹扩展

有裂纹扩展的设备的评定和分析过程-因为所用方法本身的不确定性,对含扩展裂纹的设备进行分析,需要有专门的知识、技能和经验。分析包括了应用3级评估和裂纹扩展规律的数值积分。扩展型裂纹类缺陷进行评定的评定过程及裂纹扩展分析方法的流程图见图3,4

a.步骤1-对原始裂纹尺寸进行3级评估。若根据3级评定,设备证明能接受,那么应尝试运用校正措施以防止裂纹的进一步扩展(见9.6)。

b.步骤2-若无有效的校正措施而又希望减缓亚临界裂纹扩展,那么确定是否存在该材料和操作环境下的裂纹扩展规律。若存在,则可进行裂纹扩展分析。

否则,需进行破坏前泄漏分析以判断是否能确定允许的裂纹上限尺寸

c. 步骤3-计算基于以后操作条件下裂纹处的应力。在这些计算中,包括正常

操作、启动、扰动、停车等相关的操作条件都应予以考虑。

d.步骤4-根据先前裂纹尺寸(为了初始化工艺过程,先前裂纹尺寸即为步骤1中确定的原始裂纹尺寸)、应力、估计的应力强度和裂纹扩展规律,确定裂

纹扩展增量。

e.步骤5-对当前裂纹尺寸进行3级评估。实践证明,对于当前裂纹尺寸,在

应用裂纹扩展机理时,施加应力强度因子要小于临界应力强度因子。如果当

前裂纹的评定点在FAD 之外,或者给裂纹被重新分类为透壁裂纹,则执行步

骤6,否则,回到步骤4继续增大裂纹。

f .步骤6-当前裂纹尺寸),(00c a 达到极限尺寸时,确定应力循环时间和次数。

决定设备能否正常工作

g. 步骤7-在接下来的检查中,根据这部分的过程,确定实际裂纹扩展率和重

新评估新的裂纹条件。作为选择,可以对设备进行维修或更换设备,或应

用有效缓和措施。

5. 校 正

FFS 分析提供了含裂纹设备的剩余寿命计算,使得直至预定的下次检测为止的这段时间

内的操作都能得以保证。若已知工作环境中有关裂纹扩展率的信息,则仅仅只能确定其剩余

寿命。但是,许多发生在炼油厂和石化工业中的工艺环境的这些信息不能轻易得到或确定。

因此,分析技术组合,在线监测和补救方法能用来确保直到预定的下次检测为止,设备都能

正常工作。

6.记录

FFS 评定的记录应包括API579-2-2.8中所引用的信息。因为评定的复杂性,还需要

附加的记录要求。这些信息应该与设备的记录文件一起长期保存着。

表1

裂纹类缺陷评定所需要的数据

用下面的格式概括现场检查中获得的数据:

设备名称:

设备类型: 压力容器 储罐 管道系统

设备类型和位置:

1级评估所需要的数据:

评定温度(在全压下的最小温度):

评定压力:

裂纹位置(母材金属、焊缝金属或HAZ):

表面位置(ID,OD或透壁):

缺陷类型(表面或嵌入裂纹):

相对于焊缝的裂纹取向(平行或垂直于焊缝):

裂纹长度(2c):

裂纹深度(a):

裂纹在表面下的深度(d-嵌入裂纹):

轴向或周向裂纹:

焊后热处理(PWHT):

设计准则:

母材规格:

焊接材料规格:

壁厚:

MAWP:

工艺环境:

设计压力和温度:

循环载荷条件:

检查方法—裂纹长度:

检查方法—裂纹深度:

检查方法—在表面下的裂纹深度:

2级评估所需要的附加数据(除了1级评定的数据外)屈服应力(母材金属):

拉伸应力(母材金属):

断裂韧性(母材金属):

材料数据来源(母材金属):

屈服应力(焊缝金属):

拉伸应力(焊缝金属):

断裂韧性(焊缝金属):

材料数据来源(焊缝金属):

弯曲应力(HAZ):

拉伸应力(HAZ):

断裂韧性(HAZ):

材料数据来源(HAZ):

失效种类的概率:

偏差—载荷系数(COV S):

局部安全因子—载荷(PSF S):

局部安全因子—材料断裂韧性(PSF S):局部安全因子—裂纹尺寸(PSF S):

对带有裂纹类缺陷的设备进行评定的评定过程指南

对于非扩展裂纹类缺陷2级评定过程的指南

对扩展型裂纹类缺陷进行评定的评定过程指南

裂纹扩展分析方法

淬火热处理后硬度不足的原因分析

淬火热处理后硬度不足的原因分析 在生产过程中, 有时会出现淬火后硬度不足的情况, 这是热处理淬火过程中常见的缺陷。硬度不足有时表现为整个工件硬度值偏低, 有时是局部硬度不够或产生软点。淬火时硬度不足的原因很多,与材料内在的冶金缺陷、选材不当、错料; 设计上的结构工艺性差、加热工艺、冷却介质、冷却方法以及回火温度等都有密切关系。综合了一些实际请总结出了这么几点常见的可能因素造成:1、原材料问题 (1) 原材料选择不当或发错料。应该用高碳钢或中碳钢制造的零件而错用成低碳钢; 应该用合金工具钢制造的零件错用成普通高碳钢。 (2) 原材料显微组织不均匀。如碳化物偏析或聚集现象, 铁素体成大块状分布, 出现石墨碳, 严重的魏氏组织或带状组织等。 2、加热工艺问题 (1) 淬火加热温度偏低, 保温时间不足也是淬火后硬度不足的原因。如亚共析钢, 当加热温度在AC3与AC1之间时, 则因铁素体未全部溶于奥氏体, 淬火后不能得到均匀一致的马氏体而影响工件硬度。金相分析时可见未溶铁素体(2) 淬火加热温度过高, 保温时间过长。对于工具钢, 当钢的加热温度过高时, 大量碳化物溶于奥氏体, 大大地增加了奥氏体的稳定程度, 使马氏体开始转变点降低, 因而淬火后工件中保留大量残余奥氏体, 使淬火后工件的硬度下降。金相分析时, 可见未溶的碳化物稀少, 残余奥氏体量明显多。 (3) 淬火加热时, 工件表面脱碳, 使表面硬度不足。金相分析时, 表面有铁素体及低碳马氏体。当磨去表面脱碳层后, 硬度便达到要求。工件在一般箱式炉中未加保护或保护不良的情况下加热, 或者在脱氧不良的盐浴炉中加热, 都会

产生氧化脱碳现象。

▲铸钢件缺陷原因分析

铸钢件缺陷产生的原因分析 铸钢阀门由于其成本的经济性和设计的灵活性,因而得到广泛的运用。由于阀门铸件的基本结构属于中空结构,形状比较复杂,铸造工艺受到铸件尺寸、壁厚、气候、原材料和施工操作的种种制约,因此,铸钢件常常会出现砂眼、气孔、裂纹、缩松、缩孔和夹杂物等各种铸造缺陷, 生产控制有一定难度,尤以砂型铸造的合金钢铸件为多。因为钢中合金元素越多钢液的流动性越差,铸造缺陷就更容易产生。 一、铸钢的铸造工艺特点 铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩性大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取较为复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、厚壁铸件的浇注温度比其熔点高出100℃左右。 2、由于铸钢的收缩量较大,为防止铸件出现缩孔、缩松缺陷,在铸造工艺上大都采用冒口、冷铁和补贴等措施,以实现顺序凝固。

3、为防止铸钢件产生缩孔、缩松、气孔和裂纹缺陷,应使其壁厚均匀、避免尖角和直角结构、在铸型用型砂中加锯末、在型芯中加焦炭、以及采用空心型芯和油砂芯等来改善砂型或型芯的退让性和透气性。 4、铸钢的熔点高,相应的其浇注温度也高。高温下钢水与铸型材料相互作用,极易产生粘砂缺陷。因此,应采用耐火度较高的人造石英砂做铸型,并在铸型表面刷由石英粉或锆砂粉制得的涂料。为减少气体来源、提高钢水流动性及铸型强度,大多铸钢件用干型或快干型来铸造,如采用CO2硬化的水玻璃石英砂型。 二、铸钢件常见的铸造缺陷 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,常见的缺陷形式有:砂眼、粘砂、气孔、缩孔、缩松、夹砂、结疤、裂纹等。 A )砂眼缺陷 砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型、合箱操作中落入型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,是一种常见的铸造缺陷。 B)粘砂缺陷 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度

裂缝测井识别

所谓裂缝识别,主要包含四个含义,即裂缝的真实性、裂缝的有效性、裂缝填充物的性质(即含油气性)、裂缝产状的计算。 裂缝综合分类如下: ?? ? ? ? ? ????? ? ? ? ? ?? ??????????????????????应力释放缝钻井液与地应力压裂缝钻具诱导缝诱导缝网状裂缝)水平缝()低角度缝()斜交缝()高角度缝(低阻(低密度)缝高阻(高密度)缝天然裂缝 裂缝5305753075αααα 常规测井曲线对裂缝的响应 1、微侧向测井 微侧向测井采用贴井壁测量。由于其电极系尺寸小,测量范围小,所以,其测量结果反映了井壁附近的地层情况,对裂缝的发育情况十分敏感。在裂缝发育段,电阻率出现低阻异常,往往表现为以深侧向为背景的针刺状低阻突跳。 2、双侧向测井 从宏观上看,深、浅侧向,尤其是深侧向能反映出井眼周围较大范围内地层总的电性变化,由于探测深度有较大差别,往往出现深、浅侧向值的大小不同,表现为电阻率的“差异”。影响双侧向差异性质及大小的因素较多,但主要是裂缝发育程度、裂缝角度、流体性质因素的影响。 (1) 裂缝发育程度的影响 经验表明,裂缝越发育的地方,双侧向的正差异一般也越大。 (2) 裂缝角度的影响 高角度、垂直裂缝的双侧向为正差异。斜交缝的双侧向不明显。低角度缝、水平缝的双侧向为低阻尖峰。 (3) 流体性质的影响 在淡水钻井液作用下,当地层中的流体为油气时,侵入带的电阻率低于原状地层的电阻率,双侧向出现正差异。如果地层中油裂缝发育,钻井液滤液沿着较大的裂缝侵入较深,但微缝中的油气缺少被驱替;离开井筒越远,地层中的油气呗驱替越少,从而一般仍出现双侧向的正差异。当地层中的流体为水时双侧向差异减小。 (4) 地应力集中的影响 在地应力集中段,岩石变致密,地层电阻率急剧上升,高达上万欧姆米,大大超过一般致密层的电阻率。在钻井过程中,地应力通过井眼释放,造成该井段井壁沿最小主应力方向定向坍塌,使浅侧向值显著降低,从而出现深、浅侧向的正差异。 3、补偿密度测井 为了消除泥饼和井壁不平对密度测量的影响,采用补偿密度测井方法。轮南地区石灰岩块岩性致密,渗透性差,很难形成泥饼,这样,补偿密度测井的密度值也

模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策 王荣滨 (南弯工具厂江西330004 摘要讨论了模具钢十种热处理组织缺陷及消除方法,可产生明显经济效益和社 会效益。 关键词模具钢组织缺陷对策 Abstract This paper analyzes ten kinds of microstruture defect of heat treatment mold steel,and it also gives the relative solutions to avoid defects,which can obviously bring about the economic benefit. K eyw ords mold steel microstructure defect countermeasures 钢的物理性能、化学性能和力学性能决定钢的热处理组织,正常组织赋予钢产品优异性能和高寿命;热处理组织缺陷恶化钢的性能,降低模具产品质量和使用寿命,甚至产生废品和发生事故。因种种原因,钢热处理主要有十种组织缺陷,分析原因,采取对策,提高模具使用寿命,有显著技术经济效益。 1奥氏体晶粒粗大 钢奥氏体晶粒定为13级,1级最粗,13级最细。1~3级为粗晶粒,4~6级为中等晶粒,7~9级为细晶粒,10~13级为超细晶粒。晶粒愈细,钢的强韧性愈佳,淬火易得到隐晶马氏体;晶粒愈粗,钢的强韧性愈差,淬火易得到脆性大的粗马氏体。实践证明,奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大。当加热温度一定时,

快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大。奥氏体晶粒随钢中W、Mo、V元素增加而细化,随钢中C、Mn元素增加而增大。钢最终淬火前未经预处理,奥氏体晶粒愈粗化,淬火得粗马氏体,强韧性低,脆性大。仪表跑温,晶粒粗化,降低晶粒之间结合力,恶化力学性能。 对策—合理选择加热温度和保温时间。加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。加热温度应按钢的临界温度确定,严格仪表精密控温,保温时间按加热设备确定。合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、真空加热和激光加热等。最终淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。选用细晶粒钢、电渣重熔钢、真空精炼钢制造模具等措施。 2残余奥氏体过量 钢件淬火冷却时过冷奥氏体转变成淬火马氏体,过冷奥氏体不能100%转变为淬火马氏体,未完全转变的过冷奥氏体为残余奥氏体。淬火马氏体经不同温度回火后转变为不同回火组织,达到所需组织性能。残余奥氏体在回火过程中可部分转变为马氏体,但因材料和工艺不同,残余奥氏体可多可少保留在使用状态中。保留少量残余奥氏体有利增加钢的强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。但残余奥氏体过量将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致服役时发生尺寸变化等不利因素。因此,钢中残余奥氏体不宜过量。 对策—按照模具服役条件,合理选择淬火加热温度,因模具钢含有大量降低马氏体点(Ms的合金元素,过高淬火加热温度会使钢中碳和合金元素大量溶入高温奥氏体中,奥氏体合金化程度高,增加奥氏体稳定性,使过冷奥氏体不易发生马氏体相变,有较多残余奥氏体保留在淬火组织中,因此,淬火加热温度应适中。分级淬火和等温淬火保留较多残余奥氏体,因此,采用中温预回火和多次高温回火,促使在高温回火冷却过程中残余奥氏体发生马氏体转变。其次,淬火后经短时低温回火后进行- 60℃~120℃零下冷处理,实质是淬火的继续,促使残余奥氏体较充分转变为马氏体,温

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

裂缝的识别

裂缝的识别 裂缝是指岩石的断裂,即岩石中因失去岩石内聚力而发生的各种破裂或断裂面,但岩石通常是那些两个未表现出相对移动的断裂面。其成因归纳为:(1)形成褶皱和断层的构造作用;(2)通过岩层弱面形成的反差作用;(3)页岩和泥质砂岩由于失水引起的体积收缩;(4)火成岩在温度变化时的收缩。从FMI图像上,我们可以总结出裂缝的类型:(1)高角度缝:裂缝面与井轴的夹角为0~15度;(2)低角度缝:裂缝面与井轴的夹角为70~90度;(3)斜交缝:裂缝面与井轴的夹角为15~70度。在某些特定的地区,我们可以从FMI图像上观察出网状缝,弥合缝和一些小断层。 第一节地层真假裂缝的识别方法 在微电阻率扫描成像测井图FMI上,与裂缝相似的地质事件有许多,但它们与裂缝有本质的区别。 一、层界面与裂缝 前者常常表现为一组相互平行或接近平行的高电导率异常,且异常宽度窄而均匀;但裂缝由于总是与构造运动和溶蚀相伴生,因而高电导率异常一般既不平行,又不规则。 二、缝合线与裂缝 缝合线是压溶作用的结果,因而一般平行于层界面,但两侧有近垂直的细微的高电导率异常,通常它们不具有渗透性。裂缝主要受构造运动压溶作用的影响,因此与缝合线的形状不一样,并且与裂缝也不相关。 三、断层面与裂缝 断层面处总是有地层的错动,使裂缝易于鉴别。 四、泥质条带与裂缝 泥质条带的高电导率异常一般平行于层面且较规则,仅当构造运动强烈而发生柔性变形才出现剧烈弯曲,但宽窄变化仍不会很大;而裂缝则不然,其中总常有溶蚀孔洞串在一起,使电导率异常宽窄变化较大。 五、黄铁矿条带与裂缝 黄铁矿条带成像测井特征与泥质条带的特征混相似,但其密度明显增大,可作为鉴别特征。 总之,如图3—1所示,除断层面以外,其他地质现象基本平行于层理面,而裂缝的产状各异。无论怎样弯曲变形,相似的这些地质现象的导电截面的宽度却相对稳定,相反裂缝的宽度通常因岩溶与充填作用变化较大。

混凝土裂缝的鉴别标准及处理原则

混凝土裂缝的鉴别及处理原则 裂缝是固体材料中的一种不连续现象,许多钢筋混凝土形式建筑物在建设过程和使用过程中出现了不同程度、不同形式的裂缝,这是一个相当普遍的现象,也是长期困扰土木技术人员的一项技术难题。在工程鉴定加固中,经常遇到各种形式的混凝土裂缝,准确地对混凝土裂缝进行鉴别不仅是工程鉴定一项主要内容,也是对裂缝进行加固修补处理的重要依据,因此显得尤为重要。 二、混凝土裂缝的主要类型 混凝土裂缝产生的基本原因可以归纳为两大类:一类是荷载变化引起的裂缝,包括施工和使用阶段的静荷载、动荷载;一类是由变形变化引起的裂缝,包括温度、湿度变化、不均匀沉降、冻胀、钢筋锈蚀、化学反应膨胀等等(1)。 按裂缝产生的机理分,建筑物中常见的裂缝基本类型有:塑性收缩裂缝,沉降收缩裂缝,温度裂缝,干燥收缩裂缝,碳化收缩裂缝,化学反应裂缝,沉陷裂缝,冻胀裂缝,徐变裂缝,凝缩裂缝等等。 三、混凝土裂缝鉴别的主要内容 建筑物的破坏,特别是钢筋混凝土结构的破坏往往是从裂缝开始的。但是,并不是所有的裂缝都是建筑物危险的征兆,只有那些影响结构承载能力、稳定性、刚度以及节点连接可靠性等的裂缝才可能危及建筑物的使用安全。而大量常见的裂缝,如温度、收缩裂缝等,并不危及建筑结构安全。因此,各类裂缝对建筑物的危害是不同的,故对各类裂缝的处理应有区别。所以准确鉴别不同类型的裂缝是十分重要的。 裂缝鉴别一般从裂缝现状、开裂时间和裂缝的发展变化三个方面调查分析(2),其鉴别的主要内容有以下几个方面: (一) 裂缝现状调查 包括对所处理裂缝调查其产生形式、裂缝宽度、裂缝长度、是否贯通、缝内有无异物及裂缝宽度的变化等情况。裂缝末端位置是推断混凝土应力状态的重要参数,一定要仔细观察到看不见为止。 1、裂缝宽度 裂缝宽度是判断裂缝对混凝土结构物影响程度的重要参数,应预先查明裂缝宽度是否发展变化,因为它是分析开裂原因、决定修补及补强加固方法的重要项目。 2、裂缝位置与分布特征

锅炉裂纹缺陷产生的原因分析

大 庆 石 油 学 院 学 报 第21卷 第2期 1997年6月JOU RNAL OF DAQING PET ROLEUM INS TIT UT E Vol.21No.2J un.1997锅炉裂纹缺陷产生的原因分析1 夏长友1)o 韩其君2) 王中东3) 1) 大庆输油公司,林源,163852 2) 大庆石油化工工程公司,大庆,163714 3) 大庆石油学院石油机械系,安达,151400 摘 要 对锅炉裂纹缺陷的形成、发展、特征及产生原因和危害从焊接和腐蚀等角度进行了分析,具体叙述了裂纹产生的部位和判定的基本方法,对苛性脆化产生原因及预防进行了比较详细的介绍,对防止锅炉产生裂纹的措施做了具体讨论。 主题词 锅炉;裂纹;原因分析;判定;措施 中图法分类号 T E937.3 0 前言 锅炉诸多缺陷中,裂纹缺陷是最大的隐患。锅炉本体及受压元件的裂纹缺陷种类很多,只有清楚锅炉裂纹缺陷的形成、发展规律,才能判定出不同结构类型的锅炉容易产生裂纹的常见部位。锅炉本体及受压元件常见的裂纹缺陷,一是焊接裂纹,按其产生的原因和过程分为焊接热裂纹和焊接冷裂纹;二是腐蚀裂纹,主要指苛性脆化碱腐蚀裂纹;三是疲劳裂纹和腐蚀性疲劳裂纹。 1 焊接裂纹 一般是在锅炉制造过程中产生的。现代锅炉和压力容器的加工制造是使用特定金属板卷制、焊接而成,裂纹和微裂纹出现在焊接过程中是难免的,这种裂纹是在高温条件下产生的焊接热裂纹。 金属材料焊接冷却较长时间后会出现焊接冷裂纹。原因是在焊接金属冷却金相组织中有溶解的氢元素存在。氢的溶解度在不同金相组织中不同,尤其是金属中含有低碳合金钢和具有淬火倾向的碳素钢时,当焊缝的金属逐渐冷却,金相组织中的奥氏体向铁素体转变,焊缝因不同溶解度过饱和氢的扩散聚集,会出现显微氢裂痕,随冷却时间的延长,裂痕逐渐扩展成焊接冷裂纹。 1.1 热裂纹性质特征 一是在金属结晶过程中相变前发生的晶格缺陷,裂纹具有微观的晶格破坏性质;二是具有焊接工艺特定的普遍性;三是焊接热裂纹,当暴露的焊缝表面与大气相通时,裂纹表面呈蓝色或黑蓝色。 收稿日期:1996-11-15 审稿人:朱瑞东 1 o此文联系人:夏长友,男,1961年生。1981年毕业于承德石油学校机械制造专业。工程师。科研方向:化工机械。

金属热处理缺陷分析报告及案例

<<金属热处理缺陷分析及案例>>试题 一、填空题 1、热处理缺陷产生的原因是多方面的,概括起来可分为热处理前、热处理中、热处理后三个方面的原因。 2、热处理缺陷分析方法有:断口分析、化学分析、金相检验、力学性能试验、验证试验、综合分析。 3、断裂可分为两种类型:脆性断裂和韧性断裂。 4、金属断裂的理论研究表明:任何应力状态都可以用切应力和正应力表示,这两种应力对变形和断裂起着不同的作用,只有切应力才可以引起金属发生塑性变形,而正应力只影响断裂的发展过程。 5、热处理变形常用的校正方法可分为机械校正法和热处理校正法。 6、热应力是指由表层与心部的温度差引起的胀缩不均匀而产生的内应力。 7、工程上常用的表面淬火方法主要有高频感应加热淬火和火焰淬火两种。 8、热处理中质量控制的关键是控制加热质量和冷却质量。 9、过热组织晶粒粗大的主要特征是奥氏体晶粒度在3级以下。 10、真空热处理常见缺陷有表面合金元素贫化、表面不光亮和氧化色、表面增碳或增氮、粘连、淬火硬度不足、表面晶粒长大。 11、低温回火温度范围是(150-250)℃,中温回火温度范围是(350-500)℃,高温回火温度范围是(500-6 50)℃。

12、工件的形状愈不对称,或冷却的不均匀性愈大,淬火后的变形也愈明显。 13、马氏体片越长,撞击能量越高,显微裂纹密度会越大,撞击应力会越大,显微裂纹的数目和长度也会增加。 14、合金元素通过对淬透性的影响,从而影响到淬裂倾向,一般来说,淬透性增加,淬裂性会增加。合金元素对M S的影响较大,一般来说,M S越低的钢,淬裂倾向越大。 15、一般来说,形状简单的工件,可采用上限加热温度,形状复杂、易淬裂的工件,则应采用下限加热温度。 16、对于低碳钢制工件,若正常加热温度淬火后内孔收缩,为了减小收缩,要降低淬火加热温度;对于中碳合金钢制的工件,若正常加热温度淬火后内孔胀大,为了减小孔腔的胀大,需降低淬火加热温度。 17、工件的热处理变形分为尺寸变化和形状畸变两种形式。 二、单项选择题 1、淬火裂纹通常分为 A 四种。 A、纵向裂纹、横向裂纹、网状裂纹、剥离裂纹 B、纵向裂纹、横向裂纹、剥离裂纹、显微裂纹 C、纵向裂纹、横向裂纹、网状裂纹、表面裂纹 D、纵向裂纹、横向裂纹、剥离裂纹、应力集中裂纹 2、第一类回火脆性通常发生在淬火马氏体于 B 回火温度区间,这类回火脆性在碳钢和合金钢中均会出现,它与回火后的冷却速

钢结构常见外观缺陷

常见外观缺陷的预防及处理方法 外观缺陷,顾名思义,就是存在于构件表面,目视可见的表面质量问题。大致可归纳为:不连续、不规则、不彻底。 不连续:这里所说的不连续是指均匀连续物体中的中断,比如:存在于焊缝中的裂纹、咬边、气孔、夹杂、未熔合、未焊透等等;也有存在于构件母材中的,夹层、重皮、麻点、压痕等。这些不连续有的存在于内部,有的存在于表面。在此我们只讨论存在于焊缝或母材表面的不连续。当这些不连续的尺寸或密集度超过了标准的限值,那么它就是缺陷。就必须对这些缺陷进行修补或加强。因为存在缺陷的构件会影响构件的使用性能,部分缺陷甚至存在安全隐患。 不规则:这里所说的不规则就是指与理想形态存在偏差。如:焊瘤、未焊满等不规则的焊缝成型状态;母材因焊接变形而存在的形状偏差。部分不规则同样会危害构件的使用,如:焊缝上的焊瘤会在焊缝与母材间形成尖锐的缺口,从而产生应力集中,危害焊缝连接的可靠性;工字梁的腹板弯曲变形,会影响工字梁的受力性能,使其承载强度下降。所以超标的不规则必须按规范处理。 不彻底:这里所说的不彻底是指要求清除、清理的焊渣、飞溅、毛刺等未处理或处理不彻底。这些质量问题对构件的危害程度虽不如不连续那么严重,但这些存在于构件表面,直观可见的问题,直接影响产品的质量形象。而且这些毛毛刺刺也不只是影响构件的美观形象,它同样存在潜在危害,如:要对构件表面进行防腐处理时,油漆很难在尖锐的毛刺、锐边上形成漆膜。焊渣及飞溅也会使漆膜存在断裂或与构件表面分离。这也使漆膜存在露点,使漆膜保护失效。 这些外观缺陷存在于构件各个表面,而且形态各异。检查及处理费时费工,而且部分缺陷处理非常困难,对于较复杂的结构件更为明显。不光是费时费工,还很难取得理想的效果。思考一下,你会发现:其实这些缺陷大多因不规范的施工造成。因为在施工时不按工艺要求而产生的,也有生产施工时不仔细对构件造成损伤。这些看似为了施工省时省工,但岂不知最后要花几倍的时间及人工去处理!;另外在生产处理这些外观缺陷时,常常会遗漏大量典型的外观缺陷未处理、有的缺陷也是多次处理未达标、还有的处理旧缺陷又造成新的缺陷、也有处理过度,造成浪费。所以对于这些外观缺陷,一定要在施工时注意预防,尽量减少这些外观缺陷的发生,在处理这些缺陷时,掌握一定的检查方法、了解各类缺陷的形态及修补的方法,针对处理、一步到位。这样才能真真做到省时省工,事半功倍。为此整理这出这份文档。对常见的缺陷进行描述及图片展示,让大家了解什么样的才是必须处理的缺陷。也会对各类缺陷的产生原因进行分析,从而在生产施工时注意预防。还有就是缺陷的修补处理方法,参考相关标准,让大家了解正确的缺陷处理方法,知道处理的具体要求。

裂纹原因分析

裂纹 裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。 应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。 (一)形成裂纹的力学分析 在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。 至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax 及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例

如带缺口试件拉伸σ/τ=4,这时多发生正断。 下面分析不同外力引起开裂的情况。 1.由外力直接引起的裂纹 压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。 弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。 镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。 工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。

裂缝深度检测意义与特点

裂缝深度检测的意义与特点(宁波升拓检测技术有限公司浙江宁波 NCIT) 对应的仪器:上图:混凝土多功能检测仪(SCE-MATS) 下图:混凝土超声波检测仪(SCU-PWT)

概述: 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而在使用过程中,不可避免地出现各种老化、劣化现象(如裂缝、混凝土强度降低等)。同时,如果施工质量得不到很好的保证,会加速结构的劣化,从而造成社会经济的损失。为此,升拓检测历时10余年,与国内外相关机构合作开发了一整套针对混凝土的浇筑质量、结构的缺陷的综合解决方案和技术体系。该方案基于无损检测技术,具有测试效率高、可靠性好、对结构无损伤等特点,可以大大地提高混凝土材料及结构的质量。该技术体系的检测内容主要包括: 1) 裂缝深度; 2) 混凝土构件质量(强度及刚度); 3) 结构尺寸 4) 表面剥离、脱空及内部缺陷; 5) 岩体力学特性及分级测试 测试意义: 整个技术体系采用冲击弹性波作为测试媒介,并集成到测试设备中(混凝土多功能检测仪,SCE-MATS)。其测试精度和效率达到工程要求,已在国内外数百个各类工程中得到了实际应用。我们具有相关技术的全部知识产权,并申请和获得了多项国家发明专利,产品出口到日本等海外。 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝种类允许最大宽度(mm)深度要求 例如,在《公路桥 梁养护技术规范》 (2004)中,对裂 缝深度做了如下规

热处理缺陷裂纹产生原因分析

热处理缺陷裂纹产生原因的分析 -------------------------------------------------------------------------------- 作者:张丽更新时间:2008-2-13 江苏盐城纺织职业技术学院 摘要:主要分析各种热处理方法及其他因素使金属零件产生裂纹的原因 关键词:热处理缺陷裂纹因素 热处理是通过加热和冷却,使零件获得适应工作条件需要的使用性能,达到充分发挥材料潜力,提高产品使用寿命和提高效能的重要的工艺方法。如果出现热处理缺陷,热处理就无法达到预期的目的,零件将成为不合格品或废品,从而造成经济损失。热处理缺陷一般按缺陷性质分类,主要包括裂纹、变形、残余应力、组织不合格、性能不合格、脆性及其他缺陷等七类。其中最危险的热处理缺陷是裂纹,一般将之称为第一类热处理缺陷,它属于不可挽救的缺陷;最常见的热处理缺陷是变形,一般称之为第二类热处理缺陷;其余缺陷如残余应力,组织不合格等属于第三类,一般统称为第三类热处理缺陷。 下面着重讨论有关热处理第一类热处理缺陷――裂纹。 一、金属零件的淬火裂纹 影响钢件淬火裂纹形成的因素众多,主要包括冶金因素、结构因素、工艺因素等。掌握各种因素作用,各因素对淬火裂纹影响的规律,对防止淬火裂纹的发生,提高成品率有重要的意义。 (1)钢件的冶金质量与化学成分的影响 钢件可用锻件、铸件、冷拉钢材、热轧钢材等加工而成,各种毛坯或材料生产过程中均可能产生冶金缺陷,或者将原料的冶金缺陷遗留给下道工序,最后这些缺陷在淬火时可扩展成淬火裂纹,或导致裂纹的发生。如铸钢件在热加工工艺过程中因加工工艺不当,在内部或表面可能形成气孔、疏松、砂眼、偏析、裂痕等缺陷;在锻件毛坯中,有可能形成缩孔、偏析、白点、夹杂物、裂纹等。这些缺陷对钢的淬火裂纹有很大的影响。一般说来,原始缺陷越严重,其淬火裂纹的倾向性越大。 钢的含碳量和合金元素对钢的淬裂倾向有重要影响。一般说来,随着马氏体中含碳量的增加,增大了马氏体的脆性,降低了钢的脆断强度,增大了淬火裂纹倾向。在含碳量增加时,热应力影响减弱,组织应力影响增强。水中淬火时,工件的表面压应力变小,而中间的拉应力极大值向表面靠近。油中淬火时,表面拉应力变大。所有这些都增加了淬火开裂倾向。而合金元素对淬裂的影响是复杂的,合金元素增多时,钢的导热性降低,增大了相变的不同时性;同时合金含量增大,又强化了奥氏体,难以通过塑性变形来松弛应力,因而增大热处理内应力,有增加淬裂的倾向。然而合金元素含量增加,提高了钢的淬透性,可用较缓和的淬火介质淬火,可以减少淬裂倾向。此外有些合金元素如钒、铌、钛等有细化奥氏体晶粒的作用,减少钢的过热倾向,因而减少了淬裂倾向。 (2)原始组织的影响 淬火前钢件的原始组织状态和原始组织对淬裂的影响很大。片状珠光体,在加热温度偏高时易引起奥氏体晶粒长大,容易过热,所以对原始组织为片状珠光体的钢件,必须严格控制淬火加热温度和保温时间。否则,将因钢件过热导致淬火开裂。具有球状珠光体原始组织的钢件,在淬火加热时,因为球状碳化物比较稳定,在向奥氏体转变的过程中,碳化物的溶解,

大型锻件内部缺陷分析及消除内裂纹的措施

机械设计与制造 一152一Machinery Design&Manufacture 第5期2008年5月 文章编号:lOOt一3997(2008)05-0152-02’ 大型锻件内部缺陷分析及消除内裂纹的措施 宫成立关谷涵(沈阳职业技术学院,沈阳110045) Analysisonlarge-scaleforginginternaldefectandmeasuresofeliminatinginternalcracks GONGCheng-li,GUANGu-han(ShenyangProfessionalTechnologyInstitute,Shenyang110045,China)已oE—曼一品一■oJ巳—罡—,Lj已—是—,I—J已—哭—,.一、,已—E—JLJ巴一,L■-,k曼一■■JLJ,L,I■■jL、曼—,L一氮●■JLJt^奠—JLjL、,L.奠,JLJt^奠,、受 【摘要】论述了消除锻件内部裂纹的措施,一是采取热修复既自修复机制,二是在大型锻件锻造 生产过程中,采用宽砧走扁方压实先进工艺和收孔工艺方法。通过实验和大量生产实践证明,上述方法是提高大型轴类锻件、饼类锻件、厚壁筒类锻件内部质量的重要途径。 关键词:热修复;宽砧走扁方压实法;WHF压实法 【Abstract】^台expoundedmeasuresofeliminatingforginginternalcracks.First,adoptthe如frep面r_theselfrepairmechanism.Second凇etheadvancedtechniqueofcompactionlawofhammeredinto/tats口uarethroughwideblockandeliminatingholesinthelarge--scaleforgingproductionprocess.hisprovedthroughtheexperimentandthemossproductionpracticethattheabovemethodsaletheimporttmtwayofimproving internal qualityofthelarge-scaleaxis-shapedforging,cake-shapedforgingandthickwalltubefo哂ngKeywords:Hotrepair;Bianwidebrickwalkcompactors;WHFcompactionmethod ’ t¨¥—¥—F1F1F1r1广1rlrlr’—簟—誓一●一●—¥¨节—¥11节—¥—¥—¥—¥1F’F1rlrl广’r了—¥—¥—¥—¥—簟—¥—¥—¥—¥—簟—¥—●中图分类号:THl6,TG335文献标识码:A. 钢铁的冶金质量和凝固特性不可避免地会给钢锭带来许多 夹杂、疏松、裂纹等原始缺陷,虽然随着冶炼浇注技术的进步。这 些缺陷的数量、大小、形状、分布和组成等都会得到较大程度的 改善,但夹杂仍然存在。传统锻造理论认为,塑性加工的作用一 是成形,二是改性,既改善材料内部质量,提高力学性能。由于大 型锻件制造技术的特殊性和复杂性,如果锻坯在塑性加工过程 中应力状态不良,变形分布、温度分布不均,生产中常发现大锻 件有孔隙性和裂纹性缺陷。然而长期以来对于材料内部缺陷热 修复规律缺乏深入认识。 大量研究表明,锻件内部缺陷可以通过热加工过程进行修 复11I。所以,研究如何使大锻件中的缺陷压实锻合,以及通过适 当方式修复缺陷,顺利通过超声波探伤,对提高锻件生产的技术 水平和经济效益具有重要意义。 1模拟实验 实验用材料为管板锻件常用材料20MnMo钢,采用钻孔压缩法预置内裂纹。综合考虑加热温度和保温时间对裂纹修复的作用,在(800—1200)℃的温度范围内,加热并保温试样。将制成的金相试样,在光学显微镜下清楚地观察到试样的裂纹部分随加热温度升高、保温时间延长而逐渐被修复的过程,如图l所示。 (1)800。C时,裂纹中间仍为空洞,如图Ka)所示。 (2)温度上升到900℃,裂纹的尖端部分首先修复,使裂纹的实际尺寸减小。如图1(b)所示。 《3)当温度达1000。C时,原裂纹部位已经基本上被重结晶组织所填充,但其组织与周围基体不同,如图l(c)所示。 (4)温度达到1200'12时,裂纹内的金属组织与周围基体已无明显差异经,但仍残留有少量显微孔洞,如图l(d)所示。 +上述现象表明,在一定的条件下,金属材料内部的裂纹是可以被修复的。 ★来稿日期:2008--07-06 图I20MnMo钢试样在各温度下的金相组织 2锻造工艺方法的改进与实施 2.1实例分析 (I)某单位在1997年生产34870、600kW转子锻件经探伤在A段心部存在有(犯-,1qb3)mm当量的密集性缺陷,如图2所示。距外圆表面250mm到中心,经解剖其中的一个锻件,做低倍检验,其结果为中心部分占截面的二分之一范围内存在有疏松 j:,l“.-y:、’、÷‘ :冀≥‘i曩曩:‘‘ 0?:鼍.?’’.,.:?:?::。. 图234870、600kW转子锻件A段心部存在的密集性缺陷 性质的裂纹等组织不致密的缺陷。很显然,锻件中心的铸态组织  万方数据

裂纹原因分析

裂纹 裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。 ?应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。?(一)形成裂纹的力学分析 在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。?至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例如带缺口试件拉伸σ/τ=4,这时多发生正断。?下面分析不同外力引起开裂的情况。 1.由外力直接引起的裂纹?压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。 弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。?镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。?工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。

断层、裂缝识别属性

断层、裂缝识别属性 地震相干、倾角和方位角 相干体技术是通过三维数据体来比较局部地震波形、相位的相似性。当地层岩性、特征等地质因素横向发生变化时,必然导致地震波发生变化,从而进一步引起地震波的各种属性变化。反之,作为一种属性应用,地震波横向变化时,根据地震道相干性计算的数值必然发生变化,且变化敏感,相干值低的点与地质不连续性(如断层、地层、特殊岩性体边界)密切相关。因此,相干体切片包含了断层、微断裂的信息,它可直观地显示微断裂的相对发育程度。通常,长度较大的线状或大曲率半经的曲线为断层的显示,长度较短的则为微断裂的显示,微断裂的显示越密集,则预示微断裂越发育。 层倾角和方位角图也有类似的功能,只是各有所长。图片上较长的线性条带显示,一般也是断层的体现,其中短促的线性条带通常是微断裂的体现;而断层之间,方位角的线状或大小(色彩)变化现象则体现了裂缝的发育状况,通常线状显示越密集、色彩越丰富,则预示裂缝越发育。通过地震相干、倾角和方位角的叠合显示,可更加清晰地描述地质体产状的细微变化,有利于分析构造的变形程度和裂缝的发育程度,从而有助于分析储层物性的相对优劣。 SMT中该类属性应用 SMT中所有高级属性都集成在一个模块RSA中,因此要计算该类属性首先从project中找到RSA模块,打开进入属性选取窗口。 RSA模块中相干属性名称为Similarity,这里翻译过来实际上是相似性,意为相似性越差,越不相干,反映横向的不连续性,指示断层、裂缝或者特殊岩性体的存在;相似性越好,越相干,反映横向上地层具有连续性。在实际应用中利用该属性silimarity来检测尺度较大的断层,当然有时候也对小断层有用。 在similarity属性下方为silimarity variance,翻译为相似性的方差。数学上,方差是各个数据与平均数之差的平方的平均数。通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。应用到相似性计算时,也就是某三维空间内各样点之间相似性偏离该空间内平均相似性的程度大小。这种属性对小尺度的不连续性很敏感,可以用来检测小断层、裂缝的存在。

T12钢热处理工艺

金属材料与热处理技术课程设计 题目:T12钢热处理工艺课程设计 院(系):冶金材料系 专业年级:材料1201 负责人:陈博 唐磊,杨亚西, 合作者:谭平,潘佳伟,多杰仁青 指导老师:罗珍 2013年12月

热处理工艺课程设计任务书 系部冶金材料系专业金属材料与热处理技术 学生姓名陈博,杨亚西,唐磊,谭平,多杰仁青,潘佳伟 课程设计题目T12 设计任务: 1,课程设计的目的:为了使我们更好地了解碳素工具钢的性能及其热处理工艺流程。培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。学习热处理工艺设计的一般方法,热处理设备选用和装夹具设计等进行热处理设计的基础技能训练。 2.课程设计的任务分组(碳素工具钢T12) ①:锉刀的热处理工艺(唐磊) ②:热处理后的组织金相分析(陈博) ③:淬火(潘佳伟) ④:回火(多杰仁青) ⑤:局部淬火(谭平) ⑥:缺陷分析(杨亚西) 3.课程设计的内容: T12钢热处理工艺设计流程 4参考文献: 【1】詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析.塑性工程学报,2001,8(4) 【2】叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005,59---60 【3】许天己钢铁热处理实用技术.化学工业出版社2005,134"~136 设计进度安排: 第一周周一~周二钢的普通热处理工艺设计理论学习 周三~周五分组进行典型金属材料的热处理工艺设计第二周周一~周三撰写设计说明书 周四~周五答辩 指导教师(签字): 年 月日

热处理工艺卡 热处理工艺卡材料牌 号 T12 零件重 量 锉刀400g 工艺路 线 热轧钢板冲压下料——退火——校直——铣或刨侧 面——粗磨——半精磨——剁齿——淬火加回火。 技术条件检验方法 硬度HRC60-62,HB≤207 洛氏硬度计,布氏硬度计 金相组 织 珠光体,马氏体和 渗碳体 金相观察 力学性 能 硬度:退火,≤ 207HB,压痕直径≥ 4.20mm;淬火:≥ 62HRC 布氏法,洛氏法 工 序号工序名称设备 装炉方式 及数量 加热温 度℃ 保温 时min 冷却 介 质 温 度 ℃ 冷却时间 min 1 预热加热炉- 550-65 加热 时间 的5-6 倍 - - - 2 球化退火退火炉- 760-77 0 2-4h 空 气 550 -60 4h 3 淬火保护气 氛炉- 770-78 - 水150 -20 10 4 低温回火回火炉- 160-18 0 0.75- 1h 空 气 150 60 编制人陈博编制日期2013.12.11 审核日期

相关文档
最新文档