轻松掌握求最值常用24种方法(附例题)

轻松掌握求最值常用24种方法(附例题)
轻松掌握求最值常用24种方法(附例题)

去绝对值常用方法

. (初一)去绝对值常用“六招” (初一)六招”去绝对值常用“难度大,解绝对值问题要求高,绝对值是初中数学的一个重要概念,是后续学习的必备知识。不易把握,解题易陷入困境。下面就教同学们去绝对值的常用几招。一、根据定义去绝对值的值-│c│c = - 8时,求3│a│-2│b│例1、当a = -5,b = 2,负数的绝所以根据绝对值的意义即正数的绝对值是它本身,分析:这里给出的是确定的数,。代值后即可去掉绝对值。的绝对值是0对值是它的相反数,00 < c = -8b =2>0,解:因为:a = -5<0,[ - ( - 8 ) ] = 7 2 ×2 --5)] –所以由绝对值的意义,原式= 3 [ -(”相关信息去绝对值二、从数轴上“读取c在数轴上的a、b、例2、有理数- │a│-a│+│c-b│+│a+b│位置如图所示,且│a│=│b│,化简│c的正负性,由数轴上点的位置特征,即可去绝对、a + bc - a、c-b分析:本题的关键是确定值。- a = b b 且<c<解:由已知及数轴上点的位置特征知:a<0 b ) ] + 0 - ( - a ) = b –故原式= c - a + [ - ( c c - b<0,a + b = 0 从而 c –a >0 ,三、由非负数性质去绝对值22的值。= 0,求-25│+ ( b –2 )ab:已知例3│a 。分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”222 2 = 0 –由绝对值和非负数的性质:ab 解:因为│a-25 = 0 -25 │+ ( b – 2 )且= 0 ab = - 10 ab = 10或a = - 5 b = 2 故即a = 5 b = 2 或四、用分类讨论法去绝对值的值。abc≠0,求+ + 4例、若同为正号还是同为负号;两个同为正(负)号,另、c,所以只需 考虑a、b分析:因abc≠0一个为负(正)号,共八种情况。但因为两正(负)、一负(正)的 结果只有两种情况,所以其值只有四种情况。异号。b、、c、b、c有同为正号、同为负号和aa 解:由abc≠0可知,= 3 + + + = + 、c都为“+”时,b当a、= - 3 ---”时,+ + = c当a、b、都为“-+ + = 1 时,“-”、a、bc中两“+”一当+ + = - 1 “+”时,中两“-”一ca 当、b、五、用零点分段法去绝对值的最小值。2│+│x -3│-例5:求│x + 1│+│x 的值的符号也在变化。关键是把各式绝对值x -3–x 2、、在有理数范围变化,分析:xx + 1解 这类问题的基本步骤是:的取值进行分段讨论,为此要对符号去掉。x然后选取其最小值。. . 求零点、分区间、定性质、去符号。即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间化简求值即可。。由绝对值意义分别讨论如下:,3可确定零点为- 1,2,解:由x + 1 = 0x - 2 = 0,x - 3 = 03 + 4 = 7 >– 3 ) ] = -3 x + 4 -1时,原式= -( x + 1 ) + [ - ( x –2 ) ] + [ - ( x 当x<-2 + 6 = 4 3 ) ] = - x + 6 >时,原式= ( x + 1 ) + [ -( x –2 ) ] + [ - ( x –当-1 ≤x <2 2 + 2 = 4 x + 2 ≥= –2 ) + [ - ( x –3 ) ] 当2 ≤x <3时,原式= ( x + 1 ) + ( x - 4 = 5 4 ≥3×3 –2 ) + ( x 3 ) = 3x –x ≥3时,原式= ( x + 1 ) + ( x –当4。故所求最小值是六、平方法去绝对值-3│、解方程│x-1│=│x例6所以对所分析:对含有绝对值的方程,用平方法是去绝对值的方法之一,但可能产生增根,求解必须进行检验,舍去增根。22 x=2是原不等式的根。x=2 x经检验,- 2x +1= x - 6x + 9 有4x =8,得解:两边平方: c在数轴上的位置、b、练习1、已知实数a │a│=│c│,化简:如图,且- b│+│a││a+c

高一地理关于地方时与区时的计算专题总结

关于地方时与区时的计算 一.地方时计算的一般步骤:某地地方时=已知地方时±4分钟×两地经度差 1.找两地的经度差: (1)若两地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)若两地不同是东经或西经,则: 经度数相加 a)若和小于180°时,则经度差=两经度和 b)若和大于180°时,则经度差=180°—两经度和 2.把经度差转化为地方时差,(1°=4分钟;15°=1小时) 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系, 东加西减——所求地在已知地的东边用加号,在已知地的西边用减号。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。 即:度数大的在东。 (2)是西经,度数越大越靠西。 即:度数大的在西。 (3)一个东经一个西经, 如果和小180°,东经在东西经在西; 如果和大于180°,则经度差=(360°—和),东经在西,西经在东 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B 点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方,所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。

统计学计算题例题及计算分析

计算分析题解答参考 1.1.某厂三个车间一季度生产情况如下: 计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。 解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1) =101.81% 平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733 =10.75(元/件) 1.2.某企业产品的有关资料如下: 试分别计算该企业产品98年、99年的平均单位产品成本。 解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500 =27.83(元/件) 该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32) =28.87(元/件) 年某月甲、乙两市场三种商品价格、销售量和销售额资料如下: 1.3.1999 解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700 =123.04(元/件) 三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137) =117.74(元/件) 2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为 3.5件;乙组工人日产量资料:

试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件 ∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下: ∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件) σ乙= √[∑(x-x)2 f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65% 由于V 甲<V 乙,故甲生产小组的日产量更有代表性。 2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下: 试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤 ∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:

地方时计算方法及试题精选(DOC)

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B 点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A 点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。 所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时+8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

去绝对值符号的几种常用方法精编版

去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1.利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥??-????≤?; |x |>c (0)0(0)(0)x c x c c x c x R c <->>???≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|或||||x a x b m -+-<(m 为正常数)类型不等式。对||||ax b cx d m +++>(或

地方时区时和时区计算专题练习

地方时、区时和时区计算练习 一.选择题(共14小题) () .下列有关北京时间的说法,不正确的是1 中国标准时间东八区区时地方时D.A.北京的地方时B.() 时,北京的地方时为:002.当北京时间1256 ::::00 16 3.右图中的两条虚线,一条是晨昏线,另一条两侧大部分地区日期不同;()? 8日,则甲地为此时地球公转速度较慢。若图中的时间为7日和时8日4时.7日8 D.日7A.日4时 B.88时C135°5ˊE),最西端位于新疆帕中国幅员辽阔,最东端位于黑龙江与乌苏里江主航道汇合处(约题。4~6米尔高原(约73°40ˊE)。据此回答() 日,中国最东端日出时,北京时间约为月214.300 :00 :00 ::() 21日,中国最东端日出时,最西端帕米尔高原的地方时约为5.3月55 ::00 ::55 () 6.当中国最西端到达正午时,北京时间约为05 :::55 :00 题。~10读下图(阴影部分表示黑夜),据此回答7() .此时太阳直射点的地理坐标是7 B.(30°E,30°W)A.(0°,60°E) (0°,30°E)(0°,120°E)C. D.() 是.此时有两条经线两侧日期不同,这两条经线8 (0°,150°W)B.A.(0°,180°)(180°,150°E)D.(150°W,180°)C. () .此时,北京时间为9. :00 ::00 :00 10.当昏线与本初子午线重合时,北京时间可能为() 月24日2时月22日2时月21日10时月23日10时 2007年10月24日北京时间(东八区)18时05分,举世瞩目的“嫦娥一号”卫星在中国西昌卫星发射中心成功发射。据此回答11~12题: 11.“嫦娥一号”观测的目标天体是()A.太阳 B.月球C.金星D.火星 12.此时,美国纽约(西五区)的区时是() 日5时05分日13时05分日10时05分日11时05分

高一地理计算区时等方法

◆区时的计算 ●方法 (1)公式法:所求区时=已知区时±时区差 正负号选取原则:东加西减。(所求区时的时区位于已知区时时区的东侧,取“+”;若位于西侧,则取“—”)。 (2)数轴法: 画一个简单的示意图是进行区时计算的好方法。计算时遵循东加西减、一区一时的计算法则,注意日期的变化。 ●区时的性质: ①严格按照各时区中央经线(地方时)与太阳光照的关系来确定某时区的时刻,同一时区不会因经度的变化而改变区时。 ②严格按照“东早西晚,东加西减,区区计较,整时换算”进行区时计算。 ③由于区时是对时区(跨经度15°)而言的,有平面二维空间(区域),具有相对统一性、一致性和稳定性(同区同时),使用方便,克服了时间在钟点上的混乱。实际上,每个国家或地区,为了采用统一的时间,一般都不严格沿经线划分时区,而是按自己的行政边界和自然边界来确定时区。 ●区时的计算方法: ①用已知经度推算时区: 时区号数:已知经度÷15° ②已知两地所在地区,计算两地时差:(异区相加,同区相减) 若两地同在东时区或西时区,则两地时区数值相减后取绝对值,即为所求时差值。 若两地分别位于东、西时区,则两地时区数值相加,即为所求时差值。 ③已知某地区时,求另一地区时:所求区时=已知区时±时差 正负号选取原则:东加西减。(所求区时的时区位于已知区时时区的东侧,取“+”;若位于西侧,则取“-”) 注意事项:计算时采用全天24小时制,区时计算结果若大于24小时,则为第二天,该数值减去24小时,即为所求时刻,日期加一天;若区时小于0,则为前一天,需用24小时减所得数的绝对值,即为所求时刻,日期减一天。 例题3:已知本初子午线的地方时是正午12点,东经116°的地方时是;而另一地点的地方时为6点56分,它所在的时区是区。 答案:19时44分西5 ●时区图的判读 第一,地球上划分日期的经线的确定 例题4:读中心点为地球北极的示意图(图1),若阴影部分表示黑夜,判断 ①.甲地时间为:A.8时 B.9时 C.15时 D.16时(B) 若阴影部分为7月6日,非阴影部分为7月7日,判断 ②.甲地时间为: A.15时 B.9时 C.3时 D.12时(C) ③.北京为:A.6日8时 B.7日8时 C.6日20时D.7日20时(B) 解题思路:(1)在地球上使日期发生变化的地方有两处:一处为180°经线;另一处为时间是今日0点或昨天24点处。因此,如(图1)AB与BC两条经线中,有一条必为180°经线,而另一条则为7月6日的24点或7月7日的0点所在的经线,那么,哪条是180°经线呢? (2)180°经线的确定 根据地球运动方向(题干中的隐含条件:圆心为北极点),180°经线的东侧比西侧的日期要晚一天。而图中经线BC东侧为7月6日,西侧为7月7日,则经线BC为180°经线。确定了180°经线的位置,其它经线的度数就迎刃而解了。 第二,变换图形,化解难点 在平时的学习中,对于时区图,我们习惯于侧视平面图。若将题目上的俯视图转换为侧视的平面图,问题就变得清晰了。

时区和区时的计算专题试卷一

图1 时区和区时的计算专题试卷一 6月22日,当太阳同时位于北半球甲、乙两地上中天(在天空中的位置最高)时,测得甲地太阳高度角为60°,乙地太阳高度角为36°;甲、乙两地在某地图上的距离是44.4厘米(不考虑地形因素)。据此回答1-2题。 1.关于甲、乙两地的说法,正确的是 A .甲、乙两地任何一天均不可能同时看到日出 B .甲地正午太阳高度总是大于乙地 C .甲、乙两地昼夜长短总是相同 D .甲、乙两地均可能出现极昼现象 2.该地图的比例尺为 A .1:24 000 000 B .图上1厘米代表实际距离30千米 C .六十万分之一 D .1:6000 000 3.当我国某城市(30.5°N ,115°E)市中心的标志性建筑物正午阴影面积达一年中最大时,下列四幅昼夜 分布局部图(图1)与之相符的是(阴影表示夜半球) 由图为某群岛示意图,此季节该群岛北侧附近的洋流流向是自西向东,M 线为晨昏线。据此回答4-6题: 4.此时北京时间为 A .21时 B .9时 C .13时 D .23时 5.当图中夹角a 为20?时,下列叙述正确的是 A .南极圈上出现极夜现象 B .此时北京寒冷干燥 C .北半球各地昼长正逐渐加大 D .该地区正午时的物体影子朝南 6.危及到该群岛国家经济发展和生存的主要环境问题是: A .火山、地震 B .全球性气候变暖 C .泥石流、滑坡 D .海洋环境污染 北京时间2005年7月4日13点57分,由美国发起,中、俄、德、法、加等多国科学家参与的“深度撞击号”航天器,经过半年太空遨游,成功地对太阳系中“坦普尔一号”彗星实施了撞击。据此回答7—8题。 7.下列光照图中,与深度撞击号”撞击彗星的时刻最接近的是 8.撞击彗星的瞬间,美国加州大部分地区(西八区)正值日落后3小时左右,天空完全暗 下来,许多天文爱好者目睹了“太空焰火”奇观。此日该地昼长大约为 A .10小时 B .12小时 C .14小时 D . 16小时 9.在某地24时看到北极星的仰角是40o,这时格林尼治时间是当日 18时,那么,这个地点的地理坐标是 A .90oE ,40oN B100oE ,50oN C .90oW ,50oN D .100oW ,40oN

求最值问题的几种方法

浅谈求最值问题的几种方法 摘要:最值问题综合性强, 涉及到中学数学的许多分支, 因而这类问题题型广, 知识面宽,而且在解法上灵活多样, 能较好体现数学思想方法的应用. 在历年的高考试题中, 既有基础题, 也有一些小综合的中档题, 更有一些以难题的形式出现. 解决这类问题要掌握多方面的知识, 综合运用各种数学技巧, 灵活选择合理的解题方法, 本文就几类最值问题作一探求. 关键词:数学;函数;最值;最大值;最小值 1. 常见函数的最值问题. 1.1 一次函数的最大值与最小值. 一次函数b kx y +=在其定义域(全体实数)内是没有最大值和最小值的, 但是, 如果对自变量 x 的取值范围有所限制时, 一次函数就可能有最大值和最小值了. 例1. 设0>a 且 a ≠1,)1(1 x a ax y -+=,(0≤x ≤1),求y 的最大值与最小值. 解: )1(1x a ax y -+=可化为:.1 )1(a x a a y +-=下面对一次项系数分两种情况讨论: (1)当a >1时,a -a 1>0,于是函数a x a a y 1 )1(+-=的函数值是随着x 的增加而增加的,所 以 当x =0时,y 取最小值 a 1; 当x =1时,y 取最大值a . (2)当0<a <1时,01<-a a ,于是函数a x a a y 1 )1(+-=的函数值是随着x 的增加而减少的,所以 当x =0时,y 取最大值 a 1; 当x =1时,y 取最小值. 例2. 已知z y x ,,是非负实数,且满足条件 .503,30=-+=++z y x z y x 求z y x u 245++=的最大值和最小值. 分析: 题设条件给出两个方程,三个未知数z y x ,,,当然, z y x ,,的具体数值是不能求出的.但是,我们固定其中一个,不防固定x ,那么z y ,都可以用x 来表示,于是u 便是x 的函数了(需注意x 的取值范围),从而我们根据已知条件,可求出u 的最大值与最小值.

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式 把若干物体平均分给一定数量得对象,并不就是每次都能正好分完。 如果物体还有剩余,就叫盈; 如果物体不够分,就叫亏。 凡就是研究盈与亏这一类算法得应用题就叫盈亏问题。 盈亏问题得常见题型为给出某物体得两种分配标准与结果,来求物体数量与参与分配得对象数量。由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果得组合,这里以一道典型得盈亏问题对三种情况得几种组合加以说明。 注意:公司中两次每人分配数得差也就就是大分减小分 一、基础盈亏问题 1、一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数得差)=人数。例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友与多少个桃子?” 解:(7+9)÷(10-8)=16÷2=8(个)………………人数 10×8-9=80-9=71(个)………………………桃子 或8×8+7=64+7=71(个)(答略) 测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。 2、两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数得差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解:(680-200)÷(50-45)=480÷5=96(人) 45×96+680=5000(发)或50×96+200=5000(发)(答略) 测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。 3、两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数得差)=人数。 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生与多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略) 测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。 4、一盈一尽(刚好分完),可用公式:盈÷(两次每人分配数得差)=人数。 测试:如果每人分6 个苹果,就剩下40 个苹果;如果每人分10 个苹果,就刚好分完。 5、一亏一尽(刚好分完),可用公式:亏÷(两次每人分配数得差)=人数。 测试:如果每人分14 个苹果,就少40 个苹果;如果每人分10 个苹果,就刚好分完。 由上面得问题,我们归纳出盈亏问题得公式: 【提示】解决这类问题得关键就是要抓住两次分配时盈亏总量得变化,经过比对后,再来进行计算。 【例题1】某班去划船,如果每只船坐4 人,就会少3 只船;如果每只船坐6 人,还有2 人留在岸边。问有多少个同学? () A、30 B、31 C、32 D、33 解析:此题答案为C。 设小船有x 只,根据人数不变列方程:4(x+3)=6x+2,解得x=5。 所以有同学6×5+2=32 人。 盈亏问题例题讲解:

去绝对值常用方法

去绝对值常用“六招”(初一) 去绝对值常用“六招” (初一) 绝对值是初中数学的一个重要概念,是后续学习的必备知识。解绝对值问题要求高,难度大,不易把握,解题易陷入困境。下面就教同学们去绝对值的常用几招。 一、根据定义去绝对值 例1、当a = -5,b = 2, c = - 8时,求3│a│-2│b│- │c│的值 分析:这里给出的是确定的数,所以根据绝对值的意义即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。代值后即可去掉绝对值。 解:因为:a = -5<0,b =2>0,c = -8<0 所以由绝对值的意义,原式= 3 [ -(-5)] – 2 ×2 - [ - ( - 8 ) ] = 7 二、从数轴上“读取”相关信息去绝对值 例2、有理数a、b、c在数轴上的 位置如图所示,且│a│=│b│,化简│c-a│+│c-b│+│a+b│-│a│ 分析:本题的关键是确定c - a、c-b、a + b的正负性,由数轴上点的位置特征,即可去绝对值。 解:由已知及数轴上点的位置特征知:a<0<c<b 且- a = b 从而 c – a >0 , c - b<0, a + b = 0 故原式= c - a + [ - ( c – b ) ] + 0 - ( - a ) = b 三、由非负数性质去绝对值 例3:已知│a2-25│+ ( b – 2 )2 = 0,求ab的值。 分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”。解:因为│a2-25│+ ( b – 2 )2 = 0 由绝对值和非负数的性质:a2-25 = 0 且b – 2 = 0 即a = 5 b = 2 或a = - 5 b = 2 故ab = 10或ab = - 10 四、用分类讨论法去绝对值 例4、若abc≠0,求+ + 的值。 分析:因abc≠0,所以只需考虑a、b、c同为正号还是同为负号;两个同为正(负)号,另一个为负(正)号,共八种情况。但因为两正(负)、一负(正)的结果只有两种情况,所以其值只有四种情况。 解:由abc≠0可知,a、b、c有同为正号、同为负号和a、b、c异号。 当a、b、c都为“+”时,+ + = + + = 3 当a、b、c都为“-”时,+ + = - - - = - 3 当a、b、c中两“+”一“-”时,+ + = 1 当a、b、c中两“-”一“+”时,+ + = - 1 五、用零点分段法去绝对值 例5:求│x + 1│+│x - 2│+│x -3│的最小值。

地方时与区时经典练习题

专题训练——地方时区时的计算 一、有关地方时的计算 1.已知A 、B 两地经度和A 地的地方时,求B 地的地方时: B 地地方时=A 地地方时±分钟经度差41 0? 如果B 地在A 地的东面用“+”;如果B 地在A 地的西面用“-”。 例1:当东经115°的地方时为9时30分时,东经125°的地方时为多少? 解析:因为东经125°位于东经115°的东面,所以: 东经125°地方时=9时30分+4)1 115125(00 0?-分钟=9时30分+40分=10时10分, 也就是说,当东经115°为9时30分的时候,东经125°的地方时为10时10分。 例2:A 地为东经120°当时的时间为10:20,B 地为东经90°,求B 地的地方时。 解析:因为B 在A 的西面,所以: B 地地方时=10:20-41901200 0?-分钟 =10:20-120分钟 =8:20 2.已知两地的地方时和其中一地的经度,求另一地经度 所求经度=已知经度±014?分钟 地方时差 例1.当伦敦为正午时,区时为20:00的城市是…………………………………( ) A 、悉尼(150°E ) B 、上海(120°E ) C 、洛杉矶(120°W ) D 、阿克拉(0°经线附近) 解析:伦敦正午时为12:00,经度为0°;而区时为20:00的地方应该在伦敦的东部,则: 所求经度=已知经度±014?分钟地方时差=0°+014 1220?-=120°E 二、时区和区时的计算

1.已知A、B两地的时区和A地的区时,求B地的区时: B地区时=A地区时±时区差 如果B地在A地的东面用“+”;如果B地在A地的西面用“-”。 计算结果小于24时,那么日期不变,时间取计算结果; 计算结果大于24时,那么日期增加1日,时间取计算结果减24; 计算结果是负数,那么日期减1日,时间取计算结果加24; 从东向西每过一个时区减1小时;过日界线(180经线°),日期加1天; 从西向东每过一个时区加1小时;过日界线(180经线°),日期减1天。 2行程时间的计算: 由出发时间求到达时间,须加上行程时间; 由到达时间求出发时间,须减去行程时间。 例1.圣诞节(12月25日)前夜当地时间19:00时,英格兰足球超级联赛的一场比赛将在伦敦开赛。香港李先生要去伦敦观看这场比赛。自香港至伦敦,飞机飞行时间约为17小时。试回答下列问题。 (1) 开赛的时候,我国北京时间应为。 解析:A地伦敦(中时区)时间12月24日19:00,B地北京(东八区),时区差=8,B位于A 的东面,所以向东计算时: B地区时=A地区时+时区差=19:00+8:00=27:00 则:日期为12月24日+1日(12月25日),时间为27:00-24:00=3:00 即:开赛时对应的北京时间为12月25日凌晨3:00 (2)在下列香港——伦敦的航班起飞时间中,李先生选择较为合适。 A.23日15:00时B.23日18:00时C.24日7:00时D.24日10:00时 解析:这是由达到时间求出发时间,用以上计算结果再减去行程时间得: 出发时间=A地区时+时差-行程时间=19:00+8:00-17:00=10:00 即李先生本应在12月24日上午10:00出发,但不可能一下飞机就能观看比赛,还需要

三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

去绝对值符号的几种常用方法

去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1.利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥??-????≤? ;|x |>c (0)0(0)(0)x c x c c x c x R c <->>???≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|或||||x a x b m -+-<(m 为正常数)类型不等式。对||||ax b cx d m +++>(或

区时计算专题例题讲解电子教案

区时计算专题例题讲 解

区时专题例题讲解 区时在地方时(使用不方便)的基础上,人为制定了理论区时,实行分区(24个时区)计时(相邻两时区相差1小时)的办法。区时是以各时区的中央经线的地方时为计时标准,这样使用起来就有了一个统一的标准。 ①特别的计时方法不少国家根据本国的具体情况,在理论区时的基础上,采用了一些变通的办法计时,如我国采用北京时间即是一例。 ②时区的划分注意要点: A由于地球不停地自西向东自转,不同经度的地方,便产生了不同的时刻。这种因经度不同而造成的不同时刻,叫地方时。 B.经度相差1°,地方时相差4分钟。东边地点的时刻总是早于西边。 C.为了统一时间,国际上采用每隔经度15°,划分一个时区的方法,全球共分为24个时区。 D.每个时区都以本区中央经线上的地方时,作为全区共同使用的时间,即区时。 E.北京时间就是北京所在东八区的中央经线120°E上的地方时。 ◆区时的计算 ●方法 (1)公式法: 所求区时=已知区时±时区差 正负号选取原则:东加西减。(所求区时的时区位于已知区时时区的东侧,取“+”;若位于西侧,则取“—”)。 (2)数轴法:

画一个简单的示意图是进行区时计算的好方法。计算时遵循东加西减、一区一时的计算法则,注意日期的变化。 ●区时的性质: ①严格按照各时区中央经线(地方时)与太阳光照的关系来确定某时区的时刻,同一时区不会因经度的变化而改变区时。 ②严格按照“东早西晚,东加西减,区区计较,整时换算”进行区时计算。 ③由于区时是对时区(跨经度15°)而言的,有平面二维空间(区域),具有相对统一性、一致性和稳定性(同区同时),使用方便,克服了时间在钟点上的混乱。实际上,每个国家或地区,为了采用统一的时间,一般都不严格沿经线划分时区,而是按自己的行政边界和自然边界来确定时区。 ●区时的计算方法: ①用已知经度推算时区:

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

相关文档
最新文档