交通检测器分析

交通检测器分析
交通检测器分析

交通检测器分析

1、概述

现在社会交通的发展,交通检测器的应用越来越普及。交通检测器以车辆为检测目标,检测车辆的通过或存在状况,也检测路上车流的各种参数,其作用是为控制系统提供足够的信息以便进行最优的控制。常用的检测器有环形线圈检测器、超声波检测器、红外线检测器、视频图像处理机等。

检测器种类很多,其工作原理大致可分为两类:○1检测能使某种开关触点闭合的机械力;○2检测因车辆的运动或存在引起的能量变化。压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。

按照能否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。

检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。

2、常用的交通检测器

2.1环形线圈检测器

2.1.1环形线圈检测器的构成及其检测原理

环形线圈检测器是一种基于电磁感应原理的车辆检测器,它的传感器是一个埋在路面下面、通过一定工作电流的环形线圈。当车辆通过线圈或停在

1

2

线圈上时,车辆引起线圈回路电感量的变化,检测器检测出变化量就可以检测出车辆的存在,从而达到检测目的。

环形线圈检测器主要包括:环形线圈、线圈调谐回路和检测电路。

(1)环形线圈

环形线圈是由专用电缆几匝构成(一般为4匝),一般规格为2m ×2m 的正方形,根据不同的需要,可以改变线圈的形状和尺寸。

对车辆检测起直接作用的是环形线圈回路的总电感。总电感主要包括环形线圈的自感和线圈与车辆之间的互感。我们知道,任何载流导线都将在其周围产生磁场,对于长度为l ,匝数为N 的螺线管型线圈,线圈内磁场强度均匀。道路上的环形线圈不能完全等同于螺线管,考虑其磁场的不均匀修正因子F 1,其自感量自L 可近似于螺线管得自感量乘修正因子F 1,即: l

A N F r 201L μμ=自 (3-1) 式中r μ是介质的相对磁导率,空气的1=r μ,170104--?=hm μ;A 为线圈面积。

由上式可知,环形线圈自感的大小取决于线圈的周长、横截面的面积、匝数、周围介质情况,当线圈埋设在路面下时,上述参数就基本确定了。而车辆进入环线线圈是,改变了环形线圈周围介质情况。铁磁车体使磁导率增加,从而感量增加。但另一方面,环形线圈是有源探头在其中加上交变电流,则在其周围建立起交变电场。当铁磁性的车体进入环形线圈时,车体内会感生涡电流,并且产生与环路向耦合但方向相反的电磁场,即互感,降低线圈环路电感。由于线圈设计成涡流影响占支配地位的状态,所以环路总电感量L 减少。检测出线圈环路电感量的变化,就可以判断车辆的存在或通过。

(2)调谐回路

3

环形线圈作为一个感应元件,通过一个变压器接到被恒流源支持的调谐回路上,该调谐回路是LC 谐振回路,设计选择电容C ,使调谐回路有一个固定的震荡频率。由电子线路知识可知,LC 谐振回路的震荡频率f 为:

LC f π21

= (3-2)

这表明,f 与L 成反比。前面已分析,车辆进入环形线圈将使回路总电感L 减少,因而也会使震荡回路频率增大。只要将该回路的输出送检测电路处理得到频率随时间变化的信号就可以检测出是否有车辆通过。

(3)信号检测与输出

检测电路包括相位锁定器、相位比较器、输出电路等,现在很多型号的环形线圈检测器还包含微处理器,它与检测电路一起构成信号检测处理单元。

相位比较器的一个输入信号是相位锁定器的输出信号,其频率为调谐回路的固有震荡频率,另一个输入信号跟踪车辆通过线圈时谐振回路的频率变化,从而使输出的信号为一反映频率随时间变化的电压信号也就是反映车辆通过环形线圈的过程的信号。

输出电路先将相位比较器输出的信号进行放大,然后以两种方式输出,即模拟量输出、数字量输出。模拟量输出用来分别车型,数字信号输出用来计数或控制。亦可用微机综合处理输出信号获得各种交通参数。带有微处理机的环形线圈检测器则可以直接做到这一点。

从图3-1可以看出,当车辆前沿进入线圈一边时,检测器被触发产生信号输出,而当车辆后沿离驶线圈另一边时,信号强度低于阈值,输出电平降为零。车辆这个实际对环形线圈作用的长度L ji 称为车辆有效长度。车辆有效

长度数值上约等于车辆长度与线圈长度之和。

显然,大多数情况下都使用检测器的数字电平输出。为了检测不同的交通参数和适应不同检测或控制要求可设置检测器工作于方波和短脉冲两种输

出方式。当检测器运行于“方波”的工作方式时,只要车辆进入环形线圈,检测器就产生并保持信号输出(当车辆离开环形线圈后,仍可设置信号持续一段时间)。电路中的计时器自动计测信号持续时间,这对有些交通控制参数如占有率等的检测计算很有用处。当检测器运行于“短脉冲”的输出方式时,每当车辆通过环形线圈检测器就产生一个短脉冲(100μs~150μs),这种方式在双线圈测速系统中得以应用。

2.1.2环形线圈检测系统的构成

环形线圈检测系统包括埋于路面下面的环形线圈、接线盒、传输电缆、信号检测处理单元等。检测车辆时,将一个或多个环形线圈按一定的方法埋于路面下,线头接入接线盒,信号由传输电缆送入信号检测处理单元,该电路单元通常包括了微处理器,直接处理检测数据,计算一些交通控制参数。

环形线圈检测系统与控制中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器则将检测数据如车辆计数、占有率等传送至主控机,以便完成控制系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最佳控制效果。

2.2超声波检测器

超声波检测器是一种在高速公路上应用较多的检测器,它利用车辆形状对超声波波前的影响来实现检测。超声波车辆检测的探头具有发射和接受双重功能,被设置于道路的正上方或斜上方,向路面发射超声波,并接收来自车辆的反射波。

超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。

(1)传播时间差法

这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆

4

5

存在或通过。

如图3-3a 所示,若超声波探头距地面高度为H ,车辆高度为h ,波速v ,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t ’,则:

t =v H 2 t ’=()v

h H -2 (3-13) 可见时间t ’与车辆高度h 向对应。这个特点即用来判别车辆存在,也可用于估计车高。从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t ’的范围,由式(3-13)就可以得出能被检测出来的车辆对应的车高范围。一般超声波检测器能检测出车高处于0.75m~1.6m 的车辆。

图3-3 超声波传播时间差法检测车辆原理

a 超声波探头与车高;

b 脉冲序列

(2) 多普勒法

超声波探头向空间发射超声波同时接收信号,如果有移动物体,那么接收到的反射波信号就会呈现多普勒效应。利用此方法可检测正在驶近或正在远离的车辆,而不能检测出处于检测范围内的静止车辆。

由于超声波检测器采用悬挂式安装,这与路面埋设式检测器(如环形线圈)相比有许多优点。首先是不需破坏路面,也不受路面变形的影响;其次使用寿命长,可移动,架设方便,在日本交通工程中被大量采用。其不足之处是容易受环境的影响,当风速6级以上时,反射波产生飘移而无法正常检

测;探头下方通过的人或物也会产生反射波,造成误检。所以超声波检测器要按照一定的规范安装。

从架设方便,使用寿命长等方面来说,路面埋设式检测器不如超声波检测器,所以超声波检测器成为目前使用量仅次于环形线圈的一种检测器。

2.3红外检测器

基于光学原理的车辆检测器用得比较多的是红外检测器与激光检测器,下面主要介绍红外检测器(图3-4)。

红外检测一般采用反射式或阻断式检测技术。例如反射式检测探头,它包括一个红外发光管和一个接收管。无车时,接收管不受光;有车时,接受车体反射的红外线。其工作原理是由调制脉冲发生器产生调制脉冲,经红外探头向道路上辐射,当由车辆通过时,红外线脉冲从车体反射回来,被探头的接收管接收。经红外调解器调解,再通过选通、放大、整流和滤波后触发驱动器输出一个检测信号。

这类检测器存在的缺点是:工作现场的灰尘、冰雾会影响系统的正常工作。

6

2.4视频图像处理技术

基于视频图像处理的车辆检测技术是近年来逐步发展起来的一种新型车辆检测方法,它具有无线、可一次检测多参数和检测范围较大的特点,使用灵活,有着良好的应用前景。

视频图像处理车辆检测系统通常由电子摄像机、图像处理机(包含微处理器)、显示器等部分组成。如图3-5,摄像机对道路的一定区域范围摄像,图像经传输线送入图像处理机,图像处理机对信号进行模/数转换、格式转换等,再由微处理器处理图像背景,实时识别车辆的存在,判别车型,由此进一步推导其他交通参数。图像处理机还可根据需要给监控系统的主控机、报警器等设备提供信号,控制中心则根据这些信号制定控制策略,发出整个控制系统的控制信号。

图3-5图像处理车辆检测系统

视频图像处理方法处理的是摄像机摄取的图像。目前的系统一般还不能立即处理连续图像,而是以某一速度处理一系列的图像帧。摄像机将视场场景即光学图像转换成一帧一帧的电子信号。具体来说,设一帧图像由N个一定大小的像元组成,光电元件将每个像元的平均光亮度转换成电信号,经扫描装置逐个扫描,这些像元相应的电信号依次通过信道被发送出来,成为一帧电信号。如图3-5,摄像机设置于道路上方或侧上方,设S(x,y,t)表示摄像机视场范围内一点(x,y),在t时刻的反射光强,通过摄像机摄像,该点

7

图像强度用函数I(x,y,t)表示,该信号被转化成数字信号存储、处理。

由于每帧图像包含数十万个像元,摄像频率约30帧/s,所以需要大量的存储空间。为了减少像元所占存储空间,提高实时处理速度,通常在多帧图像中取一帧中的一些特定线段作为检测线进行处理。一旦选定检测线,图像处理机中的处理程序就估测无车时检测线上的背景强度(最简单的方法就是估算背景的统计平均值)从而得到阈值。将检测线中所含的像元的强度I(x,y,t)与阈值比较,超过阈值,说明在点(x,y)处有车辆存在或通过,否则就表示无车通过。

图3-6图像处理车辆检测示意图

图3-6中的横线m1、m2…m m就是在图像上设定的检测线,与摄像机视场中设置的一些等距离的检测站1、检测站2、…检测站m相对应。纵线表示个车道的界限。用上述方法处理识别各车道横线所包含像元的强度是否超过阈值,从而判断车辆的存在或通过。图像处理机自动计数就得出通过横线的车辆数,这也就是该横线对应的现场检测站的车辆数。用相邻横线的距离除以车辆通过相邻横线的时间,图像处理机可很容易的由程序计测出车速,并且可据此推算出其它交通参数。

在实际的图像处理系统中,背景处理是一个复杂而棘手的问题。图像处理程序必须考虑到对多种干扰因素的补偿,如不同路面对光的反射、阴影等。

由于图像处理方法是在摄像机摄取的图像的基础上实现识别和检测的,因此在摄像机的视场范围内能做多点检测而不需额外增加设备,也就是说可

8

处理一定区域范围而不是一个点的交通流。检测系统拆装时,不损坏路面,不影响交通,只需妥善安装好摄像装置。

2.5雷达检测器

雷达检测器是基于多普勒效应原理进行工作的。其原理是:当发射换能器向地面发射微波时,如果由车辆在微波发射线的覆盖区域内通过,会使部分微波发生反射,且被接收换能器收到。根据多普勒效应,接收到的微波频率将比原发射频率略高或略低,即产生频差(频率偏差)。利用检测电路,将频差转化为脉冲信号,即可检测车辆的存在或通过,同时也可以测定车速。

雷达检测器有组和式和分离式两种。传感器和电子检测装置合为一体的叫做组合式雷达检测器。这种检测器结构紧凑,制造和安装也比较简便,其主要缺点是维修不方便。分离式检测器是将传感器和电子检测装置分开安装,这种检测器只将传感器悬挂在道路上方(可利用电灯杆安装),而电子检测装置安装在路边的检测箱内,以便于维修。相对而言雷达检测器的使用只是在一些特殊场合,因为它的维护比较复杂。

雷达检测器要求车辆速度至少在5km/h以上,只有这样才能可靠的检测到车辆的存在。

3、检测器的选用

在不同的道路、交通和天气条件下,不同的检测技术所表现出来的技术性能也具有一定的差异,检测器的选用也不同,表1给出了不同应用场所常用的检测技术分析比较(不包括常用的环形线圈)。最常用的为环形线圈检测器,它能够测量一切需要测量的控制参数,并且与它的能力相比,它的价格是比较低的。目前来说,环形线圈仍具有足够的准确性和可靠性。

9

表1不同应用场所可选用的检测技术

10

简述交通量分析预测方法

简述交通量预测方法与步骤 一、交通调查与分析 1.调查综述 道路交通量与项目影响区的交通出行分布是交通量预测的基础资料。为了对公路建设项目未来年的交通量发展情况进行预测,需要调查了解项目影响区交通发展状况,相关路网交通现状,各类车辆的起讫点分布,交通组成等基础数据资料。 交通调查的内容包括两个方面,一是相关公路的道路状况和交通状况调查,另一方面是车辆出行分布调查,据此分析项目影响区的车辆出行分布状况。相关公路道路与交通状况调查主要包括相关公路历史流量发展分析,交通组成分析,用于分析项目影响区交通发展规律;车辆出行分布调查主要调查车辆出行的起讫点,即OD 调查,用于分析项目影响区及相关路网车辆的空间、时间分布特征,掌握交通现状。 2、交通量OD 调查及分析 OD 调查和交通量观测主要是为了全面掌握项目影响区内各方向公路运输通道的交通流量、流向、车型构成等交通特性,为拟建项目所在通道的运输需求特点分析和交通量预测工作提供了可靠的基础数据。 OD 调查点位置布设原则为: ⑴在能够把握交通流量分布特性和不影响调查目的及精度的前提下,尽量减少OD 调查点个数,以节省人力、物力和财力; ⑵OD 点应尽量远离城区(一般为10 公里左右); ⑶为了和历年的交通量调查资料相互检验、补充,在不影响调查目的的前提下,调查地点尽量与历年交通量观测点一致或靠近。 以OD 调查和交通量观测数据为基础,按照调查所采用的抽样率,根据主要相关公路历年交通量计算得到的月不均匀系数和周日不均匀系数将每个调查点的OD 交通量进行扩大、修正,形成单点年平均日OD 交通量(AADT ),并得到单点OD 表。交通量换算采用小客车为标准,各代表车型和车辆折算系数规定如下表所示。 各汽车代表车型与车辆折算系数 各调查点年平均日交通量计算公式如下:

交通调查与分析

交通调查与分析 第一章 1、交通调查:是一种用客观的手段,测定道路交通流以及与其有关现象的片断,并进行分析,从而了解与掌握交通流的规律。 2、交通调查与目的:为了向交通,城市建设规划和环境保护以及公安交通管理部门提供优化,改善道路交通的实际参考资料和数据。主要对象是交通流现象。第二章 1、交通量调查目的在于通过长期连续性,短期间隙性和临时性观测,搜集交通量资料,了解掌握交通量在时间和空间上的分布规律,为交通规划,道路建设,交通管理和控制,工程经济性分析提供必要的数据。 2、交通量是指单位时间内通过路面某一断面的车辆数。 3、平均交通量:某一时间段内的交通量平均值。 4、日平均交通量ADT:任意期间的累计交通量之和除以该期间的总天数所得的交通量 5、年平均日交通量AADT:一年内连续交通量累计值和除以一年的总天数365(或366)所得的交通量 6、月平均日交通量MADT:一月内连续交通量累计值之和除以该月的总天数所得的交通量。 7、周平均日交通量WADT:一周之内连续交通量累计值之和除以一周天数7所得的交通量。 8、年平均月交通量AMDT:一年内连续交通量累计值和除以一年的月份数12所得的交通量。 9、最高小时交通量:以1h为计时单位连续观测若干小时所得结果中最高的小时交通量。 10、高峰小时交通量:一天24小时内交通量最高的某一小时的交通量。 11、年最高小时交通量:一年8760个小时内交通量最高的某一小时的交通量。 12、第30位年最高小时交通量:又称为第30小时交通量,是一年内8760个小时交通量按从大到小的顺序排列位于第30位的小时交通量。 13、道路分布系数:是指用分数表示的道路主要行车方向交通量占双向行车方向总交通量的比值。 14、第30位交通量系数:第30位小时交通量与年平均日交通量的比值。 15、月(周)交通量变化系数:月平均日交通量与年平均日交通量的比值。 16、高峰小时流量比:高峰小时交通量与该天的日平均交通量的比值。 17、高峰区间:是指高峰小时内连续5min或15min累积交通量最高的区间称为高峰小时区间。 18、扩大高峰小时交通量:将高峰区间的累计值扩大推算为1h时间内的交通量为扩大高峰小时交通量。 19、高峰小时系数:高峰小时时间内实际交通量与扩大高峰小时交通量之间的比值。 20、交通量调查的地点和时间选择:交通量的地点选择随调查目的不同而有所不同,主要是考虑交通量集中且具有代表性,方便调查与统计,具有控制性的点:一般选择远离交叉口的平直路段,交叉口某一进口道的引道,交通设施,枢纽的出入口。调查时间,日期,范围随调查目的不同而不同,作为了解全年的交通量变化趋势的一般性调查,必须选择在一年内有代表性的交通量日期进行,作为一周来说,最好选择在星期二到星期五,避免周末及星期日前后。从日期来说以商业活动比较活跃的日子,节假日,休息日,以及无大型文化活动日的晴天为宜。 21、交通量调查的方法:人工观测法,机械观测法,实验车法,浮动车法,基于GPS的方法,航摄法,录像法。 22、区域境界线交通量调查方法:是在一个完全被一条假设线封闭的特定区间内,对进入该区域的所有道路进行交通量调查,以检测出入的交通量和该区域的交通量的比例关系,又称为小区出入交通量。 23、分隔查核线交通量调查法:是为了记录跨越一个主要地理障碍物或行驶于两期区间的交通量,

交通检测器的种类及其优缺点

交通检测器的种类及其优缺点 检测器的概述 目前国内外在交通检测系统或交通信息采集系统中,大量应用了电磁传感技术、超声传感技术、雷达探测技术、视频检测技术、计算机技术、通信技术等高新科学技术。相应地,交通信息检测器主要有:电感环检测器(环型感应线圈)、超声波检测器、红外检测器、雷达检测器、视频检测器等。 交通检测器以车辆为检测目标,检测车辆的通过或存在状况,对于异常交通流信息如拥堵、事故等也能进行实时监测,也检测路上车流的各种参数,如车流量、车速、车型分类、占有率、排队等,其作用是为控制系统提供足够的信息以便进行最优的控制。 检测器的分类 检测器种类很多,其工作原理大致可分为两类:○ 1检测能使某种开关触点闭合的机械力;○ 2检测因车辆的运动或存在引起的能量变化。压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。 按照能否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。 检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。 常用检测器的原理及优缺点介绍 超声波检测器 工作原理:根据光沿直线传播的原理,当光遇到障碍物时就会被反射回来,同理当超声波遇到障碍物(车辆)时就会产生一反射波,反射波传送回接收端,根据时间差就可以判断是否有车辆通过。正常情况下,没有车辆时超声波返回到超声波检测器用的时间比有车辆通过时用的时间要长,当接收到反射波的事件变短就可以判断出车辆通过。 超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。 (1) 传播时间差法 这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆存在或通过。 如图3-3a 所示,若超声波探头距地面高度为H ,车辆高度为h ,波速v ,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t ’,则: t =v H 2 t ’=()v h H -2(3-13) 可见时间t ’与车辆高度h 向对应。这个特点即用来判别车辆存在,也可用于估计车高。从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t ’的

车用微波检测器的改进设计.

!曼型!!!! 二!!!! ■ —■- I「亠■ ■ ■ ■■ ■ ■ ■ CNl 1—2034/T 实验技术与管理 Experimental Technology and Management 第27卷第3期2010年3月 V01.27 No.3 Mar.2010 车用微波检测器的改进设计 梁涛,骆 (西华大学交通与汽车工程学院,四川成都 610041 摘要:微波检测器具有检测精度高等优点,但在野外的车辆使用中发现一些问题。为此,主要对微波检测器进行了刻度盘、电源、升降杆的改进设计。实践证明改进后的仪器在道路交通流的检测中起到了方便快 捷的作用。

关键词:微波检测器;刻度盘;升降杆中图分类号:TN015 文献标志码:B 文章编号:1002—4956(201003—0071—03 Improved design by using microwave detectors Liang Tao,Luo Yong (School of Traffic and Auto,Xihua University,Chengdu 610039,China Abstract:Microwave detector has many advantages such as high accuracy,etc.However,in the process of real applications some problems were discovered.This design mainly improved the dial,the power supply and the lift bar.Practice has proved that after improvement the microwave detector becomes more convenient and faster during the road traffic flow detecting in the field.Key wor 凼:microwave detector;improvement;convenience 1微波检测仪器的特点 美国SSI05微波车辆检测器利用10.525GHz的工作频率来采集交通数据,属于频率调制连续微波。主要特点是[1 。3]:

可研交通量分析

由于经济和人口因素发生变化,道路整改后,这个区域内的交通量会发生一定的增长,对这种增长的交通量预测称为趋势交通量预测。预测时,以路段交通量的增长与其影响区的经济增长之间的关系,采用多元回归法进行预测。 1、影响区系数 影响交通量变化的相关指标有人均国民生产总值、人均国民收入、车辆拥有量等,利用数理统计知识,将各交通区经济指标与相应交通区的客货运量进行回归分析总结,得出各指标的相关系数,取最大相关系数对应的指标作为最相关指标,根据相关指标增长率确定路段的影响区系数。 影响区系数: ij ak k L m L m /)(∑= 式中,k L :路段在影响区内的里程 ak m :为影响区域内的最相关指标增长率 ij L :路段的总里程 2、正常交通量预测模型 m A A i i Q Q y y n n 101+==- 式中,n Q :远景第n 年的路段交通量 1 -n Q :远景第1-n 年的路段交通量,当1=n 时为基年交通 量 y i :交通量增长率 A ,1A :待定参数,根据历史年份的y i ,m 用最小二乘法 确定

本项目建成后,线路通行能力提高,从而导致部分交通量从其他路线转移到本项目路线上来。这部分交通量是由于道路的建成而产生的,同时也构成了这一路网的基本交通量。因此合理地确定转移交通量对道路交通量分析和预测具有重要作用。 1、交通阻抗 确定交通阻抗是转移交通量和诱增交通量预测的关键步骤之一,交通阻抗是指路网中路段或路径的运行距离、时间、费用、舒适度或者这些因素的综合。我们这里针对城市里居民出行考虑的首要因素,选取平均行驶时间作为路段的交通阻抗。 3 321)/(])/(1/[/C Q C Q U U U L t x ααβαβ+=+== 式中,t :交通阻抗 U :车辆平均行驶速度,h km / x U :道路的设计车速,h km / 1α,2α,3α:回归参数 Q :交通量,辆/h 2、相关路段转移交通量预测 (1)转移交通量计算公式 ro r r r Q Q Q P Q P Q t t c t t c c t c t c t P c t c t c t P -=?=+=+=-+--=-+--=0011100111111000000/2/)(2/)()]/exp()//[exp()/exp()]/exp()//[exp()/exp(σσσσσσ 式中,0t ,1t :道路建成前、后的交通阻抗

RTMS微波车检器原理介绍

知其然,更知其所以然 ——RTMS微波车检器原理介绍1、前言 2008年RTMS微波检测产品纳入百联智达的产品线至今已有4年,到2012年,百联智达仅微波车检器产品销售额已突破两千万。从国内市场来看,城市ITS 建设项目中微波车检器的需求逐年大幅度增长,高速公路ITS项目上也逐渐开始试点微波车检器的大规模应用。从微波车检器产品本身来说,国内依旧是以“阵列雷达”与“双雷达”两种技术对抗、以RTMS和SmartSensor两家产品为主流、“国产阵列雷达”和“单雷达”以低价拿小单的特点,形成了目前的主要竞争格局。 相信大家对RTMS微波车检器的各项指标已经熟悉,但我们在跟客户做技术交流时,往往会遇到客户问起一些更深层次的问题,比如“你们的阵列雷达,一共有几个雷达?”、“用了你们的雷达,如果车被挡住了,还能检测到吗?”、“你们的雷达能测速吗?”等等,这就需要我们的售前和销售人员在熟知产品指标的基础上,能够对产品的相关原理有一定的了解,在面对用户的各种奇怪问题时,能够从容应对,体现我们的专业性。在此,借助内刊这个平台,我将自己搜集到的一些RTMS产品的相关资料分享给大家,期望能够起到抛砖引玉的作用,与各位同事共同学习、提高。 2、RTMS的基本介绍 RTMS,即“The Remote Traffic Microwave Sensor”,从字面上翻译过来,就是“远程交通微波探测器”。这个名字体现了RTMS的三个主要特点:远程检测、专用于交通数据采集、工作在微波频段。 “R”远程检测,这个很好理解:RTMS可以检测几米到几十米内的车辆存在,而不需要像线圈、地磁等那样与车辆近距离接触,所以叫远程检测。 至于交通“T”数据采集方面,路侧安装的RTMS可检测断面上的车辆长度、平均车速、占有率、车型分类、车间距等交通参数,并通过串口周期上传至后端

交通量分析及预测

交通量分析及预测 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第三章交通量分析及预测 公路交通调查与分析 3.1.1调查综述 交通调查的目的是了解现状区域路网的交通特性,掌握路段交通量及其特征。通过交通调查来分析路段交通量及车种组成、时空分布特征等,了解区域交通发生、集中及分布状况。 本项目有关的交通调查主要是交通量调查。 交通量调查是收集沿线主要相关道路的历年交通量状况,交通量的车种构成以及有关连续式观测站点的交通量时空变化特征等资料。 相关运输方式的调查与分析 拟建项目X922荔波县翁昂至瑶山(捞村至瑶山段)公路改扩建工程路线起点位于荔波县捞村,顺接X922翁昂至捞村段,终点位于荔波县瑶山与X418平交,终点桩号K20+。路线推荐方案全长公里。 根据贵州省公路局及地方观测点提供的交通量统计资料,现有与该项目相关的公路主要有X922翁昂至捞村段(原Y101乡道),X418线。公路沿线历年的交通量观测值见表3-1。 表3-1 X922捞村至瑶山段(原Y007乡道)公路历年平均交通量单位:辆 /日

注:表中数据除混合车折算值为按小客车为标准的折算值外,其余均为自然车辆数。 预测思路与方法 3.3.1 交通量预测的总体思路 公路远景交通量的预测,是为正确制定公路修建计划提供分析基础,为项目的决策提供依据。 根据对项目所在地区社会经济和交通运输调查的资料分析,计划建设的荔波县瑶山至捞村改扩建公路工程是荔波县境内的重要公路项目。本项目的建设,将有力地促进公路沿线工业和乡镇的社会经济及交通运输发展、为精准脱贫提供交通保障。 预测远景交通量一般由趋势交通量、诱增交通量和转移交通量三部分组成。 趋势交通量是指现有公路交通量按照它固有的发展规律、自然增长的交通量。 诱增交通量是指公路的开通,使它所覆盖的影响区内经济和交通体系的深刻变化,诱使经济、产业迅猛增长,则会新产生交通量。 转移交通量是指公路建成后,由于竞争关系而从其它运输方式(铁路、水运和航空)转移过来的交通量。对本项目而言,由于没有与本项目有竞争关系的其它运输方式存在,因此本项目不考虑转移交通量。 根据分析,本项目的远景交通量主要由趋势交通量和诱增交通量组成。 3.3.2 交通量预测方法及步骤 由于该项目属于老路改造工程,大部分为改造路段,且公路沿线均设有交通观测点,因此该项目不作OD调查,采用沿线历年断面交通量与影响区社会经济的发展情况及规划,进行相关分析,预测未来特征年的远景交通量。 交通量预测 3.4.1 预测年限和特征年确定 根据交通运输部交规划发[2010]178号文件发布的《公路建设项目可行性研究报告编制办法》的规定,公路建设项目交通量的预测年限为调查年到项目建成后20年;

几种主要车辆检测器的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

远程交通微波雷达检测器(RTMS)的深度解析知识讲解

远程交通微波雷达检测器(R T M S)的深度解 析

远程交通微波雷达检测器(RTMS)的深度解析 一、概述 1.1什么是RTMS RTMS(Remote Traffic Microwave Sensor 远程交通微波雷达检测器)是一种用于监测交通状况的再现式雷达装置。它可以测量微波投影区域内目标的距离,通过距离来实现对多车道的静止车辆和行驶车辆的检测,并且利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型信息等交通流基本信息的非接触式交通检测设备。 1.2RTMS的应用领域 RTMS主要应用于高速公路、城市快速路、普通公路交通流调查站和桥梁的交通参数采集,提供车流量、速度、车道占有率和车型等实时信息,此信息可用隔离接触器连接到控制器或通过串行接口连接到其他系统,为交通控制管理、信息发布等提供数据支持。 1.3RTMS的发展历程 1989年加拿大人Dan Manor第一个将雷达技术应用于智能交通行业,发明了微波车辆检测器。短短十几年间,微波车辆检测器已经经历了几代的变革:从模拟到数字、从单雷达到多雷达、从喇叭天线到平板天线: 图错误!文档中没有指定样式的文字。-1微波车检器发展历程

我们从每一次的变革中看到,微波车辆检测器技术的发展和雷达技术、电子技术、计算机技术的发展紧密相关。 从雷达技术的层面上来说,数字阵列雷达技术从上世纪借鉴仿生学开始,在较短的时间内得到不断完善和提高。进入21世纪后伴随着数字电子技术和计算机处理能力的不断提升,数字阵列雷达的优越性得到了充分的体现:其多功能性、反应速度、分辨率、电子抗干扰能力、多目标追踪/搜索能力等都远优于传统雷达: 数字阵列雷达能在极短时间内完成监视空域内的扫瞄,目标更新速率极快; 数字阵列雷达分辨率极高,能取得目标精确位置; 数字阵列雷达能在恶劣的天气气候条件下正常追踪目标; 数字阵列雷达代表着雷达技术发展的必然趋势,它们是近代雷达变革的新技术和新体制的集中体现,是集中了现代电子科学技术各学科成就的高科技系统,所以现代化的精锐武器系统都以阵列的“平板雷达”为标准配备。 二、R TMS的工作原理 2.1雷达线性调频技术 线性调频信号可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以线性调频信号作为雷达系统中一种常用的脉冲压缩信号,已经广泛应用于高分辨率雷达领域。直接数字频率合成(Digital DirectFrequency Synthesis,DDS)技术是解决这一问题的最好办法。在雷达系统中采用DDS技术可以灵活地产生不同载波频率、不同脉冲宽度以及不同脉冲重复频率等参数构成的信号,为雷达系统的设计者提供了全新的思路。 2.2雷达技术 “雷达”是英文radar的音译,为Radio Detection And Ranging的缩写,意 思是一种无线电检测和测距的电子 设备,其原理是雷达设备的发射机 通过天线把电磁波能量射向空间某 一方向,处在此方向上的物体反射 碰到的电磁波;雷达天线接收此反 射波,送至接收设备进行处理,提 取有关该物体的某些信息(目标物 体至雷达的距离,距离变化率或径 向速度、方位、高度等)。 测量距离实际是测量发射脉冲 与回波脉冲之间的时间差,

交通量分析与预测

第三章交通量分析及预测 3.1现状交通调查及分析 3.1.1项目影响区的确定 项目影响区根据对项目的影响程度,分为直接影响区和间接影响区,一般按行政区域划分。根据对各地区经济和交通的影响程度以及区域内物流和车流集散的特点,结合各地区社会经济、交通运输现状和路网状况,本项目直接影响区为彭山区,间接影响区包括眉山市、新津县等。 3.1.2交通现状分析 1、交通现状 随着城市建设用地的变化及产业结构的调整,步行和自行车出行仍然是居民的主要交通方式,但重要性有所下降,两轮电动车的出行比例已上升至10.1%,汽车出行增长较快,达到12.5%,公交车比例仅为14.7%。彭山区私家车发展势头强劲,将成为未来城市机动车增长的主要因素。 2、项目影响区交通现状及规划条件 城市交通状况的恶化和城市规模不断扩大、人口不断增加关系十分密切,当然这也是城市发展过程中必然会遇到的问题。当前我们正处在快速城市化和快速机动化交织的历史时期,城市交通压力急剧增加,过去五年彭山区机动车每年以10.8%的速度增长,而同期道路的增长速度远低于此。彭山区城范围内现状主次干道路网密度2.44公里/平方公里,城市支路路网密度更低,而城市主干道和支路的平均容积率要达到规划水平,还存在有很大差距。因此加大路网建设力度仍然是解决城市交通问题的重要途径。 3.2 交通量预测方法 交通量预测分析的目的是通过对片区路网的分析,研究项目建设给片区经济发展所

带来的交通影响及其程度,判断在当前这种交通路网的承载能力下的影响,能否在可接受的范围内,并确定合理的项目出入口位置。道路断面的设置形式是否合理,满足交通功能的要求是最基本的条件。设计通行能力低于设计交通量的道路形式是不合适的,因为它容易造成片区路网的交通拥挤,甚至发生交通堵塞,要求设计通行能力必须大于设计交通量。另一方面,通行能力也不能过大,否则使道路资源不能充分利用,必然造成大量的浪费。 交通量预测是一项综合技术,涉及因素很多,把握预测方向和提高预测精度,一值是世界各国交通研究重要课题,同时,也是一切交通问题研究的基础。本可研报告对交通量预测按照国际上业已成熟的四阶段模式,即交通生成、方式划分、交通分布和交通量分配进行的。是在城市发展和城市规划及土地使用分析的基础上,对道路网络整体进行交通模拟。交通模拟中各种模型建立,都是进行相应统计检验后得到,模型精度一般在15%以内。 3.3 交通量预测内容及结论 3.3.1交通量的组成 本项目属于新建道路,对此情况,远景交通量一般只包括诱增交通量和转移交通量二类。 1、诱增交通量 由于拟建道路的建成通车,其道路基础设施的完善将有效提升片区路网服务水平,与相邻道路之间具有较好的竞争优势,其诱发潜在的交通需求量较大。诱增交通量预测,目前采用的方法很多,一般以相邻路网的趋势交通量为基数预测诱增交通量,这种方法主要考虑的因素是区域间的运行时间、距离,按照“有无对比法”的原则,采用重力模型的思想,预测诱增交通量。这种方法计算工作繁杂,而且模型中的某些假定与实际情

远程交通微波雷达检测器(RTMS)的深度解析(优选.)

远程交通微波雷达检测器(RTMS)的深度解析 一、概述 1.1什么是RTMS RTMS(Remote Traffic Microwave Sensor 远程交通微波雷达检测器)是一种用于监测交通状况的再现式雷达装置。它可以测量微波投影区域内目标的距离,通过距离来实现对多车道的静止车辆和行驶车辆的检测,并且利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型信息等交通流基本信息的非接触式交通检测设备。 1.2RTMS的应用领域 RTMS主要应用于高速公路、城市快速路、普通公路交通流调查站和桥梁的交通参数采集,提供车流量、速度、车道占有率和车型等实时信息,此信息可用隔离接触器连接到控制器或通过串行接口连接到其他系统,为交通控制管理、信息发布等提供数据支持。 1.3RTMS的发展历程 1989年加拿大人Dan Manor第一个将雷达技术应用于智能交通行业,发明了微波车辆检测器。短短十几年间,微波车辆检测器已经经历了几代的变革:从模拟到数字、从单雷达到多雷达、从喇叭天线到平板天线:

模拟 单雷达车辆检测器(感应式) 数 字 单 雷 达 车 辆 检 测 器 数 字 双 雷 达 车 辆 检 测 器 阵 列 雷 达 车 辆 检 测 系 统 阵列 雷达 视频 等技 术融 合综 合车 检系 统图错误!文档中没有指定样式的文字。-1微波车检器发展历程 我们从每一次的变革中看到,微波车辆检测器技术的发展和雷达技术、电子技术、计算机技术的发展紧密相关。 从雷达技术的层面上来说,数字阵列雷达技术从上世纪借鉴仿生学开始,在较短的时间内得到不断完善和提高。进入21世纪后伴随着数字电子技术和计算机处理能力的不断提升,数字阵列雷达的优越性得到了充分的体现:其多功能性、反应速度、分辨率、电子抗干扰能力、多目标追踪/搜索能力等都远优于传统雷达: 数字阵列雷达能在极短时间内完成监视空域内的扫瞄,目标更新速率极快; 数字阵列雷达分辨率极高,能取得目标精确位置; 数字阵列雷达能在恶劣的天气气候条件下正常追踪目标; 数字阵列雷达代表着雷达技术发展的必然趋势,它们是近代雷达变革的新技术和新体制的集中体现,是集中了现代电子科学技术各学科成就的高科技系统,所以现代化的精锐武器系统都以阵列的“平板雷达”为标准配备。 二、R TMS的工作原理 2.1雷达线性调频技术 线性调频信号可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以

交通量分析及预测

第三章交通量分析及预测 3.1 公路交通调查与分析 3.1.1调查综述 交通调查的目的是了解现状区域路网的交通特性,掌握路段交通量及其特征。通过交通调查来分析路段交通量及车种组成、时空分布特征等,了解区域交通发生、集中及分布状况。 本项目有关的交通调查主要是交通量调查。 交通量调查是收集沿线主要相关道路的历年交通量状况,交通量的车种构成以及有关连续式观测站点的交通量时空变化特征等资料。 3.2 相关运输方式的调查与分析 拟建项目X922荔波县翁昂至瑶山(捞村至瑶山段)公路改扩建工程路线起点位于荔波县捞村,顺接X922翁昂至捞村段,终点位于荔波县瑶山与X418平交,终点桩号K20+762.250。路线推荐方案全长20.762公里。 根据贵州省公路局及地方观测点提供的交通量统计资料,现有与该项目相关的公路主要有X922翁昂至捞村段(原Y101乡道),X418线。公路沿线历年的交通量观测值见表3-1。 表3-1 X922捞村至瑶山段(原Y007乡道)公路历年平均交通量单位:辆/日 车型年份小型货 车 中型货 车 大型货 车 中小型 客车 大型客 车 拖挂车其它车 混合车 折算值 200632 16 7 86 3 31 193 200742 21 8 114 4 40 251 200848 24 11 130 5 46 290 200959 31 13 164 5 58 361 201074 38 15 200 6 70 444 201194 48 20 255 8 90 566 2012101 51 21 274 8 96 605 2013105 54 23 288 9 102 639 2014121 61 24 328 11 114 725 2015133 68 28 364 12 128 805 注:表中数据除混合车折算值为按小客车为标准的折算值外,其余均为自然车辆数。

公路交通量调查数据的分析与应用

公路交通量调查数据的分析与应用 发表时间:2016-06-13T10:28:58.600Z 来源:《工程建设标准化》2016年3月总第208期作者:诸葛祥督[导读] 在现实的公路运输系统中,公路交通量反映了公路应用情况与公路适应车辆运输需求的情况。 诸葛祥督 (山东省临沂市公路局平邑县公路管理局,山东,临沂,273300) 【摘要】随着经济的发展,公路交通已经成为交通系统的重要组成部分,是国民经济的基础产业。公路交通量数据的分析和应用是公路管理中的一项重要课题,其对运输系统的构建与完善有着相当重要的促进作用。随着当今公路运输需求的日益增长和公路通行质量的不断提高,对当前公路交通量调查统计和数据分析提出了新的更高要求。该文对交通量调查的概念、站点选择、方式方法、作用做了介绍,结合作者的工作实际,对国省干线公路交通量调查的情况作了相关介绍。 【关键词】公路;交通量;调查;分析;应用 在现实的公路运输系统中,公路交通量反映了公路应用情况与公路适应车辆运输需求的情况。交通量调查数据对公路建设项目前期可行性分析研究,公路规划设计阶段公路建设等级规模、走向确定和后期交通管理控制、经济效益估值都有着相当程度上的运用。 一、交通量调查概念、站点选择以及方式方法 (一)交通量调查的概念 交通量调查是在单位时间内对通过公路某一断面各种类型的车辆数量进行观测记录的一项工作,属于交通情况调查的一部分。公路交通量调查工作的任务是通过对国道、省道、县道、乡道及专用公路的交通状况进行定期或不定期调查,掌握各级公路的交通流量特性,并进行统计、分析、预测,为公路规划建设、路网运行管理、交通应急处置、科研及社会公众提供公路交通信息。 (二)交通量观测站的选择 站点布设应科学合理规范,能够反映公路路网交通流量及特性;观测站点应设在交通流量比较稳定,能够代表某个路段区间交通流量和特性的路段,代表路段长度应按实际情况确定,一个观测站点的控制距离一般为30公里左右。观测站点一经确定下来,就要相对固定,不能轻易变换。 (三)交通量调查的方法 公路交通量调查的方法有人工观测划正字法、半自动观测仪法、全自动观测仪法。人工划正字法是最原始的一种方法,劳动强度大,工作方法不科学,目前已基本被淘汰。半自动观测仪器是有12个按键的计数器,每一个按键上贴有一个标签,代表一种车型,按一下走一个数字,这种方法劳动力强度小,计数方便简单。间隙式全自动观测仪,采用远红外线技术,在观测路段上埋设线圈来记录过往车辆,并根据车辆两轴间的距离来分辨车型。 二、交通量调查数据的收集和分析 交通量数据调查在进行观测记录、数据采集后,需要对取得的数据进行认真处理和分析,把记录的数据转换成对公路交通系统有作用的数据标准,这能让花费了大量人力、物力、财力所收获的资料发挥最大价值。 (一)交通量数据收集 目前,平邑县境内国省干线公路分布的间隙式交通量观测站点配有专门的技术人员,专职负责交通量调查工作。每个交通量调查日,交通量调查人员对全自动交调观测仪器进行检查并对系统时间进行校核以确保仪器的正常运行,并采用半自动观测仪器来统计每小时不同车型的数量,用以人机对比。 如今,大部分的公路交通量调查数据依赖计算机进行处理,交通量数据的处理必须依赖固有的公式,通过大量数据运算,计算出交通量的当量数和自然数。因为在测量的过程中车辆是运动的、变化的,那么有必要计算某个时段内的交通流均值作为此时段里的交通流,其中最常用的是年平均日交通量,在公路的规划、设计、改建中,年平均日交通量为上级决策提供很好的参考资料。 (二)数据分析 对收集整理出来的交通量数据,需经过数理统计的运算知识进行分析、计算、统计,通过数据对比找出其中的变化规律,分析其变化的影响因素。下面以某国道间隙式调查站交通量年报资料为例,对年平均日交通量做如下介绍:下表中的数据显示出2015年度12个月份,每个月的交通量日统计情况,通过分析表中数据可以明显看出该路一年中每种车型的交通量日统计情况,中小型客车占各种车型的60%以上,说明在该路段,中小型客车的使用率最高;同时,该路作为贯穿该县东西方向的经济大动脉,货车占各种车型的比例为23%-35%,货车的使用率第二;其他为摩托车、大客车;随着经济的发展,拖拉机的使用最少。从该表中还可以看出该路段的年均日交通量为10215-14846之间。表中的数据还说明2015年一年中10月、12月是一年中车流量的高峰,其中10月份是国庆长假,旅游、自驾游多导致交通量增大;12月份是元旦假期,外出探亲访友的车辆也增多。

传感器技术在交通检测中的应用

传感器技术在交通检测中的应用 传感器技术在交通检测领域的应用交通信息是城市交通规划和交通管理的重要基础信息,通过全面、丰富、实时的交通信息不但可以把握城市道路交通的发展现状,而且可以对未来发展进行预测。因此,交通信息采集与处理技术无论对城市的规划、路网建设、交通管理,还是对未来智能交通系统功能的实现都非常重要。 动态交通信息采集系统的目标是全面、自动、连续地从路网上获得不同地点和路段上的交通流信息。而要实现这一目标,就离不开信息传感器。 一、传感器的涵义及组成国家标准(GB7665—1987)对传感器下的定义是:能感受到规定的被测量的量,并依据一定的规律转换成可用于输出信号的器件或装置。在现代科学技术的发展过程中,非电量(例如压力、力矩、应变、位移、速度、流量、液位等)的测量技术(传感技术)已经成为各领域的重要组成部分,但传感技术最主要的应用领域是自动检测和自动控制,它将诸如温度、压力、流量等非电量变化为电量,然后通过电的方法进行测量和控制。因此,传感器是一种获得信息的手段,它获得的信息正确与否,关系到整个测量系统的精度。传感器一般是利用物理、化学、生物等学科的某些反应或原理,按照一定的制造工艺研制出来的。因此,传感器的组成将随不同的情况而有较大

差异。但是,总的来说,传感器是由敏感元件、传感元件、信号调节与转换电路和辅助电路组成。敏感元件是直接感受非电量,并按一定规律转换成与被测量有确定关系的其他量(一般仍为非电量)的元件。传感元件又称变换器,一般情况下,它不直接感受被测量,而是将敏感元件输出的量转换成为电量输出。这种划分并无严格的界限,并不是所有的传感器都必须包含敏感元件和传感元件。如果敏感元件直接输出的是电量,它同时兼作为传感元件。信号调节与转换电路一般是指把传感元件输出的电信号转换成为便于显示、记录、处理和控制的有用信号的电路。辅助电路通常包括电源,有些传感器系统采用电池供电。 二、交通检测中常见的传感器技术 1、红外线传感器红外传感器是波束检测装置的一种,有主动和被动两种形式。主动式发射器和接收器分别为半导体激光器和光电二极管,将两者对中,水平安装在车道旁边。无车通过时,接收器接收细束线状红外光,有信号输出;车辆通过时,遮断光束,接收器无输出,通-断转换是对车辆的检测信号。新型主动反射式红外检测器的原理为:在相同的红外光辐射下,反射物的大小、材料和结构不同,反射能量就不一样。 被动式红外检测没有发射器,只有接收器。接收器感受路面和车辆以红外波长为主的辐射能量。路面和车体的材料温度和表面光洁度都不一样,它们的辐射能量也必然不相等。现代红外测温的分辨率已达到0、1%℃,因此区分道路和车辆己不存在困难。

交通量分析及预测

第3章交通量分析及预测 3.1公路交通调查及分析 3.1.1调查综述 3.1.1.1调查内容 按照交通规划的研究对象,本项目分别对公路客货运输量、年平均交通流量进行 调查。按照调查的方式,又大致分为以道路上的车辆为对象的实测调查和为明确人的 活动和货物的移动性质而进行的问卷调查。前者的调查有道路交通量调查和运行车速 调查,具体的调查事项及观测方法,因表示交通流特性所采用的要素不同而有所不同, 通过它可掌握汽车行驶状态有关的各种特性,为道路上实现畅通交通流而进行适当的 交通控制及建立交通规划发挥作用。后者的调查有居民出行调查、机动车OD调查和物 流调查。 3.1.1.2调查方法 交通调查是公路建设项目可行性研究的一个重要环节,是采集所需基础数据的最基本手段。其目的是了解项目影响区域公路交通运输的特性、构成以及客货运输的流量、流向,使后续的交通量预测建立在客观、可靠的基础上,为公路建设项目的计划、建设规模、建设标准等提供科学的依据。 (1)交通量调查点的布设 交通量调查点的选择,对调查数据、区域路网流量分析、拟建项目交通量预测有 着直接的影响,是整个交通量调查的关键。本报告交通量调查路段及其地点的选择, 主要考虑了以下因素: 1) 根据拟建项目特点及其区域路网交通流特性,选择有代表性的路段布点; 2) 调查点远离城镇,尽量避免城镇内部交通及短途交通的影响; 3) 调查点选择在路基较宽、视距远的路段上,同时要保证上行与下行调查点之间 留有不少于150m的距离,以免造成交通阻塞; 4) 附近有收费站的,尽量将调查点设在收费站中,以减少对车辆通行的影响。 由于交通流量观测是在具体的某一天进行的,有的是24小时流量观测点,有的是12小时流量观测点,所以在交通流量分析时根据各流量观测点所在路段历年交通量观 测资料对其进行年月、周日、昼夜不均匀性调整,并以次推算出年均日交通量。调整 公式如下: Q ijk=q ijk·αi·βi·γi

T-11-V5-多目标追踪微波车辆检测器技术方案

微波交通检测器应用方案——T-11 V5 多目标追踪雷达 江苏志德华通信息技术有限公司 编辑者:高志鹏

1.Tracteh T-11 V5多目标追踪微波车辆检测器简介 1.1功能概述 ●Tractech T-11 V5多目标追踪微波车辆检测器(以下简称T-11 V5),是利用二维主动扫描式阵列雷达 微波检测技术,对路面发射微波,以每秒20次的扫描频率可靠地检测路上每一车道的目标,准确区分机动力、非机动力、行人等,可同时识别及跟踪最多64个目标对象。 ●可同时测量每车道的流量、平均速度、占有率、85%位速率、车头时距、车间距等交通数据,以及排队 长度、逆行、超速、ETA等报警信息,并可准确地测量区域内每个目标的位置坐标(X,Y)与速度(Vx, Vy)。 ●能进行大区域检测,沿来车方向正常检测区域至少可达160米,能同时检测至少6个车道,其中中间的 4个车道每条车道可以有4个精确的检测点,4条车道就可以配置16个精确的检测点。每个检测点就是一条线,这条线与路交叉成90度夹角,也就是垂直于路的方向。这些垂直于路的方向的检测线,就可以作为雷达的检测点,可以非常精确检测车辆接近并经过这些检测点时的状态 ●自动检测交通流的运行方向,进行车辆逆行检测统计。 ●采用前向安装的方式,可方便地利用既有杆件:信号灯杆、电警杆横臂、任一标志标牌、路灯杆上,具 有安装维护方便,不破坏路面,不影响交通,技术先进,成本低等特点。 ●可在全天候环境下工作,外壳达到IP67防护标准,并具有自校准以及故障自诊断功能。 ●可视化的图形化操作界面能实时显示每个目标在检测区域内被跟踪情况以及车辆即时速度、车辆长度等 实时信息。 1.2应用场合 T-11 V5 是一款革命性的通用交通管理雷达,可以用在交通管理领域的很多方面: 公路和交通管理系统

淮安市淮海路交通量调查与分析

1 绪论 1.1研究背景 随着交通工程学基本原理在我国应用的日益广泛,我国的交通调查工作也出现 了新的局面。近几年来,交通量调查已经越来越受到重视,不少规划、设计、经济 分析报告中,交通量调查及其资料已经成为必不可少的内容。 交通量调查与分析应用是交通工程学中的一项研究课题, 在实际工作中,公路交 通量是反映公路的使用状况和公路满足汽车运输需要程度的一项重要指标。交通量 调查数据在公路养护管理、公路使用过程、公路路网规划、公路建设前期工作、线 路设计、后期经济价值评估等均得到广泛应用,不仅是制订公路建设规划和旧路技 术改造方案、修建交通设施、进行工程设计必不可少的依据,也是编制养护计划及 制订交通管理措施必不可少的依据。因此, 搞好交通量调查统计,直接关系着公路 现代化建设和公路的科学管理,对公路事业的发展有着十分重要的意义。 1.2国内外研究现状 交通量是描述交通流特性的最重要的参数之一。由于交通量既重要而调查方法 又比较简单,因此交通量及其调查就成为交通工程学中的重要内容,并且越来越受 到人们的重视。近20年来,我国首先在交通系统的全国公路国道网上进行了以交通 量连续式观测为主的调查,取得了较系统、全面的宝贵资料。在大、中城市也对城 市也对城市道路网进行了广泛的交通量调查。通过对调查资料的整理分析,我们已 经初步掌握了交通量的空间分布和时间分布特性、交通量的各种变化规律和影响因素,从而为道路网规划、道路设计和建设、交通管理和控制、工程的经济分析和效 果对比、交通安全和道路环境等各个方面提供了可靠的依据。 [1] 1.2.1 国外研究现状 国外也很重视交通量调查工作。如美国在1921年起就开始注意交通调查和研究工作,经过多年的研究探索涌现了一大批这方面的专家学者像丹尼尔L.鸠洛夫、马休丁. 休伯等等,而且留下了像《交通流理论》、《道路与交叉口的通行能力》等经典文章;英国在1922年开始交通量调查,1933年以后每隔3年进行一次较大规模的交通量调查,1955年时已有5000个观测点,目前主要公路上平均每7km即有一个观测点;意大利从1927年起开始交通量观测,以后规定每年进行一定天数的连续观测;

相关文档
最新文档