分形曲线及面积计算

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

Koch分形雪花图的面积计算

K o c h分形雪花图的面 积计算 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

Koch分形雪花图的面积计算 一、问题叙述 分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似。在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。而本文我们要分析的是Koch分形雪花图,包含以下三个问题: 1.描述Koch分形雪花 2.证明Koch分形雪花图K n的边数为 3.求Koch分形雪花图的面积(数据),求 二、问题分析 在分析Koch分形雪花图之前,我们首先介绍Koch分形曲线。Koch分形曲线的绘制原理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图所示: 图对一条线段进行第一次Koch分形 然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。这种迭代继续进行下去可以形成Koch分形曲线。在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。 设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1, Q2,Q3以产生第一次迭代图形。显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理Q Q13经过正交变换而得到Q Q12。算法如下: (1)Q1P1+P P Q P1+P P/3; (2-1)/3;32(2-1) ←←

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

曲线型组合图形的面积计算方法

曲线型组合图形的面积计算方法姓名对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有: 一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计 算它们的面积,然后相加求出整个图形的面积。例如下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。 30厘米 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图 形的面积之差。例如下图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。 三、

四、 重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。 五、 辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便. 六、 割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。 七、 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。例如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边长方形内,这样整个阴影部分恰是一个长方形。 旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下左图中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A 与C 重合,从而构成如下右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积。 九、 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。例如,欲求下图中阴影部分的面积,沿AB 在原图下方作关于AB 为对称轴的对称扇形ABD.弓形CBD 的面积的一半就是所求阴影部分的面积。 十、 重叠法:这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA ∪B =SA +SB-SA ∩B )解决。例如欲求下图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部 分的面积恰好是两个扇形重叠的部分。 10厘米 6厘米 4厘米 20厘米 8厘米 10厘米 20厘米 30厘米 10厘米

各种有趣的分形

各种有趣的分形 我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。 但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让 图中的风景图片又是说明分形的另一 很好的例子。这张美丽的图片是利用分 形技术生成的。在生成自然真实的景物 中,分形具有独特的优势,因为分形可 以很好地构建自然景物的模型。 这是一棵厥类植物,仔细观察,你会发 现,它的每个枝杈都在外形上和整体相 同,仅仅在尺寸上小了一些。而枝杈的 枝杈也和整体相同,只是变得更加小 了。 Sierpinski三角形具有严格的自相似特 性

Kohn雪花具有严格的自相似特性 分维及分形的定义 分维概念的提出 对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称为“拓扑维”,记为d。例如当把一张地图卷成筒,它仍然是一个二维信息载体;一根绳子团成团,仍然是一维结构。但曼德尔布罗特认为,在分形世界里,维数却不一定是整数的。特别是由于分形几何对象更为不规则,更为粗糙,更为破碎,所以它的分数维(简称“分维”,记为D)不小于它的拓扑维,即D≥d。 维数和测量有密切关系。如为了测一平面图形的面积,就要用一个边长为l、面积为l2的标准面元去覆盖它,所得的数目就是所测的面积。

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

利用定积分求曲线围成的面积

12.9 利用定积分求曲线围成的面积 武汉外国语学校 汪家硕 一.复习回顾: 1.定积分的几何意义:当()0f x ≥时,积分()b a f x dx ?在几何上表示由()y f x =、x a =、x b =与x 轴所围成的曲边梯形的面积。 当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。 2.牛顿—莱布尼茨公式 定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且' ()()F x f x =,则 ()()()b a f x dx F b F a =-? 二.曲线围成的面积 1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为:()()()()b b b a a a f x dx g x dx f x g x dx -=-? ?? 例1.求抛物线2y x =和直线2y x =所围成的区域面积。 解:先求出P 点坐标。 解方程组22y x y x ?=?=? ? 02x x =??=? ∴ P 点的坐标是(2,4)。 所求的面积= 2 23220 08424333x x x dx x ??-=-=-=????? 例1 例2.计算曲线21y x =+和24y x =-,以及直线1x =和1x =-所围成的区域面积。 解:所求面积= 11132221112144(1)32333x x x dx x dx x ---??--+=-=-=?????? 例2 2.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果? 考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示为: 1 23123()()()()()()()()c c c b a c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+-???? ?b a f (x )dx =c a f (x )dx +b c f (x )dx 。

各种有趣的分形

各种有趣得分形 我们瞧到正方形,圆,球等物体时,不仅头脑里会迅速反映出它就是什么,同时,只要我们有足够得数学知识,我们头脑中也反映出它得数学概念,如正方形就是每边长度相等得四边形,圆就是平面上与某一点距离相等得点得集合,等等。 但就是,当我们瞧到一个山得形状时,我们会想到什么?”这就是山”,没错,山就是如此得不同于其她景象,以至于您如果绘画水平不高,根本画不出象山得东西。可就是,山到底就是什么?它既不就是三角形,也不就是球,我们甚至不能说明山具有怎样得几何轮廓,但为什么我们却有如此直观而又强烈得山得印象?分形得创始人就是曼德布洛特思考了这个问 图中得风景图片又就是说明分形得另 一很好得例子。这张美丽得图片就是利 用分形技术生成得。在生成自然真实得 景物中,分形具有独特得优势,因为分形 可以很好地构建自然景物得模型、 这就是一棵厥类植物,仔细观察,您会发 现,它得每个枝杈都在外形上与整体相 同,仅仅在尺寸上小了一些。而枝杈得 枝杈也与整体相同,只就是变得更加小 了。 Sierpinski三角形具有严格得自相似 特性

Kohn雪花具有严格得自相似特性 分维及分形得定义 分维概念得提出 对于欧几里得几何所描述得整形来说,可以由长度、面积、体积来测度。但用这种办法对分形得层层细节做出测定就是不可能得、曼德尔布罗特放弃了这些测定而转向了维数概念、分形得主要几何特征就是关于它得结构得不规则性与复杂性,主要特征量应该就是关于它得不规则性与复杂性程度得度量,这可用“维数”来表征。维数就是几何形体得一种重要性质,有其丰富得内涵、整形几何学描述得都就是有整数维得对象:点就是零维得,线就是一维得,面就是二维得,体就是三维得。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们得维数也就是不变得;这种维数称为“拓扑维”,记为d。例如当把一张地图卷成筒,它仍然就是一个二维信息载体;一根绳子团成团,仍然就是一维结构。但曼德尔布罗特认为,在分形世界里,维数却不一定就是整数得。特别就是由于分形几何对象更为不规则,更为粗糙,更为破碎,所以它得分数维(简称“分维”,记为D)不小于它得拓扑维,即D≥d。 维数与测量有密切关系、如为了测一平面图形得面积,就要用一个边长为l、面积为l2得标准面元去覆盖它,所得得数目就就是所测得面积。如果用长度l去测面积,就会得到无穷大;而如果用l3去测这块面

Koch分形曲线

Koch 分形曲线 1.1 分形原理 这是一类复杂的平面曲线,可用算法描述。从一条直线段开始,将线段中间三分之一部分用等边三角形的两条边代替,形成具有5个结点的图形(图1);在新的图形中,又将图中每一直线段中间的三分之一部分都用一等边三角形的两条边代替,再次形成新的图形(图2),这时,图形中共有17个结点。 这种迭代继续进行下去可以形成Koch 分形曲线。在迭代过程中,图形中的点将越来越多,而曲线最终显示细节的多少将取决于迭代次数和显示系统的分辩率。 1.2 算法分析 算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。设1P 和5P 分别为原始直线段的两个端点。现在需要在直线段的中间依次插入三个点234,,P P P 产生第一次迭代的图形(图1)。显然,2P 位于1P 点右端直线段的三分之一处, 4P 位于1P 点右端直线段的三分之二处;而3P 点的位置可以看成是由4P 点绕2P 旋转60度(逆时针方向)而得到的,故可以处理为向量24P P 经正交变换而得到向量23P P 。算法如下: (1) 2151()/3P P P P =+-; (2) 41512()/3P P P P =+-; (3) 3242 ()T P P P P A =+-?; 图2 第二次迭代 图1 第一次迭代

在(3)中, A 为正交矩阵: c o s s i n 33sin cos 33A πππ π??-??=???????? 算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个5×2矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标,……,第五行为5P 的坐标。矩阵的第一列元素分别为5个结点的X 坐标,第二列元素分别为5个结点的Y 坐标。 进一步考虑Koch 曲线形成过程中结点数目的变化规律。设第k 次迭代产生结点数为k n ,第k+1次迭代产生结点数为1k n +,则k n 和1k n +之间的递推关系式为143k k n n +=-。 1.4 MATLAB 实现 p=[0 0;10 0];n=2; A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; for k=1:5 d=diff(p)/3;m=4*n-3; q=p(1:n-1,:);p(5:4:m,:)=p(2:n,:); p(2:4:m,:)=q+d; p(3:4:m,:)=q+d+d*A'; p(4:4:m,:)=q+2*d; n=m; end plot(p(:,1),p(:,2),'k') axis equal axis off

几何——曲线型面积

本讲主线 1、基本面积公式&模型. 2、复合图形的分割、补图。 知识要点屋 1、圆的周长:C d π= 或 2C r π= 2、圆面积:2S r π= 3、扇形:在圆的基础上360n ? 4、三大基本曲线面积模型: =-弓形扇形三角形 =-弯角正方形扇形 2=?谷子弓形面积 【课前小练习】(★) 1、已知扇形面积为18.84平方厘米,圆心角为60?,则这个扇形的半径和周长各是多少? ( 圆周率按3.14计算) 2、如图中扇形的半径6OA OB ==厘米,45AOB ∠=?,AC 垂直OB 于C ,那么图中阴影部分的面积是多少平方厘米? ( 3.14π≈)

例题精讲 【例1】(★★) 如图,大圆半径为小圆半径两倍,已知图中阴影部分面积为 S,空白部 1 分面积为 S,那么这两部分面积之比为。(π取3.14) 2 【巩固】(★★) 、、、分别为直径画半圆,求这四如图,ABCD是边长为4厘米的正方形,以AB BC CD DA 个半圆弧所围成的阴影部分的面积。(π取3) 【例2】(★★★) 如图中三个圆的半径都是5cm,三个圆两两相交于圆心。求阴影部分的面积和。(圆周率取3.14) 【拓展】(★★) 如图,是由一个圆与一个直角扇形重叠组成的,其中圆的直径与扇形的半径都是4。图中阴影部分的面积是多少? (π取3.14)

如图,1BD DC DA ===。求阴影部分面积。 【例4】(★★★) 如图,AB 与CD 是两条垂直的直径,圆O 的半径为15,扇形ACB 是 以C 为圆心,AC 为半径的圆弧。求阴影部分面积。 【例5】(★★★)第四届走美杯决赛试题 如图,边长为3的两个正方形BDKE 、正方形DCFK 并排放置,以BC 为边向内侧作等边三角形,分别以B C 、为圆心,BK CK 、为半径画 弧。求阴影部分面积。(π取3.14)

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

神奇的分形艺术(二):一条连续的曲线可以填满整个平面

神奇的分形艺术(二):一条连续的曲线 可以填满整个平面 虽然有些东西似乎是显然的,但一个完整的定义仍然很有必要。比如,大多数人并不知道函数的连续性是怎么定义的,虽然大家一直在用。有人可能会说,函数是不是连续的一看就知道了嘛,需要定义么。事实上,如果没有严格的定义,你很难把下面两个问题说清楚。 你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗? Cauchy定义专门用来解决这一类问题,它严格地定义了函数的连续性。Cauchy定义是说,函数f在x=c处连续当且仅当对于一个任意小的正数ε,你总能找到一个正数δ使得对于定义域上的所有满足c-δ< x

求出雪花曲线的面积

求出雪花曲线的面积 这个美丽的几何分形是由赫尔奇·冯·科克在1904年创造的。为了生成科克雪花曲线,先从一个等边三角形开始。把每一边分成三等分。取走中间的三分之一,在被取走线段处向外作出两边为此线段三分之一长度的尖角。重复这一过程得到各个尖角,以至无穷。 看来似乎矛盾的两个迷人的特性是—— ·雪花曲线的面积是原来那个生成 它的三角形的面积的8/5; ·雪花曲线的周长是无穷大。 雪花曲线的面积是生成它的三角形 的面积的8/5的非正式证明如下。 Ⅰ.假定等边△ABC的面积是k。 Ⅱ.分△ABC为九个全等等边三角形,各具有面积a,如图所示。因此k=9a。 现在集中考虑确定雪花曲线六个初始尖角中每一个面积的极限。我们知道大尖角的面积是a,因为它是九个三角形之一向外翻转而形成的。在由它生成的下一批尖角中,每一尖角具有面积a/9,因为和原来的三角形一样,它也被分为九个全等三角形后再把其中一个向外翻转而形成下一批的一个尖角。事实上,每一个相继的尖角都被分为九个全等三角形,同时在两边生出两个三角形。 Ⅲ.把这个尖角本身及其不断生成的各个尖角的面积相加如下:

Ⅳ.现在,把六个尖角中每一个所造成的面积相加,再加上原来的生成三角形内部的六边形,我们得到 Ⅴ.上式变成 方括弧内第二项开始的级数是几何级数,它的公比是4/9,首项是2/9,所以我们能计算它的极限:(2/9)/(1-(4/9))=2/5。 Ⅳ.代入级数的极限值2/5,我们得到 (1+2/5)6a+6a=72a/5。 现在我们需要把雪花曲线的面积用原来的生成三角形面积k来表示。因为 k=9a,我们得a=k/9。把这a值代入72a/5,我们得(72/5)(k/9)=(8/5)k。

分形理论及其发展历程.

分形理论及其发展历程 李后强汪富泉 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫 (F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干 (G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 二 1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。

正三角形的两种分形的面积和周长

正三角形的两种分形的面积和周长 四川省德阳中学(618000) 刘桂林 在华师大版数学八年级(下)第85页上有正三角形的两种分形。学生在阅读这部分材料时,对图形的自相似现象发生了浓厚的兴趣,提出了较多问题。尤其希望知道等边三角形的外部相似图形(最后得雪花曲线)和内部自相似图形的周长和面积。下面就此问题作出探讨。 1、将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形。然后以其两腰代替底边。再将六角形的每边三等分,重复上述作法。如此继续下去,就得到雪花曲线(如下图所示)。下面求雪花曲线所围图形的面积和雪花曲线的周长。 图 1 解:①设正三角形的边长为a ,原正三角形的面积为2213224S a a a = =,第一次分形后的总面积为1S ,第二次分形后的总面积为2S ,…,第n 次分形后的总面积为n S ,则有: 214221126332212111343()34913443()()34913443()()34913443()()349n n n n n n S S S S S S S S S S S S S S S S S S S S ---=+=+?=+?=+?=+?=+?=+?=+?因为 …… 2334444[()()()]49999n n S S S =+++++所以 … 2244[1()]399441934[1()]593343[1()]55948343[()]559n n n n S S S S a a ?-=+-=+-=+-=- 所以雪花曲线所围图形的面积为 228lim 5n n S →∞== .

②设正三角形的边长为a ,原正三角形的周长为3a ,第一次分形后的周长为1C ,第二次分形后的周长为2C ,…,第n 次分形后的周长为n C ,则有: 122212333211111433 3331443()()3331443()()33314 4443()()3()()3333 3n n n n n n n C a a a C C a a C C a a C C a a a a ----=+==+?==+?==+?=+ =…… 由分形后的周长通项公式4()33 n n C a =可知,数列{}n C 为一个无穷递增数列,所以雪花曲线的周长为无穷大。 2、连结阴影正三角形各边中点,得一个空白等边三角形。再连结剩下的阴影正三角形各边中点,得三个空白等边三角形。重复上述作法,如此继续下去,得到等边三角形的另一幅自相似图形(如下图所示)。下面来探究空白区域的面积和周长。 图2 解:①设原阴影正三角形的边长为a ,那么面积2213224 S a a a ==,第一次分形后空白面积为1S ,第二次分形后空白总面积为2S ,…,第n 次分形后空白总面积为n S ,则有: 222111()24416 S S a a ==?=因为 2111113344 S S S S S =+?=+

Koch分形雪花图的面积计算

Koch 分形雪花图的面积计算 一、问题叙述 分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、 信息、时间、空间等方面具有统计意义上的相似。在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。而本文我们要分析的是Koch 分形雪花图,包含以下三个问题: 1.描述Koch 分形雪花 2.证明Koch 分形雪花图K n 的边数为 n 1L 34n -=? 3.求Koch 分形雪花图的面积(数据),求 n n lim Area(K )→∞ 二、问题分析 在分析Koch 分形雪花图之前,我们首先介绍Koch 分形曲线。Koch 分形曲线的绘制原 理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图所示: 图 对一条线段进行第一次Koch 分形 然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。这种迭代继续进行下去可以形成Koch 分形曲线。在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。 设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1,Q2,Q3以产生第一次迭代图形。显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的

三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理Q Q 13 经过正交变换而得到Q Q 12 。算法如下: (1)Q1P1+P P Q P1+P P /3;←←(2-1)/3;32(2-1) (2)T Q2Q1+Q3-Q A ←?(1) ; (3)P5P2P2Q 1P3Q P Q3←←←←;;2;4。 在算法中,用正交矩阵A 构造正交变换,其功能作用是对向量作旋转,使之成为长度不变的另一向量。在绘制Koch 曲线的过程中,取旋转的角度为 3 π ,则正交矩阵A 应取为: cos()sin()33A=sin()cos()33ππππ? ?- ? ? ? ? ? ? 分形雪花的描述 Koch 分形雪花的原始图形是等边三角形,它是由三条相等的线段围成的三角形。根据 前面介绍的一条线段的Koch 分形的原理可知,Koch 分形雪花的形成是对等边三角形的三条边进行Koch 分形,随着迭代次数的增加,即可形成Koch 分形雪花图。 2.证明Koch 分形雪花图K n 的边数为 n 1L 34n -=? 证:对于一条线段,第1次迭代生成的图形包含4条线段,第2次迭代后生成的共有 16条线段,第3次迭代后共有64条线段,以此类推,第n 次迭代后共有4n 条线段。所以,第n 个图形(即第n-1次迭代)共有14n - 条线段。对于该等边三角形,三条线段都进行Koch 分形,进行n-1次迭代 ,生成的雪花图K n 的的直线段数为134n -?,也即雪花图K n 边数为: n 1 L 34 n -=?。 3.求Koch 分形雪花图的面积 (1)递推法 首先,假设要进行分形的正三角形的边长为a,面积为S ,则2 S 。设第一个图形为K 1,面积为S 1,则S 1=S;第二个图形为K 2 ,面积为S 2,则1 02S =S +34()213S ??;第三个图形 为K 3,面积为S 3,则1122 S =S +34S 323 ???(),以此类推,第n 个图形为K n ,面积为S n ,则 1(n 1)2 n 2 S S 34 ()S n n n 1 3 -?-=+??≥-(2) ,依次迭代,将S n 1-最终表示成S 1的形式为:

相关文档
最新文档