数值分析综合训练

数值分析综合训练
数值分析综合训练

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数有几位有效数字?(有效数字的计算) 解:2*103400.0-?=x ,325* 102 1 1021---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0?= π,欲使其近似值* π具有4位有效数字,必需 41*1021 -?≤-ππ,3*3102 11021--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 解:3* 1021-?≤ -a a ,2*102 1 -?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2 123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b b a ab 故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知 δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差 限。(误差限的计算) 解: * 2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 π ππ252.051.02052)5,20(),(2=??+????≤-v r h v

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值分析实验报告176453

实验报告 插值法 数学实验室 数值逼近 算法设计 级 ____________________________ 号 ____________________________ 名 _____________________________ 实验项目名称 实验室 所属课程名称 实验类型 实验日期

实验概述: 【实验目的及要求】 本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插 多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的 优劣。 本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并 去实现。 【实验原理】 《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值, 拉格朗日 插值的相应算法和相关性质。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A 笔记本电脑 操作系统: Win dows 8专业版 处理器:In tel ( R Core ( TM i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 第一步,将书上关于三种插值方法的内容转化成程序语言,用 MATLA B 现; 第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。 【实验过程】(实验步骤、记录、数据、分析) 实验的主要步骤是:首先分析问题,根据分析设计 MATLA 程序,利用程序算出 问题答案,分析所得答案结果,再得出最后结论。 实验一: 已知函数在下列各点的值为 试用4次牛顿插值多项式 P 4( x )及三次样条函数 S ( x )(自然边界条件)对数据进行插值。 用图给出{( X i , y i ), X i =0.2+0.08i , i=0 , 1, 11, 10 } , P 4 ( x )及 S ( x )。 值方法:牛顿 在MATLAB 件中

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值计算习题(1)

第5章 MATLAB 数值计算 1.选择和填空。 (1)下列变量名中的________是合法变量。 A. char_1 , i , j B. x*y , a.1 C. x\y , a1234 D. end , 1bcx (2)已知x 为1个向量,计算ln(x)的运算为________。 A. ln(x) B. log(x) C. Ln(x) D. log10(x) (3)已知a=0:4,b=1:5,下面的运算表达式出错的为_______。 A. a+b B. a./b C. a ’*b D. a*b 2.用“from:step:to ”方式和linspace 函数分别得到从0到4π,步长为0.4π的变量x1和从0到4π分成10点的变量x2。 3.输入矩阵A =123456789?????????? ,使用全下标方式取出元素“3” ,使用单下标方式取出元素“8”,取出后2行子矩阵块,使用逻辑矩阵方式取出1379?????? 。 4.输入A 为3×3的魔方阵,B为3×3的单位阵,由小矩阵组成3×6的大矩阵C 和6×3的大矩阵D ,将D 矩阵的最后1行构成小矩阵E 。 5.输入字符串变量a 为“hello ”,将a 的每个字符向后移4个,例如“h ”变为“l ”,然后再逆序排放赋给变量b 。 6.求矩阵1234?????? 的转置矩阵、逆矩阵、矩阵的秩、矩阵的行列式值、矩阵的三次幂、矩阵的特征值和特征向量。 7.求解方程组12341241 23412342x 3x x 2x 8x 3x x 6 x x x 8x 77x x 2x 2x 5 -++=??++=??-++=??+-+=? 8.计算数组A =123456789?????????? ,B =111222333??????????的左除、右除以及点乘和点除。 9. 计算函数2()sin(4)-=t f t t 的值,其中t 的范围为0~2π,步长取0.1π;z 为0.707;1()f t 为()0>=f t 的部分,计算1()f t 的值。 作业题:3、5、9(写到作业纸上,待通知交时再交上来) 其余为练习题(大家上机练习一下,课堂上可能会提问)

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验一

数值分析 实验一 一、实验目的 熟悉MATLAB 编程。 学习线性方程组数值解法的程序设计算法。 二、实验题目 1.给定线性方程组 (a )用LU 分解和列主元消去法求解。输出A=LU 的分解的L 和U ,detA 以及解向量x 。 (b )将2.099999改为2.1,5.900001改为5.9.用列主元消去法求解。输出detA 及解向量 x ,并与(a )的结果比较。 2。线性方程组Ax=b 的A 及b 为 10 7 8 9 32 7 5 6 5 23 A= 8 6 10 9 b= 33 7 5 9 10 31 则解x=(1,1,1,1)T 用MATLAB 内部函数求detA 及A 的所有特征值和cond (A )2。若令 ????????????=????????????????????????----15900001.582012151526099999.2310 7104321x x x x

10 7 8.1 7.2 A+δA= 7.08 5.04 6 5 8 5.98 9.89 9 6.99 5 9 9.98 求解(A+δA )(x+δx )=b,输出向量δx 和2 从理论结果和实际计算两方面分析线性方程组Ax=b 解的相对误差2 及A 的相对误差2 的关系。 三、实验原理与理论基础 1.本题用LU 分解法及列主元高斯消去法 LU 分解法原理: 解Ax=b 相当于解两个三角方程,即 Ly=b,Ux=y 分解求出x 和y 。 列主元消去法原理: 利用逐次消去未知数的方法,把线性方程组 Ax=b 化为与其等价的三角形线性方程组,求解线性方程组的方法可用回代的方法求。 2.本题通过 计算式: ) ()()(min max 2122T T AA A A A A A cond λλ==- 来计算A 的谱子条件数。 四、实验内容 1.解: (a )LU 分解法: 程序如下: function [ x ] = zhijiejiefangcheng( A,b )

计算机数值方法测试题二

计算机数值方法测试题二 Prepared on 22 November 2020

《计算机数值方法》测试题 一.判断题(1分×10=10分)(对打√,错打×) 1.数值方法是指解数值问题的计算机上可执行的系列计算公式。( ) 2.……计算R=≈是截断误差。( ) 3.不同的矩阵三角分解对应着不同的解法,但在本质上,都是经过A=LU 的分 解计算,再解Ly=b 和Ux=y 的线性方程组。( ) 4.一般不用n 次多项式做插值函数。( ) 5.Runge 现象说明并非插值多项式的次数越高其精度就越高。( ) 6.Romberg 算法是利用加速技术建立的。( ) 7.从复合求积的余项表达式看,计算值的精度与步长无关。( ) 8.可用待定系数法和函数值或公式的线性组合构造新的数值函数求解微分方程。 ( ) 9.局部截断误差e k (h )与y (x k )的计算值y k 有关。( ) 10.对大型线性方程组和非线性方程采用逐次逼近更为合适。( ) 二.填空题(2分×5=10分) 1. 设x ∈[a,b],x ≠x 0,则一阶均差f (x )= 。 2. 矩阵A 的F-范数||A||F = 。 3. Euler 公式为 。 4. 矩阵 A 的条件数Cond (A )∞= 。 5. 设x 为准确值,x *为x 的一个近似值,近似值x *的相对误差E r (x *) = 。 三.选择题(2分×5=10分) 1.设x=Pi ;则x *=有( )位有效数字。 (A) 4位 (B)5位 (C)6位 2.顺序主元a ii ≠0(i=1,2……k )的充要条件是A 的顺序主子式D i (i=1,2……n- 1)( )。 (A) 不全为0 (B) 全不为0 (C) 全为0 3.若存在实数P ≥1和c >0,则迭代为P 阶收敛的条件是( )。 (A) ∞ ?→?k lim p k k e e ||||1+=c (B) O(h p ) (C) O(h p+1) 4.方程x 3-x 2-1=0在x 0=附近有根,则迭代格式x k+1=在x 0=附近( )。 (A) 不收敛 (B) 局部收敛 (C)不确定 5.下面哪个公式的局部截断误差为O (h 3)。( ) (A )Euler 公式 (B )三阶Runge —Kutta 公式 (C )梯形公式 四.计算题(7分×6=42分)

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析试验一

数值分析第一次实验报告 姓名: 学号: 实验1: 1. 实验项目的性质和任务 通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。 2.教学内容和要求 1)对高阶多多项式 20 1()(1)(2)(20)()k p x x x x x k ==---=-∏ 编程求下面方程的解 19()0p x x ε+= 并绘图演示方程的解与扰动量ε的关系。(实验) 2)对2~20n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组 n H x b = 最后,用矩阵分解方法求解方程组,并分析计算结果。(第三章,实验题4) 3)对函数 2 1()[1,1]125f x x x =∈-+ 的Chebyshev 点 (21)cos( ) 1,2,...,12(1) k k x k n n π -==++ 编程进行Lagrange 插值,并分析插值结果。(第四章 实验1)

项目涉及核心知识点 病态方程求解、矩阵分解和方程组求解、Lagrange插值。 重点与难点 算法设计和matlab编程。 1)a.实验方案: 先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。即证明了这个问题的病态性。 b.编写程序: >> X=zeros(20,50); >> ve=zeros(1,21); >> ess=linspace(0,,50);k=1; >> while k<=50 ve(2)=ess(k); X(1:20,k)=roots(poly(1:20)+ve); k=k+1; end >> m=1; >> while m<=20 figure(m),plot(ess,X(m,:));

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

综合实验数值计算

数学与统计学院 数 学 综 合 实 验 报 告 班级:2013级数学三班姓名:康萍

数 值 计 算 一、实验目的 本实验通过介绍Mathmatca 的数值计算功能,它的特点是准确计算与数值计算相结合,能够通过可选参数提高计算精度,学习包括数据的拟合及插值、数值积分与方程的近似解、极值问题、最优化与数理统计方面的内容。 二、实验环境 基于Windows 环境下的Mathematica7.0软件与Mathematica9.0软件。 三、实验的基本理论和方法 1、 Mathmatica 提供了进行数据拟合的函数: Fit[data,funs,vars] 对数据data 用最小二乘法求函数表funs 中各函数的一个线性组合作为所求的近似解析式,其中vars 是自变量或自变量的表。 Fit[data, { }x ,1, x ] 求形如bx a y +=的近似函数式。 Fit[data, { }2,,1x x , x ] 求形如2cx bx a y ++=的近似函数式。 Fit[data, { }xy y x ,,,1, {}y x ,] 求形如dxy cy bx a y +++=的近似函数式。 2、 函数InterpolatingPolynomial 求一个多项式,使给定的数据是准确的函数值,其调用格式如下: InterpolatingPolynomial[{ ,,21f f },x] 当自变量为1,2,…时的函数值为 ,,21f f 。 InterpolatingPolynomial[{ ),,(),,(2211f x f x },x] 当自变量为i x 时的函数值为i f InterpolatingPolynomial[{}}},,,,{,{1111 ddf df f x ,x] 规定点i x 处的函数值。 3、 求定积分的数值解有两种方法: 使用N[Integrate[f,{x,a,b}],n]或使用NIntegrate[f,{x,a,b}]前者首先试图求符号

数值计算方法 练习题

数值计算方法练习题 习题一 1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。 (1);(2);(3); (4);(5);(6); (7); 2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字? 3. 设均为第1题所给数据,估计下列各近似数的误差限。 (1);(2);(3) 4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么? (1);(2);(3) (4) 5. 序列满足递推关系式

若(三位有效数字),计算时误差有多大?这个计算过程稳定吗? 6. 求方程的两个根,使其至少具有四位有效数字(要求利用 。 7. 利用等式变换使下列表达式的计算结果比较精确。 (1);(2) (3);(4) 8. 设,求证: (1) (2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。 9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 11.下列公式如何才比较准确? (1) (2) 12.近似数x*=0.0310, 13.计算取 四个选项:

习题二 1. 已知,求的二次值多项式。 2. 令求的一次插值多项式,并估计插值误差。 3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。 5. 已知,求及的值。 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。 7. 已知函数的如下函数值表,解答下列问题 (1)试列出相应的差分表; (2)分别写出牛顿向前插值公式和牛顿向后插值公式。 8. 下表为概率积分的数据表,试问: (1)时,积分 (2)为何值时,积分?

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关 于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、若(),0,1,2,3i l x i =是以01231,3,,x x x x ==为插值节点的Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的 直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A c o n d 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln 0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用Newton 插值法求ln 0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

相关文档
最新文档