主要气化工艺对比

主要气化工艺对比
主要气化工艺对比

气化工艺

● 水煤浆加压气化

①GE水煤浆加压气化工艺

GE水煤浆加压气化法为目前世界上先进的气化技术之一,属气流床加压气化法。其特点是该工艺对煤的适应范围较宽,可利用粉煤,单台气化炉生产能力较大,气化操作温度高,液态排渣,碳转化率高,煤气质量好,甲烷含量低,不产生焦油、萘、酚等污染物。排出粗灰渣可以用做水泥的原料和建筑材料。三废处理简单,易于达到环境保护的要求。生产控制水平高,易于实现过程自动化及计算机控制。

A. 加压水煤浆气化的优点

a)煤种适应性广

年轻烟煤,粉煤皆可作原料,灰熔点要求不超过1350℃,煤可磨性和成浆性好,制得煤浆浓度要高于60%(wt)为宜。

b)气化压力范围大

从2.5~8.0MPa(G)皆有工业化装置,以4.0MPa(G)和6.5MPa(G)较为普遍,气化压力高可节省合成气压缩功。

c)气化炉热量利用

有激冷工艺制得含蒸汽量高的合成气如用于生产合成氨、甲醇、制氢等,在变换工序不需再外加蒸汽,也可采用废锅流程回收热量副产高压蒸汽,但废锅设备价格较高,可择优选用。

d)气化炉内无传动装置,结构比较简单。

e)单位体积产气量大,一台直径3200mm,6.5MPa气化炉产生气体,可日产甲醇1500吨。

f)有效气成分高,CO+H2≥80%(v%),排渣无污染,污水污染小易处理。因高温气化,气体中含甲烷很低(CH4≤0.1%),无焦油,气化炉排渣无污染可用作铺路路渣,污水含氰化物少易处理。

g)产品气一氧化碳和氢含量高是碳一化学最好合成原料气,可用来生产合成氨,甲醇,制氢,羟基合成原料气,用途广泛。

h)碳转化率高最高可达98%。

B. 水煤浆气化对煤质要求

a)GE水煤浆气化对煤质适应性较广。除褐煤、泥煤及热值低于22940kJ/kg ,灰熔点高于1350℃的煤不太适用外,其他粘结性煤,含灰量较高的煤,石油焦,烟煤均可作原料。

b)煤中灰含量对消耗指标的影响,煤中的灰含量增加会增加氧气的消耗,同时也增加每m3(标)(CO+H2)气体的煤消耗量,一般煤中灰含量从20%(

wt)降到6%(wt),可节省5%无灰干基煤消耗,节省氧气消耗10%左右。

c)煤的灰熔点,由于气化炉内操作温度一般在煤的灰熔点T3以上通常要高50~100℃,鉴于炉内耐火材料承受耐高温的限制,要求煤的灰熔点T3不要超过1350℃,如果煤的性质较好,而灰熔点较高一些,可采取加助熔剂如石灰石,石灰粉等把灰熔点降下来,以保护炉内耐火材料使用寿命。

d)煤的可磨性,煤的可磨性是指煤可磨碎的难易程度,通常用哈氏指数(Hardgrove Index)来表示。

一般希望哈氏指数大,这样的煤磨煤所消耗的功就小,可节省能量。

e)煤的成浆性,水煤浆气化炉是将煤制成煤浆送入气化炉,故对煤的成浆性很重要,例如褐煤成浆性很差就不宜选作原料,在选用原料煤时除正常工业分析,一定要进行成浆试验,制成煤浆浓度最好在60%(wt)以上。浓度越高,耗氧量越少。

C. GE水煤浆气化的三种不同流程

根据气化后工序加工不同产品的要求,加压水煤浆气化有三种工艺流程,激冷流程,废锅流程和废锅激冷联合流程。对于合成氨生产多采用激冷流程,这样气化炉出来的粗煤气,直接用水激冷,被激冷后的粗煤气含有较多水蒸气,可直接送入变换系统而不需再补加蒸汽,因无废锅投资较少。如对产品气用作燃气透平循环联合发电工程则多采用废锅流程,副产高压蒸汽用于蒸汽透平发电机组。对产品气用作羟基合成气并生产甲醇仅需要对粗煤气进行部分变换,通常采用废锅和激冷联合流程。亦称半废锅流程即从气化炉出来粗煤气经辐射废锅冷却到700℃左右,然后用水激冷到所需要的温度,使粗煤气显热产生的蒸汽能满足后工序部分变换的要求。

● 干粉煤加压气化工艺

①壳牌干粉煤加压气化工艺(SCGP)

荷兰壳牌(Shell)公司1972年开始开始进行煤气化技术研究,于1993年建设了日处理煤2200ST(2000t)的SCGP工业生产装置,由荷兰德姆科勒克公司(Demkolec

B.V)在布根伦(Buggenum)市建一座250MkW的煤气化联合循环发电厂(IGC C)采用的是单台多烧嘴气化炉。该装置于1998年1月成功的投入了商业运行,它是目前世界上第一家大规模应用加压气流床干粉煤气化煤气用于发电的工厂。到目前,壳牌干煤粉加压气化工艺已经有用于合成氨生产的装置建成投产,证明壳牌SCGP工艺技术基本是可行的。

Shell粉煤气化工序由以下主要单元组成:磨煤及干燥、煤加压及进煤、气化及合成气冷却、除渣、除灰、洗涤、废水汽提及澄清、气化公用工程系统等。

SHELL气化炉为立式圆筒形气化炉,炉膛周围安装有由沸水冷却管组成的膜式水冷壁,其内壁衬有耐热涂层,气化时熔融灰渣在水冷壁内壁涂层上形成液膜,沿壁顺流而下进行分离,采用以渣改渣的防腐办法,基本解决了高温耐火材料损坏严重和检修频繁的难题。水冷壁与简体外壳之间留有环形空间,便于输入集水管和输出集汽管的布置,便于水冷壁的检查和维修;环形空间内充满250~300℃温度的有压合成气。炉体设有对称的四个煤粉烧嘴,烧嘴使用寿命保证期为一年。

② SCGP技术的特点

a)适合于气化原料煤的范围较宽

采用高温加压干粉煤气流床SCGP气化方法,拓宽了适应制取合成气原料煤的煤种,如褐煤、烟煤、无烟煤等各种煤均可使用,对煤的性质如:粒度、结焦性、灰分、水分、硫分、氧分等含量均不敏感。

b)成功地设计了膜式水冷壁气化炉

采用水冷壁气化炉,基本消除了频繁检修、更换炉内耐火衬里和耗费昂贵的弊端。同时单炉产气能力大,具有高效、大型化和长周期运行的显著特点。

c)SCGP技术具有较高的热效率

煤炭利用率高,碳转化率可达99%,其原料煤能量回收率高,80%~83%以合成气形式回收(即冷煤气效率),14%~16%以蒸汽形式回收。

③GSP/CHOREN干粉煤加压气化

GSP/CHOREN是干粉煤加压气流床工艺,它是20世纪70年代由当时的前民主德国燃料研究所开发的,首先在德国弗莱堡先后建成热负荷3MW、5MW的中试装置,对世界各地几十种不同原料进行了试验。1984年在黑水泵气化厂建成了单炉每天投煤量720t的示范装置。这套以煤为原料的装置一直运行到1991年德国统一。德国统一后,由于各种原因GSP技术没有及时向市场推广,并将原黑水泵厂改造成为综合物料处理中心,其粉煤气化装置改为浆体进料,用于处理液态工业废料。

同年前民主德国燃所研发部部长WOLF博士和其同事以及黑水泵厂的技术骨干发起成立了科林的前身公司,继续致力于煤气化技术的研发,并在此基础上开发出了Carbo-V生物质气化技术,从此翻开了科林气化技术的研发和利用的新篇章。科林是前东德燃料研究所和黑水泵厂最大的后裔单位。2008年,黑水泵厂全部解散,科林由于自身在建设生物质气化半工业化装置,所以又接收了大量的工厂操作人员。也就是说,科林拥有气化技术方面的大批拥有Know-Ho w(专有技术)的人员。他们具有40余年研发、设计、制造、运转方面的理论和实践经验。科林公司发起人、科林主要的技术团队、研发团队大部分来源于黑水泵气化厂和前德国燃料研究所。

GSP/CHOREN粉煤加压气化属于气流床煤气化工艺技术,该技术特点如下

? 能高效生产富氢和一氧化碳的合成气,甲烷含量少;

? 燃料可完全气化,不生成冷凝副产品,气体不含焦油、酚等污染物;

? 液态排渣,熔融淬冷成透明状,硬度大对环境无污染;

? 能气化劣质褐煤,也可气化硬煤和焦煤,煤种适应范围广;

? 煤气化碳转化率高于99%;

? 可处理高Cl-的物料,原料适应性强;

? 水管冷壁型气化炉,寿命长,维修工作量小;

? 新型水冷气化喷咀,寿命长,效率高;

? 流体上进下出,单喷咀,工艺有水冷激型、废锅型、混合型流程。

GSP/CHOREN气化技术授权情况(业绩)

1983年12月德国黑水泵联合企业建成一套200MW工业规模的气化装置

2008年

捷克IGCC发电项目建成投产一套200MW工业规模的气化装置,气化固定床产

生的焦油等液体废料

2007年08月贵州开阳年产50万吨合成氨工程,引进CHOREN技术(目前已投产)

2008年09月神华宁煤167万吨煤基烯烃工程,引进5套500MW GSP气化技术,并于2010年11月投料成功

另外,山西兰花集团合成氨项目、中电投新疆SNG项目、神华宁煤煤制油项目以及国外多个项目均已选定GSP气化技术,目前正在设计建设过程中。

注:西门子GSP气化技术与CHOREN气化技术相似。

2)国内工艺技术概况

● 水煤浆加压气化工艺

①新型(对置式多喷嘴)水煤浆加压气化

新型(对置式多喷嘴)水煤浆加压气化技术是目前最先进的水煤浆气化技术之一。1985年,华东理工大学开始进行多喷嘴对置水煤浆气化工艺的实验室理论研究,1996年开始建设试验装置,2000年试验装置投入运行。从1996年到2 001年期间,华东理工大学成功完成了多喷嘴对置式水煤浆气化技术的中试研究。中试装置(22t煤/天)的结果表明:有效气成分83%,比相同条件下的GE生

产装置高1.5~2个百分点;碳转化率>98%,比GE高2~3个百分点;比煤耗、比氧耗均比德士古降低7%。在2005年,多喷嘴对置式水煤浆气化技术分别于山东国泰、山东德州建设了工业示范装置。示范装置的成功运行已充分证实:该技术工程上完全可行,工艺指标优于引进的水煤浆气化技术,操作非常平稳。

多喷嘴对置式水煤浆气化技术涉及以纯氧和水煤浆为原料制合成气的过程

,装置包括磨煤单元、气化及初步净化单元及含渣水处理单元,技术特点是:多喷嘴对置的水煤浆气流床气化炉及复合床煤气洗涤冷却设备;混合器、旋风分离器、水洗塔三单元组合煤气初步净化工艺;蒸发分离直接换热式含渣水处理及热回收工艺。

② 多元料浆气化

多元料浆气化技术是西北化工研究院自主开发的一种气流床加压气化专利技术。本工艺技术主要有料浆的制备和气化两部分组成,料浆制备是以一种或多种的含碳固态物质为原料,经一次湿磨制成气化料浆,浆体呈非牛顿型流体中的假塑性流体特征,料浆性能稳定,易于泵送:料浆气化是料浆通过高压料浆泵送入气化炉,与氧气在气化炉内进行气化反应,生成以CO、H2和CO2为主要成分的粗合成气。本工艺技术原料来源广泛,已有数套工艺装置多年的运行经验,技术成熟、可靠,便于大型化、规模化,易实现自动化控制和清洁化生产。本技术是煤化工技术中比较先进的一种合成气生产工艺。多元料浆气化原料可根据不同地区的资源情况灵活选择。

③ 水煤浆水冷壁清华炉煤气化技术

水煤浆水冷壁清华炉煤气化技术是由清华大学(Tsinghua

University,TU)、北京盈德清大有限责任公司开发的具有自主知识产权的气化技术,该技术获得了国家高技术研究发展计划(863)、国家重点基础研究发展计划(973)和山西省等相关部门的大力支持,已取得国家专利21项。水煤浆水冷壁清华炉煤气化技术成果于2012年9月3日通过了中国石油和化学工业联合会组织的以中国工程院副院长谢克昌院士为鉴定委员会主任的科技成果鉴定。鉴定委员会认为:该气化炉技术具有显著的创新性,拥有自主知识产权,同时具有水煤浆耐火砖和干粉水冷壁气化炉的优点,综合性能优异,具有明显的经济效益和社会效益,总体技术处于国际领先水平。

水煤浆水冷壁清华炉煤气化技术主要特点如下:

a)稳定性好:

水煤浆气化工艺成熟。用水煤浆进料稳定可靠,水冷壁挂渣稳定。水煤浆运行安全可靠,避免了粉煤进料不稳定、易燃、易爆、易磨损、泄漏等难题;

b)煤种适应性强:

气化温度不受耐火材料限制,可达1500℃或更高,气化反应速度快,碳转化率高,煤种适应性好,能够消化高灰分、高灰熔点、高硫煤,易于实现气化煤本地化。

c)系统运转率高:

装置运行连续稳定,烧嘴头部采用特殊处理,一次连续运行周期可以保证

100天以上,每年不再因为换砖而停炉检修,年运行时间可达到8000h。

d)安全性强:

水冷壁采用热能工程领域成熟的悬挂垂直管结构,既保证了水循环的安全性又避免了复杂的热膨胀处理问题。水循环按照自然循环设计,强制循环运行,紧急状态下能实现自然循环,最大限度保证水冷壁的安全运行。废锅系统也采用热能工程领域成熟的悬挂垂直管结构,既保证了水循环的安全性又避免了复杂的热膨胀处理问题。水循环按照自然循环设计,自然循环运行。

e)环境友好,环保高效:

炉温高,残炭含量低,易于收集处理,废水无难处理污染物;制浆可处理污水。

f)系统启动快:

组合式点火升温过程简化,点火、投料程序一体化完成。水煤浆投料点火采用独特的“火点火”技术,气化炉从冷态到满负荷仅需2~3小时。

g)气化压力高:

气化压力不受原料输送系统影响,可根据后续工段要求进行更加合理的选择。

h)技术细节处理好:

清华炉气化技术在工业化过程,在细节的设计上有很多创新,如碳洗塔底部的气体分布器,使灰水和煤气的充分混合,保证了煤气的洗涤效果;闪蒸罐中的环槽分布器设计,使闪蒸系统的检修更方便;真空闪蒸的液封设计,使闪蒸罐不在堵塞等,细节上的改进使气化系统能够实现长周期运行。

I)不足之处:氧煤的消耗大于热壁水煤浆气化工艺,无大型化的运营经验。

清华炉煤气化技术业绩:

水煤浆水冷壁清华炉煤气化技术的工业装置于2011年8月在山西丰喜投入运行,首次投料即进入稳定运行状态,并全面实现了研发和设计意图。除山西丰喜运行外,已与:中海石油天野化工股份有限公司、河北阳煤正元化工集团有限公司、山东金诚石化有限公司、中盐德邦(江苏)化工有限公司、石家庄盈鼎气体有限公司、潍坊盈德气体有限公司等11家生产企业签约,另有部分项目进入签约阶段。

● 干粉煤加压气化工艺

①航天粉煤加压气化技术

航天粉煤加压气化技术(HT-L气化)是由中国航天科技集团公司北京航天

动力研究所研制成功的,该技术吸收了国外先进煤气化技术的优点,充分利用航天特种技术优势与航天石化装备的研发成果,自主研发了HT-L气化炉、气化燃烧器等煤气化关键设备,采用成熟的化工工艺,形成了具有自主知识产权的航天煤气化成套技术。其特点为:

a)采用干粉煤进料:具有煤种适应性广,碳转化率高的特点。

b)采用密闭式盘管水冷壁辐射室结构:设计寿命20年,“四进四出”结构可以保证管程水流量分布均匀。可控制罐内水汽化率,调节炉内热平衡。烧嘴盘管、渣口盘管分别进水,多组冷却水盘管易于调节,便于维护和更换。

c)采用激冷流程及灰渣水循环利用等技术:能够实现合成气灰分、硫等有害元素的有效处理和灰渣的综合利用,利用环保。

d)采用单烧嘴组合燃烧器。

e)采用“自我修复式”耐火材料结构,炉内向外依次有液渣、固渣、SiC 耐火材料、水冷壁、惰性气体保护层、高铝不定型耐火材料、外保温层。水冷壁外可以形成稳定的固渣层3~5mm,可以“以渣抗渣”抵抗气体和熔渣的冲刷和磨损。

航天气化技术业绩:

a)2008年10月,安徽临泉化工股份有限公司建成投产一套HT-L粉煤加压气化示范装置,年产15万吨合成氨,气化炉直径Φ2800。

b)2007年,河南濮阳龙宇化工公司对老厂固定床气化装置进行改造,于2008年10月建成投产一套HT-L粉煤加压气化示范装置,年产20万吨甲醇,气化炉直径Φ2800。

c)2011年9月,山东鲁西化工建成投产2套HT-L粉煤加压气化装置,年产30万吨尿素,气化炉直径Φ2800。

d)2011年9月,河南煤业中新化工公司简称投产2套HT-L粉煤加压气化装置,年产30万吨甲醇,气化炉直径Φ2800。

e)2012年10月,河南晋开集团建成投产2套HT-L粉煤加压气化装置,年产60万吨合成氨,气化炉直径Φ3200。

f)2012年12月,山东瑞星化工建成投产1套HT-L粉煤加压气化装置,年产30万吨合成氨,气化炉直径Φ3200。

另有多个采用航天气化技术的项目正在建设之中。

② 新型多喷嘴对置式干粉煤加压气化工艺

新型多喷嘴对置式干粉煤加压气技术属第二代气流床气化技术,它是在新型

多喷嘴对置气化炉中试装置的基础上开发的,是对新型气化炉攻关成果的拓展和延伸。由鲁南化肥厂、华东理工大学、中国天辰化学工程公司共同承担的《日投料30吨能力粉煤加压气化炉工业中试装置》项目,2001年11月被科技部列入了“十五”国家重点科技攻关项目。2004年10月在鲁化建成并一次投料成功。于2004年12月6~8日,通过由科技部组织的国家72h考核。装置运行良好,各项主要技术指标达到和超过设计要求。于2005年2月1日,通过由科技部组织的国家项目验收。项目试验的成功,可望使我国在煤化工气化整体技术水平处于国际先进水平,气化炉结构及工艺效果处于国际领先水平。本工艺主要的特点为原料、氧耗和干煤粉的制备和进料基本等同于壳牌和GSP气化,炉型、冷却方式和渣水处理等同于新型多喷嘴(对置式)水煤浆加压气化工艺。

新型多喷嘴对置式粉煤加压气化技术融合了水煤浆气化和干煤粉气化的诸多技术优点,同时又有许多自己独有的特点:

a)新型多喷嘴对置式粉煤加压气技术的投资只有壳牌干粉煤加压气化工艺(SCGP)投资的1/2多。

b)新型多喷嘴对置气化炉技术采用激冷流程,其气体被水蒸汽饱和,水气比约为1.3~1.4,足以满足变换反应对水蒸汽的需要,且流程设置按耐硫中串低比较合理。

c)采用对置式气化炉,强化热质传递,有利于煤粉气化。单炉产气能力大,具有高效、煤耗低和长周期运行的显著特点。煤气化碳转化率高于98%;合成气中有效成分CO+H2≥90%;冷煤气效率:83%。

d)气化炉装置具有开车方便、操作灵活、投煤负荷增减自如的特点,尤其是气化炉装置可灵活的停下一对烧嘴另一对烧嘴可继续工作,不必立即停车,为保压操作和维修创造有利条件。

e)能高效生产富氢和一氧化碳的合成气,甲烷含量少,热值高;燃料可完全气化,不生成冷凝副产品,气体不含焦油、酚等污染物,炉灰渣可以用作水泥的原料和建筑材料,三废处理简单,易于达到环境保护的要求,生产控制水平高,易于实现过程自动化及计算机控制。

f)能气化劣质褐煤等,煤种适应范围广。

新型多喷嘴对置式粉煤加压气化技术存在的不足是:目前还没有工业化和商业化运行的经验;

另外,西安热工研究院研制的二段炉已经在华能绿色煤电示范项目、内蒙世林甲醇项目等项目中成功应用。

(3)工艺技术方案的比较和选择

1)水煤浆加压气化法与干煤粉加压气化法的异同点

水煤浆加压气化法、干粉煤加压气化工艺均为目前世界上较先进的气化技术,同属气流床加压气化法。其共同特点是该工艺对煤的适应范围较宽,可利用原煤,单台气化炉生产能力较大,气化操作温度高,液态排渣。碳转化率高,煤气质量好,甲烷含量低,不产生焦油、萘、酚等污染物,炉灰渣可以用做水泥的原料和建筑材料,三废处理简单,易于达到环境保护的要求、生产控制水平高,易于实现过程自动化及计算机控制。

三种气化方法具有以下不同点:(水煤浆法、SH法-SHELL、GSP)。

①进料方式不同

水煤浆法:水煤浆进料,安全、操作方便,简单,对煤的含水量要求比较宽松。

SH法与GSP法:干煤粉进料,用高压氮气或CO2气送入气化炉,煤需干燥并磨成细粉,煤的含水量越小越好,煤干燥需要消耗不少的热量。

②炉子结构不同

水煤浆法:采用耐磨耐高温耐火砖衬里,一般其使用寿命~1年。

SH/GSP法:采用膜式水冷壁衬里,使用时间寿命较长。

③所生产的水煤气中有效气(CO+H2)百分含量不同。

水煤浆法:水煤气中含有效气(CO+H2)≈80%。

SH法:水煤气中含有效气(CO+H2)≈90%。

GSP法:水煤气中含有效气(CO+H2)≈90%。

④耗煤量和耗氧量

由于众多资料介绍SH法和GSP法生产煤气的成分CO+H2高达90%以上,而水煤浆法生产煤气的成分CO+H2为80%以上,因此,许多人认为SH法和GSP 法可节省10%,实际上并非如此。磨煤干燥仍需大量的热能及动力消耗。

耗氧量:同样的煤质比较,水煤浆法技术要比SH法和GSP法多消耗8~10%。

⑤对后续工序的影响

SH:如前所述,SH气体中CO高达60%,这使变换的负荷大大加重了,同时必须补加其副产蒸汽85%的以满足变换的需要。

水煤浆法激冷流程和GSP激冷流程。水煤浆:CO含量约45%;GSP:CO 含量60%,其气体被水蒸汽饱和,水气比约为1.1~1.5,足以满足变换反应对水蒸汽的需要,且流程设置按耐硫中串低比较顺畅。

⑥热回收方法不同

水煤浆法和GSP法:采用废锅间接回收热量,也可采用激冷室直接回收热量,根据后续产品的不同,可以进行选择。如:生产合成氨、甲醇和制氢产品一般都用激冷室,直接回收热能,可以节省大量投资。

SH法:只有一种废锅间接回收热量方式,没有选择余地,由于投资大,材料要求高,制造难度大,操作较复杂,对生产甲醇和一碳化学的工程不太合适。

⑦装置投资的不同

水煤浆法:该法有废锅和激冷两种流程,根据掌握的资料,一般来说,在同样生产规模的条件下,采用废锅流程比激冷流程,其投资大约高50%以上。因此,为节省投资,无论是生产合成氨还是生产甲醇等化工产品,一般都是首选激冷流程以节省投资。

GSP法:由于气化炉结构较复杂,并且采用干粉煤进料系统,投资较水煤浆高。

SH法:由于采用废锅流程,结构复杂,要求高,制造难度大等原因,应该说其投资肯定比同样生产规模的水煤浆气化激冷流程高得多。根据我们了解已有资料介绍完全相同规模,SH法投资是水煤浆法激冷流程投资的2倍。由于投资高,一般不采用备用炉,这对于要求稳定、长周期运行的大型化工企业是不适宜的。

根据以上数据可以看出,Shell煤气化技术,装置投资高将使生产成本上升,运

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

气化技术

气化技术 概念煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 ? 煤炭气化指在一定温度、压力下,用气化剂对煤进行热化学加工,将煤中有机质转变为煤气的过程。其涵义就是以煤、半焦或焦炭为原料,以空气、富氧、水蒸气、二氧化碳

或氢气为气化介质,使煤经过部分氧化和还原反应,将其在所含碳、氢等物质转化成为一氧化碳、氢、甲烷等可燃组分为主的气体产物的多相反应过程。对此气体产品的进一步加工, 可制得其它气体、液体燃烧料或化工产品。经气化,使煤的潜热尽可能多地变为煤气的潜热。 煤气化方法 (1)以原形态为主进行分类,有固体燃烧气化、液体燃料气化、气体燃烧料气化及固/液混合燃料气化等。 (2)以入炉煤的粒级为主进行分类, 有块煤气化(6~50mm)、煤粉气化(小于0.1 mm)等。此外, 入炉燃烧以煤/油浆或煤/水浆形成的,均归入小粒煤和煤粉气化法中。 (3)以气化过程的操作压力为主进行分类, 有常压或低压气化(0~0.35MPa)、中压气化(0.7~3.5 MPa)和高压气化(7MPa)。 (4)以气化介质为主进行分类, 有空气鼓风气化、空气-水蒸气气化、氧-水蒸气气化和加氢气化(以氢气为化剂,由不得煤制取高热值煤气的过程)等。 (5)以排渣方式为主进行分类,有干式或湿式排渣气化、固态或液态排渣气化、连续或间歇排渣气化等。 (6)以气化过程供热方式进行分类,有外热式气化(气化所需热量通过外部加热装置由气化炉内部释放出来)和热载体(气、固或液渣载体)气化。

LNG气化站设计

LNG气化站工艺设计与运行管理 LNG(液化天然气)已成为目前无法使用管输天然气供气城市的主要气源或过渡气源,也是许多使用管输天然气供气城市的补充气源或调峰气源。LNG气化站凭借其建设周期短以及能迅速满足用气市场需求的优势,已逐渐在我国东南沿海众多经济发达、能源紧缺的中小城市建成,成为永久供气设施或管输天然气到达前的过渡供气设施。国内LNG供气技术正处于发展和完善阶段,本文拟以近年东南沿海建设的部分LNG气化站为例,对其工艺流程、设计与运行管理进行探讨。 1 LNG气化站工艺流程 1.1 LNG卸车工艺 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设置的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG 卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的

LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG 由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG 由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。 图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

科林粉煤气化技术

科林粉煤气化技术(CCG)简介 德国科林工业集团 二零一零年七月 1. 公司简介 德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。 科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen- 氧REN-RENewable-可再生”。 科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。 科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V®)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。 此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。 科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。 2. 技术来源及技术开发背景 科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术 - CCG。 3. CCG技术介绍 (A)气化工艺 CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在 反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

气化装置工艺流程叙述

气化装置工艺流程叙述 (1)磨煤及干燥单元(1500 单元) 来自原料煤贮仓的碎煤由称重给煤机按给定量加入到磨煤机内,被轧辊在磨盘上磨成粉状,并由高温惰性气体烘干。高温惰性气体来自惰性气体发生器。惰性气体进入磨煤机进口时温度为150,250? ,离开磨煤机时温度为100,120?。惰性气体将碾磨后的粉煤输送到磨煤机上部的旋转分级筛,筛出的粗颗粒返回到磨盘重新碾磨。出磨煤机的合格粉煤由惰性气体输送入粉煤袋式过滤器进行分离后,粉煤经旋转卸料阀、纤维分离器、及粉煤螺旋输送机送至粉煤贮罐,分离出的惰性气体小部分(约20%)排放至大气,剩余部分(约80%)经循环风机进入惰性气体发生器加热后循环使用。惰性气体发生器的燃料气正常情况下由老厂提供,并用燃烧空气鼓风机提供助燃空气。在粉煤袋式过滤器下游监测惰性气体露点,稀释氮气由稀释风机加入,以保证系统内惰性气体露点在要求的范围内。 磨煤及干燥单元设有四条生产线,每条线的处理能力满足单台气化炉100,负荷,采用三开一备的操作方式。 磨煤及干燥单元主要控制煤的颗粒尺寸(粒径分布)和粉煤的水分含量(v5%wt)。粉煤的典型粒径分布为: 1)颗粒尺寸?90卩m占90%(重量); 2)颗粒尺寸?5卩m占10%(重量)。 (2)煤加压及进煤单元(1600 单元) 煤加压及进煤单元设有三条生产线,对应三条气化及合成气洗涤生产线,该单元采用锁斗来完成粉煤的连续加压及输送。 在一次加料过程中,常压粉煤贮罐内的粉煤通过重力作用进入粉煤锁斗。粉煤锁斗内充满粉煤后,即与粉煤贮罐及所有低压设备隔离,然后进行加压,当其压力 升至与粉煤给料罐压力相同时,且粉煤给料罐内的料位降低到足以接收一批粉煤时,打开粉煤锁斗与粉煤给料罐之间平衡阀门进行压力平衡,然后依次打开粉煤锁斗和粉煤给料罐之间的两个切断阀,粉煤通过重力作用进入粉煤给料罐。粉煤锁斗卸料完成后,通过将气体排放至粉煤贮罐过滤器进行泄压,泄压完成后 重新与粉煤贮罐经压力平衡后联通,此时,一次加料完成。 粉煤锁斗加压是通过充入高压氮气完成的,高压氮气经充气锥、充气笛管、管道充气器和锁斗高压氮气过滤器进入粉煤锁斗。为了保证到烧嘴的煤流量的稳定,在粉煤给料罐和气化炉之间通过控制粉煤给料罐的压力保持一个恒定的压差,此压差的设定值根据气化炉的负荷确定。 (3)气化及合成气洗涤单元(1700 单元)

气化工艺

气化工艺 一、煤气化的基本原理 1、气化过程一般包括干燥、热解、气化及燃烧4个阶段 煤气化过程中的基本化学反应 序号反应方程式⊿H(298K,0.1MPa)/kJ.mol-1备注 1 C+O2=CO2-393.5 碳完全燃烧 2 C+1/2O2=CO -110.5 碳不完全燃烧 3 C+H2O=CO+H2131.3 水蒸气气化 4 C+CO2=2CO 172. 5 Boudouard反应 5 C+2H2=CH4-74.4 碳加氢气化 6 H2+1/2O2=H2O -241.8 氢气燃烧 7 CO+1/2O2=CO2-283 一氧化碳燃烧 8 CO+H2O=CO2+H2-41.2 水煤气变换 9 CO+3H2=CH4+H2O -205.7 甲烷化反应 10 CHxOy=(1-y)C+yCO+x/2H217 煤热解 11 CHxOy=(1-y-x/8)C+yCO+x/4H2+x/8CH48 煤热解 此外,煤中的氮和硫也会与气化剂中的氧气和水蒸气以及反应产物之间发生一些化学反应 序号反应方程式序号反应方程式 1 S+O2=SO 2 6 CO+S=COS 2 SO2+3H2=H2S+2H2O 7 N2+3H2=2NH3 3 SO2+2CO=S+2CO28 2N2+2H2O+4CO=4HCN+3O2 4 SO2+2H2S=3S+2H2O 9 N2+xO2=2NOx 5 C+2S=CS2 重点的几个主要气化反应 1)碳与水蒸气的反应 高温下,碳与水蒸气的反应(即水蒸气气化反应主要为: C+H2O=CO+H2—Q1 (1) C+2H2O=CO2+H2—Q2 (2) 这两个反应都是强吸热反应。提高温度有利于(1)的反应,有利于提高CO的含量和降低CO2的含量。 2)碳与二氧化碳的反应 碳与二氧化碳的反应(即二氧化碳的还原反应)也是强的吸热反应,反应所需吸收的热量更多,表明温度的影响更为强烈 C+CO2=2CO —Q.3 3)碳的加氢反应 碳加氢直接合成甲烷(即加氢气化反应)实枪的放热反应。甲烷的平衡含量随温度的升高而降低。 C+2H2=CH4 +Q4 4)甲烷化反应 CO+3H2=CH4+H2O CO2+4H2=CH4+2H2O

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

气化工段流程简述

目录 概述 (1) 煤浆制备(12 工号) (2) 气化工段(13 工号) (3) 灰水处理(14 工号) (6) 变换工段(21工号) (10) 概述 蒙大新能源化工基地开发有限公司根据企业长远规划发展的需要,决定新建180万吨/年的合成甲醇生产装置,该项目一期为60万吨/年甲醇,采用西北化工研究院的多元料浆气化专利技术生产合成甲醇原料气。 多元料浆气化技术是西北化工研究院自主开发的一种气流床加压气化专利技术。本工艺技术主要由料浆制备、气化和灰水处理三部分组成,料浆制备是以一种或多种的含碳固态物质为原料,经一次湿磨制成气化料浆,浆体呈非牛顿型流体中的假塑性流体特征,料浆稳定,易于泵送;气化是通过料浆被加料泵加压送入气化炉,与氧气在气化炉内进行气化反应,生成以CO、CO2和H2为主要组成的粗合成气,其中由于项目的处理量,相较同类装置,部分装置被放大,其中气化炉(Φ3300×96/3800×106),洗涤塔(Φ3800);灰水处理是对洗涤黑水和激冷黑水进行高压、

低压、真空三级闪蒸、沉降处理,使得灰水循环利用的处理过程。煤浆制备(12 工号) 本工号的任务是给煤浆制备提供质量合格的水煤浆。 从煤储运系统来的原料经破碎后颗粒尺寸小于10mm的合格的煤粉被送入料仓(T-1201),再经煤称重进料机(L-1201A)计量送入磨机(H-1201A)。设置的原料料仓为三台磨机共用,料仓(T-1201)内的粉尘经袋式过滤器(S-1201)过滤除尘后放空。 助熔剂添加单元:助熔剂为石灰石粉。料浆制备过程中加入助熔剂以改善多元料浆灰渣熔融性能。本系统为备用系统。通过风力将助熔剂输送到助熔剂仓(T-1202A),设置二个助熔剂仓。输送气经袋式过滤器(S-1202A)过滤除尘后放空。助熔剂经助熔剂给料器(X-1201A)以及助熔剂进料输送机(L-1202A)与原料煤一起送入磨机。石灰石的加入量需要根据煤灰的成分加以调整,以便控制煤的灰熔点低于1300℃. 料浆PH值调节单元:以氢氧化钠水溶液作为PH值调节剂。在PH值调节剂制备槽(T-1204)中制得所需的PH值调节剂溶液,泵送入PH值调节剂槽(T-1205),PH值调节剂再经PH值调节剂计量给料泵(P-1203A)计量送往磨机,保持料浆PH值在7~9之间。 添加剂添加单元:为改善料浆中固体的分散性能和料浆流动性能,降低料浆粘度,提高料浆浓度,本设计在多元料浆制备系统设置了料浆添加剂系统。在添加剂制备槽(T-1206)中制得合

LNG气化站工艺流程图

LNG气化站工艺流程图 如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。

LNG气化站工艺流程图模板

LNG气化站工艺流程图模 板 1

LNG 气化站工艺流程图 如图所示, LNG经过低温汽车槽车运至LNG卫星站, 经过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压, 利用压差将LNG送至卫星站低温LNG储罐。工作条件下, 储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器, 与空气换热后转化为气态天然气并升高温度, 出口温度比环境温度低10℃, 压力为0.45-0.60 MPa, 当空温式气化器出口的天然气温度达不到5℃以上时, 经过水浴式加热器升温, 最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网, 送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气( Liquefied Natural Gas) 的简称, 主要成分是甲烷。先将气田生产的天然气净化处理, 再经超低温( -162℃) 加压 2

液化就形成液化天然气。 LNG无色、无味、无毒且无腐蚀性, 其体积约为同量气态天然气体积的1/600, LNG的重量仅为同体积水的45%左右。 一、 LNG气化站主要设备的特性 ①LNG场站的工艺特点为”低温储存、常温使用”。储罐设计温度达到负196( 摄氏度LNG常温下沸点在负162摄氏度) , 而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好, 阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好, 而且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力, 因此低温液体泵要求提高频率和扩大功率要快, 一般在几秒至十几秒内就能满足要求, 而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震, 耐台风和满足设计要求, 达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范; 气化器和低温烃泵在国内均无相关法规加以规范, 在其制造过程中执行美国相关行业标准, 在压 3

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

煤气化工艺流程简述

煤气化工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

科林气化技术

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20 来源:《中国煤化工》编辑部作者:德国 科林工业技术有限责任公司 德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

CNG加气站工艺流程图、高压气地下储气井

CNG加气站工艺流程图: 高压气地下储气井施工工艺流程图: 健康、安全与环境管理机构图:

采用技术规范及标准: 1、《汽车加油站气站设计及施工规范》GB50156-2002 2、《高压气地下储气井》SY/T6535-2002

《高压气地下储气井》 SY/T6535-2002 前言 范围 规范性引用文件 术语 结构型式与参数 要求 验收方法 检验规则 标志、涂漆(井口装置) 附录A (规范性附录)气密性试验压降(因温度变化)计算公式 随着车用压缩天然气(CNG)加气站和民用天然气调峰站的大量建设,其储气系统高压气地下储气井也得到广泛应用。为了更好地利用和规范高压气地下储气井,在原天然气井设计、建造的基础上特制定本标准。?本标准的附录A为规范性附录。?本标准由油气田及管道建设设计专业标准化委员会提出并归口。 本标准起草单位:四川省川油天然气科技发展有限公司。?本标准主要起草人:陈立峰、李葵侠、廖晓锋、伍永乔、陈文忠、杨廷志。 1范围 本标准规定了压缩天然气地下储气井(简称储气井)的结构型式、技术要求、验收方法、检验规则及标志、涂漆等。 本标准适用于设计、建造、验收及检验公称压力25MPa(表压)、公称容积为1m3~10m3的储气井。按本标准建造的储气井适用于符合GB 180417《车用压缩天然气》规定的天然气的储存。其它用途及非腐蚀性气体可参照使用。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

气化技术那种最好

煤气化技术那种最好? 煤气化是煤化工的关键技术和龙头技术,核心是煤气化炉,包括固定床(移动床,记者误写,固定床是鲁奇气化或BGL等加压气化工艺,移动床就是传统的固定层气化工艺,概念不同)、流化床、气流床3 种类型,其中气流床成为当今煤气化技术发展的主流。近10年来,我国煤气化技术开发明显加快,相继开发成功清华气化炉、多喷嘴对置式水煤浆气化炉、航天加压粉煤气化炉、两段式干粉煤气化炉以及灰熔聚流化床粉煤气化炉等煤气化技术,形成了与国外技术竞相发展的局面。 “新型煤气化技术主要指粉煤加压气化技术和新型水煤浆气化技术。与固定床煤气化技术相比,新型煤气化技术在节能环保、煤种适应性等方面具有十分突出的优势。”中国化工信息中心副主任李中说,在此次煤气化技术/经济发展论坛上,国内自主煤气化技术与美国GE、壳牌、西门子GSP、科林CCG 等国外先进技术同台竞技,各展风采。由于是商业性会议、用户业主只来了10家左右、基本上是参会众多技术单位和专家自我欣赏居多! 记者注意到,国产化技术毫不逊色,一些甚至达到国际领先水平。“在第一代清华气化炉应用世界首个氧气分级气流床煤气化技术的基础上,我们又创新将燃烧凝渣保护和自然循环膜式壁技术引进气化领域,成功开发了新一代清华水冷壁气化炉,装置全部采用我国自主技术和国产设备,解决了水煤浆气化技术的煤种限制和高能耗点火问

题,形成了世界第一个水煤浆水冷壁煤气化工艺。” 清华大学盈德气体煤气化联合研究中心主任张建胜教授自豪地说,水冷壁保护结构水煤浆气化技术,具有水煤浆耐火砖和干粉水冷壁气化炉的优点,比如气化炉操作温度不再受耐火砖的限制,可以使用灰熔点更高的煤作为原料,煤种适应性更宽,覆盖了褐煤、烟煤到无烟煤全煤阶。除此以外,清华水冷壁气化炉的水冷壁按照自然循环设计,强制循环运行。即便在停电、停泵等事故状态下无法强制供水,水汽系统仍可自然循环,水冷壁不会损坏,保证气化炉安全停车。采用水冷壁结构,也不必每年停车更换锥底砖和全炉向火面砖,单炉年运转可达8000小时以上。与其他水冷壁炉相比,清华水冷壁气化炉系统压力高50%~100%,粗合成气中H2 含量高50%以上,后续变换、净化、合成等工序能耗降低,设备投资和运行成本大幅下降。去年9 月,清华水冷壁气化炉技术通过中国石油和化学工业联合会组织的科技成果鉴定,总体技术处于国际领先水平。 华东理工大学洁净煤技术研究所所长于广锁告诉记者,其多喷嘴对置式水煤浆气化炉由于采用四喷嘴对置设计,不存在短路物流现象,具有高效节能、碳转化率高等优点。今年4月,日处理煤2000吨级多喷嘴对置式水煤浆气化技术通过了中国石油和化学工业联合会成果鉴定,专家给予高度评价,认为该成果创新性强,总体处于同类技术的国际领先水平。 中国华能集团清洁能源技术研究院研发的两段式干煤粉加压气化技术,创新采用两室两段多喷嘴反应、分级气化,有效气含量可

液化天然气贮罐气化站工艺流程和使用说明

浙江长荣能源有限公司 液化天然气(LNG)贮罐气化站供气系统流程说明 一、工艺流程图: 二、槽罐车卸液操作: 1、罐车停稳与连接:液化天然气的专用槽罐车开到装卸区停稳、熄火、拉手刹,用斜木垫固定车轮,防止滑移;先把装卸台上的静电接地线与LN G槽罐车可靠夹接,再用三根软管分别把卸液箱卸液口与槽罐车装卸口可靠连接;并打开卸液箱接口处排气阀,打开槽车顶部充装阀、回气阀,使气体进入软管,再从排气阀放气置换软管内空气,关闭排气阀,检查软管接头处是否密封至不漏气。 2、槽罐与贮罐压力平衡:查看槽罐车内压力和贮罐内的压力,如贮罐内的压力大于槽罐车内压力时,这时打开贮罐顶部充装管道至槽罐车增压器进液管之间的阀门和增压器进液口阀门,使贮罐内的气相与槽罐车内的液相相通,以降低贮罐内的气相压力。当贮罐内与槽罐内的压力相同时,关闭贮罐顶部充装管至槽罐车增压器进液管之间的阀门。 3、槽罐的增压:打开槽罐车与槽罐车增压器进液管之间的阀门,以及槽罐车增压器回气至槽罐车气相管之间的阀门,通过槽罐车增压器增压以提高槽罐车内的气相压力。 4、槽罐卸液:当槽罐罐内压力大于贮罐中压力0.2Mpa左右,可逐渐打开槽罐车出液阀至全开状态。这样槽罐车内的液化天然气通过卸液箱的软管与贮罐上的装卸口连接卸入液化天然气(LNG)贮罐。

三、贮罐的使用操作: 1、贮罐的压力调整至恒压:利用贮罐自带的增压阀、节气回路、增压器把贮罐的压力调整在一定的范围内(一般控制在0.2~0.35MPa),若贮罐内的压力不够,可通过调整增压阀升高设定压力,从而获得足够的供液压力确保正常供气。正常工作时,贮罐增压器的进液阀和出气阀需要打开,以保证贮罐增压器正常工作,确保贮罐的工作压力。 2、供气系统的供气: 、管道和相关设备在首次使用液化天然气时,应使用氮气置换管道和相关设备内的空气,然后用天然气置换管道和相关设备内的氮气,以确保系统中天然气的含量后才能使用液化天然气。正常用气时可根据车间用气量大小确定是开二台空温式气化器还是开一台空温式气化器。打开空温式气化器前后相关阀门以及至车间用气点的阀门,缓慢打开贮罐出液使用阀,液化天然气(LNG)通过空温式气化器吸收空气中的热量,使液态介质气化成气体,同时对气体进行加热升温,使气体接近常温。气化后的天然气再经一级调压阀组调压,把气相压力调至一较低值(一般调至0.09Mpa),然后通过工艺管道进入用气设备前的二级调压阀组,经过二级调压后进入用气设备。 ②、贮罐操作主要是开关出液口阀门及气相使用阀门,一般出液口、气相使用阀门均为双阀,靠近贮罐的一只阀门是常开阀门,另一只是工艺操作阀,这样,一旦工艺操作阀因经常开关而损坏,把近罐的根部阀关闭就可以修理。 ③、贮罐节气操作:在正常用气时,如发现贮罐的压力达到0.6Mpa时,这时可打开贮罐气相使用阀、同时关闭贮罐出液使用阀,让气相代替液相进入空温气化器供气使用;当贮罐压力值下降至正常值0.2Mpa时,再开贮罐出液使用阀,同时关闭气相使用阀;如反复出现贮罐压力达到0.6Mpa时,应报设备产权单位修理或调整设定压力。在使用贮罐气相使用阀时,必须确保贮罐压力不得低于0.15 MPa。以保证生产的正常用气供应。 ④、当生产停产后恢复生产时,应首先确定供气系统和管道内的介质是天然气还是空气。如果介质是空气,则先要用氮气置换供气系统和管道内的空气,再用天然气置换供气系统和管道内的氮气,以确保系统中天然气的含量后才能恢复生产。如果介质是天然气,则可先开贮罐出液口阀旁的贮罐气相使用阀,让贮罐内的气相代替液相进入空温气化器和相关的工艺管道至车间用气设备。等相关设备和管道预冷后再开贮罐出液阀,同时关闭气相使用阀。 四、空温气化器和调压系统的操作: 1、关闭空温气化器出口阀,缓慢打开空温气化器的进液阀,待空温气化器内压力与贮罐内压力相等时,缓慢打开空温气化器出口阀。

相关文档
最新文档