计数原理综合习题(有答案)

计数原理综合习题(有答案)
计数原理综合习题(有答案)

选修2-3第一章计数原理单元质量检测

时间:120分钟 总分:150分

第Ⅰ卷(选择题,共60分)

一、选择题(每小题5分,共60分)

1.小王打算用70元购买面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法一共有( )

A .7种

B .8种

C .6种

D .9种

2.设某班有男生30人,女生24人,现要从中选出男、女生各一名代表班级参加比赛,则不同的选法种数是( )

A .360

B .480

C .720

D .240

3.设P =1+5(x +1)+10(x +1)2+10(x +1)3+5(x +1)4+(x +1)5,则P 等于( )

A .x 5

B .(x +2)5

C .(x -1)5

D .(x +1)5 4.? ??

??12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20

5.20个不同的小球平均分装在10个格子中,现从中拿出5个球,要求没有两个球取自同一个格子中,则不同的拿法一共有( )

A .C 510种

B .

C 520种 C .C 510C 12种

D .C 510·

25种 6.在(1-x )n =a 0+a 1x +a 2x 2+…+a n x n 中,若2a 2+a n -5=0,则n 的值是( )

A .7

B .8

C .9

D .10

7.7人站成一排照相,甲站在正中间,乙、丙与甲相邻且站在甲的两边的排法共有( )

A.120种B.240种C.48种D.24种

8.(2+3

3)100的展开式中,无理项的个数是()

A.83 B.84 C.85 D.86

9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()

A.72 B.120 C.144 D.168

10.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()

A.144 B.120 C.72 D.24

11.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()

A.45 B.60 C.120 D.210

12.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x +y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=() A.5 B.6 C.7 D.8

第Ⅱ卷(非选择题,共90分)

二、填空题(每小题5分,共20分)

13.某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种(用数字作答).

14.(x+a)6的展开式中含x2项的系数为60,则实数a=________.

15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).

16.设a ≠0,n 是大于1的自然数,? ??

??1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.

三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)

17.(10分)4位学生与2位教师坐在一起合影留念,根据下列条件,求各有多少种不同的坐法:

(1)教师必须坐在中间;

(2)教师不能坐在两端,但要坐在一起;

(3)教师不能坐在两端,且不能相邻.

18.(12分)从1到100的自然数中,每次取出不同的两个数,使它的和大于100,则不同的取法有多少种?

19.(12分)已知?

????2x i +1x 2n ,i 是虚数单位,x >0,n ∈N +. (1)如果展开式的倒数第三项的系数是-180,求n 的值;

(2)对(1)中的n ,求展开式中的系数为正实数的项.

20.(12分)若? ??

??x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,求a 1+a 2+…+a n 的值.

21.(12分)已知(a 2+1)n

的展开式中的各项系数之和等于? ????165x 2+1x

5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求a 的值.

22.(12分)用0,1,2,3,4,5这六个数字:

(1)可组成多少个无重复数字的自然数?

(2)可组成多少个无重复数字的四位偶数?

(3)组成无重复数字的四位数中比4 023大的数有多少?

答案

1.C 要完成“至少买一张IC 电话卡”这件事,可分三类:第一类是买1张IC 卡;第二类是买2张IC 卡;第三类是买3张IC 卡.而每一类都能独立完成“至少买一张IC 电话卡”这件事.买1张IC 卡有2种方法,买2张IC 卡有3种方法,买3张IC 卡有1种方法.不同的买法共有2+3+1=6(种).

2.C 由分步乘法计数原理,得N =30×24=720(种).

3.B P =[1+(x +1)]5=(x +2)5,故选B.

4.A 由已知,得

T r +1=C r 5? ????12x 5-r (-2y )r =C r 5? ????125-r ·(-2)r x 5-r y r (0≤r ≤5,r ∈Z),令r =3,得T 4=C 35? ??

??122(-2)3x 2y 3=-20x 2y 3.故选A.

5.D 分两步:第一步先从10个格子中选中5个格子,有C 510种

方法;第二步从每个格子中选一个球,不同的拿法有2×2×2×2×2=25(种).由分步乘法计数原理共有C 510·

25种不同的拿法. 6.B T r +1=C r n (-1)r x r ,则a 2=C 2n ,a n -5=(-1)

n -5C n -5n ,因为2a 2+a n -5=0,a 2>0,所以a n -5=-C 5n ,所以2C 2n =C 5n 且n 为偶数,将各

选项代入验证知n=8,故选B.

7.C由题意知,甲的位置确定,而乙、丙的位置有2种排法,再排其他4人,有A44种不同的排法,故不同的排法总数为A44·2=48(种).

8.B先求展开式中的有理项.

∵T r+1=C r100(2)100-r·(3

3)r=C r100·2

100-r

2·3

r

3,

∴要使展开式中的项为有理项,r必为6的倍数.

又∵0≤r≤100,且r∈N,

∴r的取值为0,6,12,…,96,它构成了以0为首项,6为公差,96为末项的等差数列,设它有n项,则96=6(n-1).

∴n=17.

∵展开式中共有101项,其中有17项是有理项,

∴无理项有84项.

9.B解决该问题分为两类:第一类分两步,先排歌舞类A33,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有A33·2A33=72.第二类也分两步,先排歌舞类A33,然后将剩余3个节目放入中间两空排法有C12A22A22,故不同的排法有A33A22A22C12=48,故共有120种不同排法,故选B.

10.D插空法.在已排好的三把椅子产生的4个空当中选出3个插入3人即可.故排法种数为A34=24.故选D.

11.C因为(1+x)6展开式的通项公式为T r+1=C r6x r,(1+y)4展开式的通项公式为T h+1=C h4y h,所以(1+x)6(1+y)4展开式的通项可以为C r6C h4x r y h.所以f(m,n)=C m6C n4.所以f(3,0)+f(2,1)+f(1,2)+f(0,3)=C36+C26C14+C16C24+C34=20+60+36+4=120.故选C.

12.B由题意可知,a=C m2m,b=C m2m+1,

又因为13a =7b ,所以13·(2m )!m !m !=7·(2m +1)!m !(m +1)!

, 即137=2m +1m +1

.解得m =6.故选B. 13.30

解析:方法1:可分以下两种情况:(1)A 类选修课选1门,B 类

选修课选2门,有C 13C 24种不同的选法;(2)A 类选修课选2门,B 类选

修课选1门,有C 23C 14种不同的选法.

所以不同的选法共有C 13C 24+C 23C 14=18+12=30(种).

方法2:C 37-C 33-C 34=30(种).

14.±2

解析:通项T r +1=C r 6(x )6-r a r =a r C r 6x 3-r 2

, 令3-r 2=2,得r =2.

故a 2C 26=60,解得a =±

2. 15.60

解析:不同的获奖情况分为两种,一是一人获两张奖券一人获一

张奖券,共有C 23A 24=36(种);二是有三人各获得一张奖券,共有A 34=

24(种).因此不同的获奖情况有36+24=60(种).

16.3

解析:由题意得a 1=1a ·C 1n =n a =3,所以n =3a ;

a 2=1a 2C 2n =n (n -1)2a 2=4,所以n 2-n =8a 2.

将n =3a 代入n 2-n =8a 2得9a 2-3a =8a 2,

即a 2-3a =0,解得a =3或a =0(舍去).

所以a =3.

17.解:(1)分步完成:教师先坐中间,有A22种方法,学生再坐其余位置,有A44种方法.

根据分步乘法计数原理,不同的坐法共有A22·A44=48(种).

(2)将2名教师看作一个元素,问题变为5个元素排列的问题.

先将教师排好,有A13·A22种方法,再排学生,有A44种方法,故不同的坐法共有A13·A22·A44=144(种).

(3)插空法:先排学生,有A44种方法,教师从4名学生之间的3个空位选2个进行排列,有A23种方法,故不同的坐法共有A44·A23=144(种).

18.解:若从1,2,3,…,97,98,99,100中取出1,有1+100>100,有1种取法;

若取出2,有2+100>100,2+99>100,有2种取法;

取出3,有3种取法;…;

若取出50,有50+51>100,50+52>100,…,50+100>100,有50种取法;

所以取出数字1至50,共有不同的取法N1=1+2+3+…+50=1 275(种).

若取出51,有51+52>100,51+53>100,…,51+100>100,有49种取法;

若取出52,则有48种取法;…;若取出99,只有1种取法.

所以取出数字51至100(N1中取过的不再取),有不同取法N2=49+48+…+2+1=1 225(种).

故总的取法共有N=N1+N2=2 500(种).

(2i)2=-180,即4C2n=180,

19.解:(1)由已知,得C n-2

n

化简得n2-n-90=0,又n∈N+,解得n=10.

(2)? ??

??2x i +1x 210展开式的通项为 T r +1=C r 10(2x i)10-r x -2r =C r 10(2i)10-r x 10-5r 2

, ∵展开式中的系数为正实数,且r ∈{0,1,2,…,10}, ∴r 的取值为10,6,2,

故所求的项为

T 11=x -20,T 7=3 360x -10,T 3=11 520.

20.解:T 6=C 5n (x 2)n -5? ??

??-1x 5=-C 5n x 2n -15, 令2n -15=1,则n =8,

令x =1,则a 0+a 1+…+a n =(-2)8=256,

令x =0,则a 0=1,

所以a 1+a 2+…+a n =255.

21.解:?

????165x 2+1x 5的展开式的通项是 T r +1=C r 5? ????165x 25-r ? ????1x r =? ??

??1655-r ·C r 5·x 20-5r 2, 令20-5r =0,解得r =4,

故常数项T 5=C 45×165=16,

又(a 2+1)n 的展开式的各项系数之和等于2n ,

由题意得2n =16,解得n =4,

由二项式系数的性质可知,(a 2+1)4的展开式中系数最大的项是中间项,即第三项, 由C 24a 4=54,解得a =±3.

22.解:(1)组成无重复数字的自然数共有C 15A 55+C 15A 45+C 15A 35+

C15A25+C15A15+C16=1 631(个).

(2)无重复数字的四位偶数中个位数是0的有A35=60(个),个位数是2或4的有2C14A24=96(个),所以无重复数字的四位偶数共有60+96=156(个).

(3)无重复数字的四位数中千位数字是5的共有A35=60(个),千位数字是4的有A35=60(个),其中不大于4 023的有5个,故比4 023大的数共有60+60-5=115(个).

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

(完整word)高中数学《计数原理》练习题

《计数原理》练习 一、选择题 1.书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书和语文书各一本,则不同的取法种数有( ) A 11 B 30 C 56 D 65 2.在平面直角坐标系中,若{}{}1,2,3,3,4,5,6x y ∈∈,则以(),x y 为坐标的点的个数为( ) A 7 B 12 C 64 D 81 3.若()12n x +的展开式中,3x 的系数是x 系数的7倍,则n 的值为( ) A 5 B 6 C 7 D 8 4.广州市某电信分局管辖范围的电话号码由8位数字组成,其中前3位是一样的,后5位数字都是0~9这10个数字中的一个,那么该电信分局管辖范围内不同的电话号码个数最多有( ) A 50 B 30240 C 59049 D 100000 6.按血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,其子女的血型一定不是O 型,如果某人的血型为O 型,则该人的父母血型的所有可能情况种数有( ) A 6 B 7 C 9 D 10 7.计算0121734520C C C C ++++L 的结果为( ) A 421C B 321 C C 320C D 420C 8.一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球得2分,取出一个白球得1分,问从口袋中取出5个球,使总分不少于7分的取法种数有( ) A 15 B 16 C 144 D 186 二、填空题 9.开车从甲地出发到丙地有两种选择,一种是从甲地出发经乙地到丙地,另一种是从甲地出发经丁地到丙地。其中从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。则从甲地到丙地不同的走法共有 种。 10.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 种。 14.()()5 211x x +-的展开式中3x 的系数为

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

(完整word版)分类加法计数原理与分步乘法计数原理练习题

分类加法计数原理与分步乘法计数原理练习题 一.选择题 1.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( ) A.8 B.15 C.16 D.30 2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( ) A.5种 B.6种 C.7种 D.8种 3.如图所示为一电路图,从A 到B 共有( )条不同的线路可通电( ) A.1 B.2 C.3 D.4 4.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( ) A.25 B.20 C.16 D.12 5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有( )种不同的选择方式 A. 24 B.14 C. 10 D.9 6.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==, ,,,,,,则P *Q 中元素的个数是( ) A.4 B.7 C.12 D.16 二、填空题 7.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法. 8.十字路口来往的车辆,如果不允许回头,共有 种行车路线. 9.已知{}{}0341278a b ∈∈, ,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 . 10.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项. 11.如图,从A →C ,有 种不同走法. 12.将三封信投入4个邮箱,不同的投法有 种. 三、解答题 13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同. (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法?

高中数学选修2-3两个基本计数原理

两个基本计数原理 教学目标: 1、准确理解分类加法计数原理和分步乘法计数原理概念和步骤 2、会运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的问题 要点扫描: 1、(1)分类计数原理(加法原理): (2)分步计数原理(乘法原理): 2、分类计数原理和分步计数原理的区别和联系 分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法总数的问题,其区别在于:分类计数原理针对的是___问题,其中各种方法____,用其中任何一种方法都可以做完这件事;分步计数原理针对的是___问题,各个步骤中的方法____,只有各个步骤都完成之后才算做完这件事。 例题讲解: 例1、(1)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中任选一本书阅读,有多少种不同的选法? (2)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中各选一本书阅读,有多少种不同的选法? 例2、从1到200的自然数中,各个数位上都不含数字8的有多少个? 例3、3名学生报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方法?若有4项冠军在3人中产生,每项冠军只能有一人获得,有多少种不同的夺冠方法? 例4、电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

例5、在区间[400,800]上,(1)有多少个能被5整除且数字允许重复的整数?(2)有多少 个能被5整除且数字不允许重复的整数? 当堂反馈: 1、某人要将4封信投入3个信箱中,不同的投寄方法有 ( ) A 、12种 B 、7种 C 、43种 D 、34种 2、从0,1,2,3,4,5,7七个数中任取两个数相乘,使所得积为偶数,这样的偶数共有 ( ) A 、18个 B 、9个 C 、12个 D 、10个 3、有三个车队分别有5辆,6辆,7辆车,现欲从其中两个车队各抽调一辆车外出执行任务, 设不同的抽调方案数为n ,则n 的值为 ( ) A 、107 B 、210 C 、36、 D 、77 4、已知集合A={},102,≤≤-∈x z x x A n m ∈,,方程12 2=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 ( ) A 、45个 B 、55个 C 、78个 D 、91个 作业:课课练 课时1,2

最新《分类加法计数原理与分步乘法计数原理》练习题

1 2 4 5 3 《分类加法计数原理与分步乘法计数原理》基本练习 一、 选择题 1.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( ) A.25 B.20 C.16 D.12 2.由0,1,2,3,...,9十个数码和一个虚数单位i 可以组成虚数的个数为( ) A.100 B .10 C .9 D .90 3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A .10种 B .52种 C.25种 D.42种 4.三边长均为正整数,且最大边长为11的三角形的个数为( ) A.25 B.26 C.36 D.37 5.4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数 ( ) A .24 B .4 C .34 D .43 6.甲、乙、丙三个电台,分别有3、4、4人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话( ) A .40次 B .48次 C .36次 D .24次。 7.编号为A ,B ,C ,D ,E 的五个小球放在如图所示五个盒子中。要求每个盒子只能放一个小球,且A 不能放1,2号,B 必须放在与A 相邻的盒子中。则不同的放法有( )种 A.42 B.36 C.32 D.30 8.一只青蛙在三角形ABC 的三个顶点之间跳动,若此青蛙从A 点起跳,跳4次后仍回到A 点,则此青蛙不同的跳法的种数是( ) A .4 B .5 C .6 D .7 9.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( ) A .6种 B .8种 C .36种 D .48种 10.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( ) A.1024种 B.1023种 C.1536种 D. 1535种 11.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线 12.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________. 13.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生 _________种不同的信息. 14.在1,2,3,4,5这五个数字所组成的没有重复数字的三位数中,其各位数字之和为9的三位数共有________

(完整版)计数原理测试题(含答案)

圆梦教育中心 高中数学选修2-3计数原理 第Ⅰ卷(选择题,共50分) 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.若m 为正整数,则乘积()()()=+++2021m m m m Λ ( ) A .20 m A B .21 m A C .20 20+m A D .21 20+m A 2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 15 3.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种 4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .122 6. 在(a-b)99 的展开式中,系数最小的项为( ) A.T 49 B.T 50 C.T 51 D.T 52 7. 数11100 -1的末尾连续为零的个数是( ) A.0 B.3 C.5 D.7 8. 若4 25225+=x x C C ,则x 的值为 ( ) A .4 B .7 C .4或7 D .不存在 9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .3 4C B .3 718C C C .3 71 8C C -6 D . 124 8-C 10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些 取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则n m 等于( ) A . 10 1 B . 51 C .10 3 D . 5 2

计数原理知识点总结与训练

计数原理知识点总结 一、两个计数原理 3、两个计数原理的区别 二、排列与组合 1、排列: 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列 的个数叫做从n 个不同元素中取出m 个元素的排列数。用符号 表 示. 3、排列数公式: 其中 4、组合: 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 5、组合数: 从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。用符号 表示。 6、组合数公式: 其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. 7、性质: m n A m n A ()()() ()! ! 121m n n m n n n n A m n -= +---=Λ . ,,*n m N m n ≤∈并且m n C ()()() ()! !! !121m n m n m m n n n n C m n -= +---= Λ . ,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1 1+-=+

三、二项式定理 如果在二项式定理中,设a=1,b=x ,则可以得到公式: 2、性质: 0241351 2 n n n n n n n C C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:

计数原理练习题

计数原理练习题 一、排列数与组合数计算 1、若n ∈N 且n<20,则(27—n )(28—n ) (34—n )= ( ) A 、827n A - B 、n n A --2734 C 、734n A - D 、834n A - 2、已知=++++2252423n C C C C 363,则n=______ 3、化简=+++-2132n n n n C C C _________ 二、站队相邻与不相邻问题 4、记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A 、1440种 B 、960种 C 、720种 D 、480种 5、把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( )A 、12种 B 、20种 C 、24种 D 、48种 6、三个女生和五个男生排成一排, (1)如果女生必须全排在一起,有多少种不同的排法? (2)如果女生必须全分开,有多少种不同的排法? (3)如果两端都不能排女生,有多少种不同的排法? (4)如果两端不能都排女生,有多少种不同的排法? (5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法? 三、定序问题 7、A 、B 、C 、D 、E 五人并排站在一排,其中A 、B 、C 顺序一定,那么不同的排法种数是________。 四、错排问题 8、将数字1、2、3、4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 五、分组分配问题 9、有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4 人承担这三项任务,不同的选法种数是__________。 10、5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) A 、480种 B 、240种 C 、120种 D 、96种 11、有6名志愿者(其中4名男生,2名女生)义务参加某项宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有 ( ) A 、40种 B 、48种 C 、60种 D 、68种 12、有2红3黄4白共9个球,同色球不加以区分,将这九个球排成一排,共有____种方法。 六、名额分配问题 13、10个三好学生名额分到7个班级,每个班级至少一个名额,有_________不同分配方案。 14、方程60821=+++x x x 有多少组自然数解(用排列或组合表示)_____________。 七、限制条件的分配问题 15、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

1.1 两个基本计数原理(2)

教学内容 §1.1 两个基本计数原理(2) 教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; (2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解 决问题的能力,开发学生的逻辑思维能力. 教学重点分类计数原理与分步计数原理的区别和综合应用. 教学难点分类计数原理与分步计数原理的区别和综合应用. 教学方法和教具 教师主导活动学生主体活动一.问题情境 复习回顾:1.两个基本计数原理; 2.练习: (1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、 分母,则可产生不同的分数的个数是,其中真分数的 个数是. (2)①用0,1,2,……,9可以组成多少个8位号码; ②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数. 二.数学运用 1.例题: 例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同 的颜色,共有多少种不同的涂法? 分析完成这件事可分四个步骤,不妨 设①、②、③、④的次序填涂. 解:第一步,填涂①,有4种不同颜色 可选用; 第二步,填涂②,除①所用过的颜色外, 还有3种不同颜 色可选用; 第三步,填涂③,除①、②用过的2种 颜色外,还有2种 不同颜色可选用; 第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可 选用. ???=种不同的方法,即填涂这张 所以,完成这件事共有432248 地图共有48种方法. 答共有48种不同的涂法. 思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?

两个计数原理

两个计数原理 两个基本原理 1.加法原理: 2.乘法原理: 1.现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人他们自愿组成数学课外小组。 (1)选其中一人为负责人,有多少种不同选法? (2)每班选一名组长,有多少不同选法? (3)推选二人作中心发言,这二人需要来自不同班级,有多少种不同选法? 2.(1)在连接正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个? (2)四名运动员争夺三项冠军,不同结果最多有多少种? (3)四名运动员参加三项比赛,每人限报一项,不同的报名方法有多少种? 3.(1)从1到200的自然数中,各个数位上不含有数字8的有多少个? (2)由数字1、2、3、4、5组成没有重复数字,且数字1和2不相邻的五位数,求这种一位数个数? (3)由数字0、1、2、3、4组成没有重复数字的五位数,求这种五位数的个数? (4)由数字0、1、2、3、4组成没有重复数字的五位偶数,求这种五位偶数的个数。 (5)由数字0、1、2、3、4组成没重复数字的五位数,其中能被4整除的有多少个? 4.直线方程Ax+13y=0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为A、B的值,则表示不同直线条数为() A.2条B.12条C.22条D.25条 5.三边长均为整数,且最大边长为11的三角形个数为() A.25 B.26 C.36 D.37 6.若x,yEN+,且x+y=6,则有序自然数对(x,y)有多少个() A.11 B.13 C.14 D.15 7.某电话号码为168—×××××若后面的五位数字,由6或8组成,则这咱电话号码共有()A.20 B.25 C.32 D.60 8.某人射击8枪,命中4枪,恰有3枪连在一起的数是() A.720 B.480 C.224 D.20 9.已知集合} , 10 2 | {xEZ x x A≤ ≤ - =m,nEA,方程1 2 2 2 = + n y m x ,表示长轴,在x轴上椭圆,则这样椭圆共有几个() A.45 B.55 C.78 D.91 10.十字路口来往车辆,若不允许车辆回头,共有种不同行车路线。 11.不通过乘:[(a1+a2)(b1+b2+b3)+c1+c2](d1+d2+d3),展开共有项 12.三位正整数全部印出来,“0”这个字一共有个。 13.有壹元币3张,伍元币1张,拾元币2张,可以组成种不同币值 14.30030能被个不同的偶数整除。 15.(1)用红、黄、蓝、黑4种不同的颜色涂入图中A、B、C、D四个区域内,要求相邻区域的涂色不得相同,则不同涂色方法共有多少 (2)用五种不同颜色经图中4个区域涂色,如果每一个区域涂一种颜色,相邻区域不同色共有多少种涂色方法 16.在某个城市中,M,N两地之间有整齐的道路网,若规定只能向东或向北两个方向自沿图中路线前进,则从M到N不同的走法共有多少种?

高中数学选修2-3 第一章《计数原理》单元测试题(含答案)

高中数学选修2--3 第一章《计数原理1》单元测试题 一、选择题 1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .14 2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( ) A .140种 B.84种 C.70种 D.35种 3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A .33A B .334A C .523533A A A - D .231132 3233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( ) A.20 B .16 C .10 D .6 5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人. 6.在8 2x ? ?的展开式中的常数项是( ) A.7 B .7- C .28 D .28- 7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100- 8.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 ( ) A .180 B .90 C .45 D .360 二、填空题 1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有

种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法. 2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数. 4.在10 (x的展开式中,6x的系数是 . 5.在220 -展开式中,如果第4r项和第2 (1) x r+项的二项式系数相等, T= . 则r=, 4r 6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个? 7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题 1.判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

高中数学典型例题解析:第九章 计数原理与概率

第九章 计数原理与概率 §9.1 计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法, 这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一 种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地 到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种

1.1两个基本计数原理(二)教案

备课时间年月日[来源:学科网][来源:学#科#网 Z#X#X#K] 编写: 上课时间[来源:https://www.360docs.net/doc/6716880232.html,] 第周周月日[来 源:Z_xx_https://www.360docs.net/doc/6716880232.html,][来源:学科网] 班级节次 课题 1.1两个基本计数原理(二)总课时数第节 教学目标1、能根据具体问题的特征,选择运用分类计数原理、分步计数原理; 2、能综合运用两个原理解决一些简单的实际问题; 3、会用列举法解一些简单问题,并体会两个原理的作用. 重难 点 综合运用两个基本原理解决一些简单的实际问题;准确选用两种基本原理.教学 参考 教材、教参 授课方法合作探究、讲授 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计复习回顾: 分类计数原理: 分步计数原理: 分类计数原理与分步计数原理的区别与联系 问题 1. 某电脑用户计划使用不超过500元的 资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买3盒,磁 盘至少买2盒,问有多少种不同的选购方式? 问题 2.等腰三角形的三边均为正整数,且其 周长不大于10,这样不同形状的三角形的种数 为多少? 问题 3.将3种作物种植在如图所示的5块试 验田里,每块种植一种作物,且相邻的试验田 不能种植同一种作物,不同的种植方法共有多 少种? 当堂检测 1、某巡洋舰上有一 排四根信号旗杆,每 根旗杆上可以挂红 色、绿色、黄色三种 信号旗中的一面(每 根旗杆必须挂一 面),则这排信号旗 杆所发出的信号种 数为. 2、有三个车队分别 有5辆、6辆、7辆 车,现欲从其中两个 车队各抽掉一辆车 外出执行任务,设不 同的抽调方案数为 n,则n的值为 . 3、某同学逛书店, 发现三本喜欢的书, 决定至少买其中一 本,则购买方案有 种

高中计数原理与概率计数原理

高中计数原理与概率计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理 二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多. 三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. ∴选B

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

两个计数原理测试题选修

两个基本计数原理单元测试 一.选择与填充: 1.某农场为了考察3个水稻品种和5个2品种的质量,要在土质相同的土地上进 行实验,应安排的实验区共有 ( ) 块 块 块 块 2.某乒乓球对有男运动员5人,女运动员6人,从中选派2人参加男女混双比赛, 共有 种不同的选法. 3.从0,1,2,3,4,5,6,7七个数中任取两个数相乘,使所得的积为偶数,这样的偶 数共有 ( ) 个. .9 C 4.设*,N y x ∈,且x+y ≤4,则直角坐标系中满足条件的点M(x,y)共有 ( ) 个 个 个 个 5.从1~9九个数字中任取两个数字组成两位数,若这两位数的数字不允许重复, 则可得到 个不同的两位数; 这两位数的数字允许重复, 则可得到 个不同的两位数. 6.平面?内有A,B 两点,平面β内有M,N,P 三点,以这些点为顶点,最多可以作 个三棱锥. 7.用红,黄,绿,蓝4种不同的颜色涂入 图中四个区域内,要求相邻区域的 涂色不相同,则不同的涂色方法共有 种 8.已知集合 A=A n m x Z x x ∈≤≤-∈,},102,|{,方程122=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有( )个. .55 C 9.从2,3,4,5,6五个数中,任取两个数分别做对数的底数与真数, 可以得到 个不同的对数值. 10.今有2个红球,3个黄球,同色球不加以区分,将这5个球排成一列有 种不同的方法. 二.解答: 11.某学校开设了文科选修课3门,理科选修课4门,实验选修课2门,有位学生要 从中选学不同科的两门,共有多少种不同的选法 12.(1)有4名学生报名参加数学,物理,化学竞赛,每人限报一科,有多少种不同 的报名方法 (2)有4名学生争夺数学,物理,化学竞赛的冠军, 可能有多少种不同的结果 (3) 有4名学生报名参加数学,物理,化学竞赛,要求每位学生最多参加一项竞 赛,且每项竞赛只允许有一名学生参加, 可能有多少种不同的结果

相关文档
最新文档