浅谈数列极限的εN定义的教学

浅谈数列极限的εN定义的教学
浅谈数列极限的εN定义的教学

(完整版)《数列的极限》教学设计

《高等数学》——数列极限 教学设计

教学过程设计 A 、【课前准备】1、安排学生提前预习本节内容。 2、分组:4~6人为一个学习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 B 、【组织教学】 检查学生出勤情况,填写教学日志,教材、用具准备等(2分钟) C 、【复习回顾】 数列的定义(2分钟) D 、【教学内容、方法和过程】接下表 教师活动 学 生 活 动 设计意图 (一) 结合实际,情景导入(时间4分钟) 导入1、战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一 尺之棰,日取其半,万世不竭” 也就是说一根长为一尺的木棒,每天 截去一半,这样的过程可以无限制地进行下去 导入2、三国时的刘徽提出的“割圆求周”的方法.他把圆周分成三等分、 六等分、十二等分、二十四等分、··· 这样继续分割下去,所得多边形的 周长就无限接近于圆的周长. 教师引入:不论是庄周还是刘徽,在他们的思想中都体现了一种数列极 限思想,今天我们来学习数列极限。 【学情预设】:有的学生可能没体会到情景导入的目的,教师最后要总结导入中蕴含的数学思想。 (二)归纳总结,形成概念: (时间9分钟) 1.提出问题:分析当无限增大时,下列数列的项的变化趋势及共同特征. (1)1,21,31,41…n 1 …递减 (2)递增 (3)摆动 学生参 与,思 考,感 受 学生参 与,思 考 问题,在 老师的引 导下对数 列极限知 识有一个 形象化的 了解。 通过讨 论,学生 了解以研 究函数值 的变化趋势的观点研究无穷数列,从而体会发现数列极限的过程 通过介绍我国古代哲学家庄周和刘徽,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。同时为学习新知识做准备,使学生更好的承上启下。 (一)概念探索阶段” 在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以

高中数学《函数的极限(一)》教案

课 题:2.3函数的极限(一) 教学目的: 1.理解当x →+∞,x →-∞,x →∞时,函数f (x )的极限的概念. 2.从函数的变化趋势,理解掌握函数极限的概念. 3.会求当函数的自变量分别趋于+∞,-∞,∞时的极限 教学重点:从函数的变化趋势来理解极限的概念,体会极限思想. 教学难点:对极限概念如何可从变化趋势的角度来正确理解. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项a n 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项a n 趋近于a 是在无限过程中进行的,即随着n 的增大a n 越来越接近于a ;另一方面,a n 不是一般地趋近于a ,而是“无限”地趋近于a ,即|a n -a |随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01lim =∞→n n (2)C C n =∞→lim (C 是常数) (3)无穷等比数列}{n q (1

数列极限教案

课题 数列的极限 一、教育目标 (一)知识教学点:(1)理解数列极限的定义,即“ε—N 定义”;能说出ε、N 的涵义;懂得n 与N 的区别;会把数列中的某些项画在数轴上,并能从图上看出这个数列的变化趋势。 (二)能力培养点:培养学生由具体到抽象、从有限到无限的思维能力,训练类比思维方法,会依据“ε—N 定义”及求数列的极限及证明. (三)学科渗透点:通过数列极限概念的教学,使学生懂得无限问题可以转化为有限问题来解决,通过对变量有限过程的研究,来认识变量无限变化过程的辩证思想观点. 二、教学分析 1.重点:数列极限“ε—N 定义”.解决方法:画图、列表,进行直观的“定性描述”;运用类比方法,引进ε、N ,用不等式来进行定量描述. 2.难点:ε与N 的涵义,n 与N 的区别.解决方法:分析、思考、问答的形式解决. 3.疑点:ε的任意性与确定性.解决方法:分析、举例说明. 三、活动设计 1.活动方式:画图、列表、分析、思考、问答、练习. 2.教具:投影仪(或小挂图.) 四、教学过程 1.数列变化趋势的定性描述: 考察两个实例:即两个无穷数列;0.9,0.99,0.999, (1) n 101 ,…,(1) 1, 21, 41, …, n 2 1 , …, (2) 容易看出:当项数n 无限增大时,数列(1)中的项无限趋近于1,数列(2)中的项无限趋近于0..

数列(1)中各项与1的差的绝对值如下表:出示投影仪(或小挂图) 2.数列(1)变化趋势的定量描述:投影1.引进ε、N ,即怎样定量描述“数列(1)中的项无限趋近与1,请看:对数列{1- n 10 1}(1),无论预先给定的ε多么小,总能在数列(1)中找到这样的一项,使得这一项后面的所有项与1的差的绝对值都小于ε. 如给定ε=0.001,数列(1)中存在一项,从投影表中可以看出,即为第三项,对这一项后面的所有项,不等式: ︱(1- 4101)-1︱=4101< 0.001, ︱(1-5101)-1︱=510 1< 0.001… 皆成立,换句话说,对于任意给定的ε=0.001,存在自然数N=3,当n >N 时,不等式 ︱(1- n 101)-1︱=n 101 < 0.001 恒成立。 再给定ε=0.000001,情形怎样呢? 学生回答:此时,存在自然数N =6,当n >N 时,不等式︱(1-n 101)-1︱=n 101 < 0.000001恒成立。 类比分析,从具体到抽象,得出:“无论预先给多么小的正数ε,总存在着这样的自然数N ,当n >N 时,不等式︱(1- n 101)-1︱=n 101 <ε恒成立.”事实上,无论预先给定多么小的正数ε,确实存在着这样的自然数N .这时,可以说数列(1)的极限是1. 3.数列极限的定义:

第11讲 数列的极限与数学归纳法 教案

第十一讲 数列的极限与数学归纳法 教案 【考点简介】 1.数列极限与数学归纳法在自主招生中的考点主要有:数列极限的各种求解方法;无穷等比数列各项和;数列的应用题;常用级数;数学归纳法证明等式与不等式。 【知识拓展】 1.特殊数列的极限 (1)1 lim 0(0,a n a a n →∞=>是常数) (2) lim 0(0)!n n a a n →∞=> (3)lim 0k n n n a →∞=(1a >,k 为常数) (4) 111 lim 1,lim 1n n n n e n n e →∞→∞ ????+=-= ? ????? 公式(4)证明:令11n M n ?? =+ ??? ,取自然对数得到1ln ln 1M n n ??=+ ???, 令1x n = ,得ln(1) ln x M x +=, 由洛比达法则得00ln(1)1 lim lim()11x x x x x →→+==+,即0limln 1x M →=, 所以,limln 1n M →∞=,则lim n M e →∞=,即1lim 1n n e n →∞ ?? += ??? 。 另外,数列11n n ???? ??+?? ?????? ?是单调递增的,理由如下:由11n n G A ++≤(1n +个正实数的几何平均数≤ 它们的算术平均数)有111 11111111n n n n n n n ?? ++ ?++??=+?<==+? ? +++? ?? , 所以1 11111n n n n +??? ?+<+ ? ? +???? 。 2.洛比达法则 若lim ()0x f x →∞ =(或∞),lim ()0x g x →∞ =(或∞),则()'() lim lim ()'() x x f x f x g x g x →∞ →∞=。 3.夹逼定理 如果数列{}n x 、{}n y 以及{}n z 满足下列条件: (1)从某项起,即当0n n >(其中0n N ∈),有n n n x y z ≤≤(123n =,,); (2)lim n n x a →∞ =且lim n n z a →∞ =;

高中数学新课 极限 教案

课 题:2.2数列的极限 教学目的: 1. 理解数列极限的概念; 教学重点:会判断一些简单数列和函数的极限 教学难点:数列极限的理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 这节课一开始就把学生引入数列是否“趋向于”一个常数的讨论中,虽然学生对“趋向于”并没有精确的认识,但是凭借他们的自身的感受,运用“观察”“分析”“归纳”“概括”也能得到一些数列的“极限”的肤浅认识,这是感性认识 数列的极限是一个十分重要的概念,它的通俗定义是:随着项数n 的无限增大,数列的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),它有两个方面的意义. 教学过程: 一、复习引入: 1.战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”也就是说一根长为一尺的木棒,每天截去一半,这样的 过程可以无限制地进行下去(1)可以求出第n 天剩余的木棒长度n a = 1 2n (尺);(2)前n 天截下的木棒的总长度n b =1- 1 2 n (尺) 分析变化趋势. 2. 观察下列数列,随n 变化时,n a 是否趋向于某一个常数: (1)n n a n 12+= ; (2)n n a )3 1(3-=; (3)a n =4·(-1)n -1 ; (4)a n =2n ; (5)a n =3; (6)a n =n n 2)1(1--; (7)a n =(2 1 )n ; (8)a n =6+n 101 二、讲解新课: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

数列的极限、函数的极限与连续性教案

看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3 →∞??+-+===??-??所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞?)上的函数()f x 满足()f x =3(2)f x +, 当[0,2)x ∈时,()f x =22x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且 {}n a 的前n 项和为S n ,则lim n n S →∞=( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2) f x f x =+可推得 1()(2)3 f x f x =-,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

《数列极限》说课稿

《数列极限》说课稿 各位评委、老师们:你们好! 我是北大附中的数学教师李宁。北大附中是北京市重点中学。有机会能参加这次教学研讨活动,向全国各省的数学老师们学习,我深感荣幸。 这次我说课的内容是高中代数课本(下册)第六章第二部分6.4节数列极限的起始课。这部分内容在课本第60页至65页。 下面由我根据自己编写的教案,把我对本节课的教学目的、过程、方法、工具等方面的简单认识作一个说明。希望专家们、老师们对我说课的内容多提宝贵意见。 一、关于教学目的的确定: 众所周知,对数列极限这个概念的理解可为今后高等数学的学习奠定基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。 1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限; 2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。体验“从具体到抽象,从特殊到一般再到特殊”的认识过程; 3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。 二、关于教学过程的设计: 为了达到以上教学目的,根据北大附中教学传统把这次课连排两节。在具体教学中,根据“循序渐进原则”,我把这次课分为三个阶段:“概念探索阶段”;“概念建立阶段”;“概念巩固阶段”。下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。 (一)“概念探索阶段” 1.这一阶段要解决的主要问题 在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是

[教学设计]《数列的极限》精品教案

《数列的极限》教学设计 (一)教材分析 数列和极限是初等数学和高等数学衔接与联系最紧密的内容之一,是学习高等数学的基础,微积分中所有重要概念,如导数、定积分等,都是建立在极限概念的基础上,极限的概念是微积分的重要概念和重点,本节数列的极限是极限的一类,与函数极限形式不同,但它们的思想是完全相同的,通过数列极限(ε-N定义)概念的教学,使学生初步理解极限的思想方法,为学习高等数学打下基础。 (二)教学对象 学生在初中已知道:当圆的内接正多边形的边数不断的成倍增加时,多边形的周长P n不断增大,并越来越接近于圆的周长C。在高一立几推导球的表面积公式时也接触过极限的思想。这些都为学生理解数列极限的定义打下基础。但因为学生以前接触的代数运算都是有限运算,而极限概念中含有“无限”,比较抽象,又要将“无限”定量描述出来,即用ε-N的语言叙述出来更困难了,所以这一课是数列极限这一章中学生最难听得懂,教师也最难讲得好的一课。讲好的关键是结合数列的图象和表格讲清“无限”的几何意义,使学生对数列极限有较丰富的感性认识并讲清“无限趋近”和“无限增大”的意义和二者之间的联系。 (三)教学媒体:投影仪 (四)教学目标 ⑴掌握数列极限的定义。 ⑵应用定义求证简单数列的极限,或从数列的变化趋势找到简单数列的极限。 ⑶通过数列极限定义的教学对学生进行爱国主义和辩证唯物主义的教育。 (五)重点、难点 理解数列的概念及定义中一些字母和记号的特性。 (六)教学方法:启发分析,讲练结合。 (七)教学过程 一、定义的引进 1.复习提问

⑴ |a| 的几何意义:表示数a 的点与原点的距离。 ⑵ |x-A| 的几何意义:表示数x 的点及数A 的点之间的距离。 ⑶设ε>0,解不等式 |x-A|<ε,并且在数轴上表示出它的解集。 2. 满不等式 |x-A|<ε的点x 全部落在区间(A-ε,A+ε)内,要使点x 与点A 的距离即 |x-A| 无限制地小,ε要怎样变化?引导学生说出ε是一个任意小的正数。 3. 定义的引进 本节课的课题是“数列的极限”(板书),极限的思想在我国古代早有出现,公元前四世纪,我国古代重要的哲学家和思想家庄子就指出了“一尺之棰,日取某半,万世不竭”,我们把每天取去一半后所余的尺数用现代熟悉的表达方式可以得到一个数列: 把上述数列的前几项分别在数轴上表示出来: ① 0 从图形容易看出,不论项数n 怎样大, 永不为0,只是0 的近似值,但当n 无限增大时,数列 的项就无限趋近于0。即当n →∞时, →0。 再看无穷数列②:0.9,0.99,0.999,……, ,…… 0 0.9 0.99 1 当项数无限增大时②中的项无限趋近于1,即n →∞时, →1。 “无限增大”、“无限趋近”怎样利用数量来刻划呢? 如图由,||εεε+<<-?<-A x A A x )"(",......;21,......,81,41,21万世不竭这是一个无穷数列n 321161814121n 21{}n 21n 21 n 1011-n 1011-n 21

数列极限概念教学问题探讨

Vol.28No.3 M ar.2012 赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )第28卷第3期(下) 2012年3月1 极限概念的重要性以及教学“困难”的因素 数学概念是数学知识系统中的基本元素,清晰准确的数学概念是构建数学理论大厦的基石,也是提高解题能力的必要条件.极限理论是微积分的理论基础和应用基础,贯穿于微积分课程教学的始终.而数列极限概念在极限理论中起着至关重要的作用,刻画数列极限概念的“ε—N ”语言,是一种高度概括抽象,复杂又逻辑结构严密的数学语言,它对变量的变化趋势给出了非常深刻的 “动态”描述,简洁、清晰地刻画了极限概念的实质.因其逻辑结构复杂,所以初学者难以理解和掌握.一百多年来,极限概念的“ε—N ”语言已成为进入高等数学大门的难以逾越的障碍.这一教学内容安排在大学生刚进校的第一学期里,打击并挫伤了许多学生学习数学的兴趣和积极性.极限的 “ε—N ”语言之所以难以理解和掌握,主要原因是它具有辩证的抽象思维,且带有逻辑推理模式,加上无限逼近过程本身就是一个非构造性的,即它是一非常规的高等级抽象概念,无论是研究的思维方式还是语言表达都与学习初等数学不同.主要体现在: (1)极限概念所表达的“动态”性;(2)“ε—N ”语言的简练和高度抽象性;(3)“ε—N ”语言在逻辑上的严密性. 由于刚进入大学的学生,其学习的方式方法往往还停留在学习初等数学阶段,习惯于常规的中低级、非构造性、无辩证的简单思维.极限概念与学生在中学所接触过的数学概念在研究的对象,刻画的内容,语言的抽象程度和语言逻辑等方面都具有很大的差别,于是用“ε—N ”语言定义的极限概念,常常使诸多学生感到困难,甚至束手无策,导致极限 概念成为许多学生学习《高等数学》的拦路虎.2 极限概念教学的现状 目前,对极限概念教学的重要性以及困难基本达成共识,因此探索如何有效地进行极限概念的课堂教学一直是 《高等数学》课程建设的一个热点问题.目前在普通高等院校,对《高等数学》课程中极限概念的教学大多采用以下几种教学方案: 法1 不惜花费学时,让学生学好严格的极限 理论,打好数学基础(适用于理工科多学时专业,如计算机科学等).该法将极限内容的教学一步到位,即在一开始就投入很大的精力和较多的学时,强化极限理论的教学,要求学生具有较强的极限理论基础和应用 “ε—N ”语言的能力.使学生在《高等数学》的学习中具有了一个良好的开端,为扎实地掌握后继内容和再学习奠定基础.一方面, 它能加深对极限概念的理解,并在此基础上建立起连续,可微,敛散,可积等概念,完成被称为“分析的算术化”的“ε—N ”极限理论.另一方面,只有真正掌握了“极限” 的动态实质,才能更好的应用于解决实际问题.系统地采用“ε—N ”语言教学对学生打下厚实的数学基础是必要的,这种教学方法是效仿苏联模式,一直被大多数院校采用(配套教材如同济大学数学系编写的 《高等数学》).但目前由于高等教育以由精英教育转化为大众化教育,学生的数学基础差距很大,另外为满足更多新学科学习及素质教育的要求,大量缩减学时,这种条件下要取得预期的教学效果在普通高等学校中难度较大.据调查了解,二本靠后及三本院校基本很难达到教学目标.往往是教师花费了很大力气,但能较好地掌握极限理论的学生面不广,大部分学生只能停留于能背诵“ε— 数列极限概念教学问题探讨 张洪光,王晓英 (赤峰学院数学与统计学院,内蒙古赤峰024000) 摘要:数列极限概念是初学高等数学的学生难于理解不易掌握的概念,数列极限概念教学问题多年来一直是教学讨论的热点.本文在分析极限概念的特性和当前极限概念教学现状的基础上,探索极限概念教学方法,提出了在课堂教学中应注重的一些问题. 关键词:数学概念;数列极限;“ε—N ”语言中图分类号:O13文献标识码:A 文章编号:1673-260X (2012)03-0011-04 11--

极限的概念教学设计

《极限的概念》教学设计 公共教学部数学教研室徐小丽 1、教学内容分析 使用教材: 《高等数学应用教程》,许艾珍主编,北京:航空工业出版社,2010.8第一版。第一章第二节《极限的概念》。 内容分析: 极限描述性概念的形成过程,是学生有感性认识初步上升到理性认识,从而形成、培养理性思维能力的过程。极限思想是高等数学的重要思想方法,也是学习微积分的理论基础。理解极限的概念,对提升学生的抽象思维能力、逻辑推理能力和严密思维能力都具有积极的意义。2、学生学习情况分析 《高等数学》是学生学习比较困难的学科之一,难学是因为高等数学中的抽象思维对学生的巨大考验。极限的概念是学生接触高等数学后遇到的第一个重点,又是难点,更加增加了学习的困难。 理解好极限的概念,对学生完成从形象思维到抽象思维的转变,从感性认识到理性认识的升华具有重要意义,同时也能增强学生学好高等数学的信心。 教师应注意耐心引导学生充分感受用静态的有限量来刻画动态的无限量的方法和过程,充分利用教材的相关例题对概念进行深化,从而加深学生的认知和理解。 3、设计思想 本教学设计以“任务教学法”为主要框架,将教学目标分解成两大学习任务:知识学习任务和实验认知任务,每项任务由分解成若干个子任务,让学生在接受一项项子任务的过程中完成学习目标,同时每完成一项子任务也能增强学生信心,激发学习动机。 教学过程由“任务驱动”引入,激发学习兴趣;将知识教学内容分为5个子任务,每个子任务为一个知识点,增强学习信心;实验任务分为3个子任务,任务一学会使用极限命令,任务二在实例中体会极限的思想和特点,任务三进一步加深对极限思想的理解,并培养学生通过探索自主学习的能力和对数学的热爱;实验任务分组实现,培养学生的团队合作精神和良性竞争意识。 极 限 的 概 念 知识任务 实验任务数列的极限 函数极限的概念 简单的函数极限讨论 函数极限存在的充要条件 分段函数在分段点处的极限问题 极限命令的应用 连续计息问题—你能成为百万富翁吗? Koch雪花曲线—一个不可能的结论! 教 学 目 标

极限定义教案

§2.1 数列极限的概念 教学目标:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题. 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念.会应用数列极限 的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述. 教学重点:数列极限的概念. 教学难点:数列极限的N ε-定义及其应用. 教学方法:讲授为主. 教学过程: 一、组织教学 二、复习引入新课 三、新课讲授 数列极限 对于这个问题,先看两个个例子: 1.割圆术:求圆面积 “割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” -----------刘徽 2.古代哲学家庄周所著的《庄子. 天下篇》引用过一句话: “一尺之棰,日 A

取其半,万世不竭”.把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12 , 第2天截下2111 222 ?=, 第3天截下23111 222?=, 第n 天截下1111 222n n -?=, 得到一个数列: 231111 ,,,,,2222 n 不难看出,数列12n ?? ???? 的通项12n 随着n 的无限增大而无限地接近于零. 普通定义:一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限.不具有这种特性的数列就不是收敛的数列,或称为发散数列. 据此可以说,数列12n ?? ???? 是收敛数列,0是它的极限. 数列{}{}21,1(1)n n ++-都是发散的数列. 需要提出的是,上面关于“收敛数列”的说法,并不是严格的定义,而仅是一种“描述性”的说法,如何用数学语言把它精确地定义下来.还有待进一步分析. 以11n ?? +???? 为例,可观察出该数列具以下特性: 随着n 的无限增大,1 1n a n =+ 无限地接近于1→随着n 的无限增大,11n +与 1的距离无限减少→随着n 的无限增大,1|11|n +-无限减少→1 |11|n +-会任意小,只要n 充分大. 如:要使1 |11|0.1n + -<,只要10n >即可;

数列的极限教学设计

课题:数列的极限 一、教学内容分析 极限概念是数学中最重要和最基本的概念之一,因为高等数学中其它重要的基本概念(如导数、微分、积分等)都是用极限概念来表述的,而且它们的运算和性质也要用极限的运算和性质来推导,所以,极限概念的掌握至关重要. 二、教学目标设计 1.理解数列极限的概念,能初步根据数列极限的定义确定一些简单数列的极限. 2.观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辩证关系,提高的数学概括能力、抽象思维能力和审美能力. 三、教学重点及难点 重点:数列极限的概念以及简单数列的极限的求解. 难点:数列极限的定义的理解. 四、教学流程设计 五、教学过程设计 (一)、引入 1、创设情境,引出课题 1. 观察 举例: [A]战国时代哲学家庄周著的《庄子·天下篇》引用过一句话: 一尺之棰日取其半万世不竭. [B]三国时的刘徽提出的“割圆求周” 的方法。他把圆周分成三等分、六等分、十二等分、二十四等分······这样继续分割下去,所得多边形的周长就无限接近于圆的周长。 割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣。 (二)、学习新课 2、观察归纳,形成概念 (1)直观认识 请同学们考察下列几个数列的变化趋势

A. ΛΛ,10 1 ,,101,101,10132n ①“项”随n 的增大而减小 ②但都大于0 ③当n 无限增大时,相应的项n 10 1 可以“无限趋近于”常数0 B.ΛΛ,1 ,,43,32,21+n n ①“项”随n 的增大而增大 ②但都小于1 ③当n 无限增大时,相应的项1 +n n 可以“无限趋近于”常数1 C.ΛΛ,)1(, ,31,21,1n n --- ①“项”的正负交错地排列,并且随n 的增大其绝对值减小 ②当n 无限增大时,相应的项n n )1(-可以“无限趋近于”常数0 概念辨析 归纳数列极限的描述性定义: 问题拓展 给出数列极限的N -ε定义: 讲授例题 【例1】.已知数列 114651 2,,,,,.....,1(1),...2356n n ++- 1)写出这个数列的各项与1的差的绝对值; 2)第几项后面的所有项与1的差的绝对值都小于都小于 都小于

高三数学教案:数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞ →n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

数列的极限教学设计

第三节 数列的极限 西北师范大学数学与统计学院 汪媛媛 引言: 极限思想是由于求某些实际问题的精确解答而产生的. 例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法----割圆术, 就是极限思想在几何学上的应用. 又如,春秋战国时期的哲学家庄子(公元4世纪)在《庄子.天下篇》一书中对“截丈问题”,有一段名言:“一尺之棰, 日截其半, 万世不竭”,其中也隐含了深刻的极限思想. 极限是研究变量的变化趋势的基本工具,高等数学中许多基本概念,例如连续、导数、定积分、无穷级数等都是建立在极限的基础上. 极限方法又是研究函数的一种最基本的方法. 本节将首先给出数列极限的定义. 分布图示 ★ 极限概念的引入 ★ 数列的定义 ★ 数列的极限 ★ 数列极限的严格定义 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 收敛数列的有界性 ★ 极限的唯一性 ★ 例9 ★ 子数列的收敛性 ★ 内容小结 ★ 课堂练习 ★ 习题 1-3 ★ 返回 教学目的:1.理解极限的概念,了解极限的,N εεδ--定义; 2.会用极限的严格定义证明极限.; 3.了解极限的性质; 教学重难点:理解掌握数列极限的概念 内容要点 一、数列的定义 极限概念是由于求某些实际问题的精确解答而产生的。例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法——割圆术,就是极限思想在几何学上的应用。 设有一圆,首先作内接正六边形,把它的面积记为;再作内接正十二边形,其面积记为;再作内接正二十四边形,其面积记为;循此下去,每次边数加倍,一般地把内接正1 26-?n 边 形的面积记为()N n A n ∈。这样,就得到一系列内接正多边形的面积: .............321n A A A A 它们构成一列有次序的数。当越大,内接正多边形与圆的差别就越小,从而以作为圆面积的近似值也越精确。但是无论取得如何大,只要取定了,终究只是多边形的面积,而还不是圆的面积。因此,设想无限增大(记为∞→n ,读作趋于无穷大),即内接正多边形的边数无

高中数学高二第一学期7.7数列的极限_教案1-沪教版

数列的极限 【教学目标】 1.理解数列极限的概念,能初步根据数列极限的定义确定一些简单数列的极限。 2.观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辩证关系,提高的数学概括能力、抽象思维能力和审美能力。 3.利用刘徽的割圆术说明极限,渗透爱国主义教育,增强民族自豪感和数学学习的兴趣。 【教学重难点】 重点:数列极限的概念以及简单数列的极限的求解。 难点:数列极限的定义的理解。 【教学过程】 一、 情景引入 1.创设情境,引出课题。 1.观察。 教师:在古代有人曾写道:“一尺之棰,日取其半,万世不竭。” 哪位同学能解释一下此话意思? 学生:一根一尺长的木棒,第一天取它的一半,第二天取第一天剩下的一半,……,如此继续下去,永远也无法取完。 思考: 教师:如果把每天取得的木棒长度排列起来,会得到一组怎样的数? 学生: , 2 1 , , 81 , 41 , 21n 。 3.讨论。 教师:随着n 的增大,数列{}n a 的项会怎样变化? 学生:慢慢靠近0。 教师:这就是我们今天要学习的数列的极限——引出课题。 二、学习新课 1.观察归纳,形成概念。 (1)直观认识。 教师:请同学们考察下列几个数列的变化趋势。

(1) ,10 1 ,,101,101,10132n ; ①“项”随n 的增大而减小; ②但都大于0; ③当n 无限增大时,相应的项 n 101 可以“无限趋近于”常数0。 (2) ,)1(,,31,21,1n n ---; ①“项”的正负交错地排列,并且随n 的增大其绝对值减小; ②当n 无限增大时,相应的项n n ) 1(-可以“无限趋近于”常数0。 (3) ,1 , ,43,32,21+n n ; ①“项”随n 的增大而增大; ②但都小于1; ③当n 无限增大时,相应的项 1 +n n 可以“无限趋近于”常数1。 教师:用电脑动画演示数列的不同的趋近方式: (a )从右趋近;(c )从左趋近;(b )从左右。 两方趋近,使学生明白不同的趋近方式。 教师:上面的庄子讲的话体现了极限的思想,其实我们的先辈还会用极限的思想解决问题,我国魏晋时期杰出的数学家刘徽于公元前 263年创立的“割圆术”借助圆内接正多边形的周长,得到圆的周长就是极限思想的一次很好的应用。刘徽把他的操作方法概括这样几个字:“割之弥细,所失弥少,割之又割,以至不可割,则与圆和体,而无所失矣。” 概念辨析: 教师:归纳数列极限的描述性定义。 学生:一般地,如果当项数n 无限增大时,数列{}n a 的项无限的趋近于某一个常数n 那么就说数列{}n a 以a 为极限。 教师:是不是每个数列都有极限呢? 学生1:(思考片刻)不是。如n a n =。 学生2:2n a n =;n n a )1(-=。

数列极限的着-N定义的教学探讨

龙源期刊网 https://www.360docs.net/doc/672355618.html, 数列极限的?着-N定义的教学探讨 作者:杨弘王玉花 来源:《新课程·教育学术》2010年第08期 摘要:极限是高等数学的基础,极限的思想贯穿于高等数学的始终,而数列的极限是学习高等数学的入门知识。如何把抽象极限概念形象地描述出来,让学生真正理解概念本身的含义尤其 重要。本文从定性与定量两个角度,对数列极限的?着-N定义进行了教学探讨,从而帮助学生由 浅入深,由具体到抽象,循序渐进地掌握极限的概念。 关键词:数列极限描述性定义 ?着-N定义 极限概念涉及到一个以静识动,以有限认识无限的抽象推理过程,尤其是对于刚刚进入高等院校初学高等数学的学生,更觉其抽象,难以理解。然而,极限是高等数学课程中的一个重要概念。因此,讲好极限概念不仅关系到学生能否学好高等数学,而且也关系到如何通过数学教学,达到培养学生创新能力的教学目的,下面结合自己在教学实践中的一些体会,谈谈“数列极限的定义”的教学。 一、由具体例题引出数列极限的描述性定义 由具体到抽象,是人们认识事物的规律,对数列极限概念的教学,也应遵循人们的这一认识规律来进行。 首先,给出几个无穷数列: 数列1:2,4,8,16,…,2n,… 数列2:0,2,0,2,…,1+(-1)n,… 上述定义,学生很容易接受,但应该向学生指出的是:此定义仅从直观上、描述性地给出了数列极限的定义,由于没有定量的分析,使得我们无法用此定义进行推理和证明。因此,还必须用定量的分析语言给出数列极限的分析定义,即?着-N定义。 二、由描述性定义过渡到“?着-N定义” 由描述性定义过渡到“?着-N定义”的关键,是如何用数量关系式来刻画当n无限增大时,xn 无限接近于常数a这句话。我在教学中是通过这样几个步骤来完成由“描述性定义”到“?着-N定义”这一过渡的:首先由“当n无限增大时,xn无限接近常数a”过渡到“n无限增大时,xn-a可以无限变小”,再过渡到“对于任意小的?着>0,欲使xn-aN时)”,最后引出数列极限的?着-N定义。

(沪教版高二上)数学 《数列的极限》教案

7.7(1)数列的极限 一、教学内容分析 极限概念是微积分中最重要和最基本的概念之一,因为微积分中其它重要的基本概念(如导数、微分、积分等)都是用极限概念来表述的,而且它们的运算和性质也要用极限的运算和性质来推导,同时数列极限的掌握也有利于函数极限的学习,所以,极限概念的掌握至关重要. 二、教学目标设计 1.理解数列极限的概念,能初步根据数列极限的定义确定一些简单数列的极限. 2.观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辩证关系,提高的数学概括能力、抽象思维能力和审美能力. 3.利用刘徽的割圆术说明极限,渗透爱国主义教育,增强民族自豪感和数学学习的兴趣. 三、教学重点及难点 重点:数列极限的概念以及简单数列的极限的求解. 难点:数列极限的定义的理解. 四、教学用具准备 电脑课件和实物展示台,通过电脑的动画演示来激发兴趣、引发 思考、化解难点,即对极限定义的理解,使学生初步的完成由有限到无限的过渡,运用实物展示台来呈现学生的作业,指出学生课堂练习中的优点和不足之处,及时反馈. 五、教学流程设计

六、教学过程设计 一、 情景引入 1、创设情境,引出课题 1. 观察 教师:在古代有人曾写道:“一尺之棰,日取其半,万世不竭.” 哪位同学能解释一下此话意思? 学生:一根一尺长的木棒,第一天取它的一半,第二天取第一天剩下的一半,…… ,如此继续下去,永远也无法取完. 2. 思考 教师:如果把每天取得的木棒长度排列起来,会得到一组怎样的数? 学生 : ΛΛΛ , 21 , , 81 , 41 , 2 1n 3.讨论 教师; 随着n 的增大,数列{}n a 的项会怎样变化? 学生: 慢慢靠近0. 教师:这就是我们今天要学习的数列的极限----引出课题 二、学习新课 2、观察归纳,形成概念 (1)直观认识 教师:请同学们考察下列几个数列的变化趋势 (a )ΛΛ,10 1,,101,101,10132n ①“项”随n 的增大而减小 ②但都大于

高数教案数列极限

数学MATH

课 题: 数列的极限 目的要求: 教学重点: 教学难点: 教学课时: 教学方法: 教学内容与步骤: 数列的极限 设x n =f (n )是一个以自然数集为定义域的函数,将其函数值按自变量大小顺序排成一列,x 1, x 2,…x n , …, 称为一个数列. x n 称为数列的第n 项,也称为通项,数列也可表示为{x n }或x n =f (x n ))例: 看数列1. n x n 11+ = 从直观上看,这个数列当n 越来越大时, 对应的项xn 会越来越接近于1,或者说“当n 趋向

于无穷大时, 数列xn 趋近于1''.如何用精确的, 量化的数学语言来刻划这一事实? 注意到,实数a , b 的接近程度由| a -b |确定. | a -b |越小, 则a , b 越接近.因此, 要说明“ 当n 越来越大时, x n 越来越接近于1”就只须说明“ 当n 越来越大时, |x n -1 |会越来越接近于0”.而要说明“|x n -1 |越来越接近于0”则只须说明“ 当n 充分大时,| x n -1 |能够小于任意给定的, 无论多么小的正数ε” 就行了,也就是说无论你给一个多么小的正数ε, 当n 充分大时, | x n -1 | 比ε还小,由于ε是任意的,从而就说明了|x n -1| 会越来越接近于0. 事实上,n x n 1|1|=-,给10001= ε很小, 要1000 11|1|< =-n x n 只须 n >1000 即可, 也 即在这个数列中,从第1001项开始,以后各项都有1000 1|1|< -n x 又给:100001= ε则从第10001项开始,以后各项都有10000 1|1|<-n x ,一般, 任给ε >0, 不论多么小, 要使ε<=-n x n 1|1|, 只须ε 1>n ,因此, 从第11+? ? ????ε项开始, 以后各项都 有ε<-|1|n x ,因ε是任意的, 这就说明了当n 越来越大时, x n 会越来越接近于1. 定义: 设{x n }是一个数列, a 是一个常数, 若?ε >0, ?正整数N , 使得当n >N 时, 都有|x n -a |<ε,则称a 是数列{x n }当n 无限增大时的极限, 或称{x n }收敛于a , 记作: 这时, 也称{x n }的极限存在, 否则, 称{x n }的极限不存在, 或称{x n }是发散的. 比如, 对于刚才的数列 1. 有1)11(lim =+∞→n n ,,0)1(lim =-∞→n n n .lim 2 1 )1(lim 2不存在和而n n n n ∞→∞→+- 注1. 定义中的ε是预先给定的, 任意小的正数, 其任意性保证了x n 可无限接近于a ,另外, ε又是确定的, 它不是变量. 注2. 一般说来, N 随给定的ε变化而变化, 给不同的ε 确定的N 也不同,另外, 对同一个ε来说, N 不是唯一的(若存在一个N , 则N +1, N +2, …, 均可作为定义中的N .) 注3.定义中“ 当n >N 时, 有| x n -a |<ε”的意思是说, 从第N +1项开始,以后各项都有|x n -a |<ε,至于以前的项是否满足此式不必考虑. 可见一个数列是否有极限只与其后面的无穷多项有关. 而与前面的有限多项无关. 改变, 去掉数列的前有限项, 不改变数列收敛或发散的性质. 几何意义: 由于| x n -a |<ε ? a-ε 0. 由于|x n –1|=|c – c |= 0,取N =1, 当n >N 时, 有|xn –c |=0<ε,故c c n =∞ →lim 即

相关文档
最新文档