荷载、计算参数选取

荷载、计算参数选取
荷载、计算参数选取

结构设计统一技术措施

项目名称万科蓝山东地块项目 专业结构设计号设计阶段施工图

1.屋面和楼面均布活荷载标准值、组合值系数、频遇值系数及准永久值系数:

序 号

类别

活荷载 标准值 (kN/m2)

组合值系

数 频遇值 系数

准永久值

系数

1不上人屋面(雪)0.60.70.50.0 2上人屋面2.00.70.50.4 3屋顶花园3.00.70.60.5 4住宅起居、卧室、普通卫生

2.00.70.50.4间

5公共卫生间2.50.70.60.5 6住宅厨房2.00.70.60.5 7住宅阳台,入户花园,架空

层 2.50.70.60.5

8户内楼梯、走道2.00.70.50.4

9消防疏散楼梯、公共楼梯3.50.70.50.3 10停车库、车道(室内)4.00.70.70.6 11室外消防车道35.00.70.70.6 12地下室顶板(花园)4.00.70.60.5 13商铺3.50.70.60.5 14空调机房、电梯机房、洗衣

房 7.00.90.90.8 15发电机房、水泵房、变配电

房 10.00.90.90.8 16其它设备用房5.00.90.90.8 注:1、活荷载分项系数为1.4

2、水箱间、设备荷载、平台花园环境树木、游泳池等按实际荷载作用。

3、室外车道考虑消防车,按汽车-超20级即总重力300kN 核算。

4、地下室顶板覆土及建筑保温防水等按平均1200(架空层内为900)考虑,室外活荷载按

2 5kN/m

考虑,室内(即架空层)按2.5kN/m 2 考虑。 5、地下外墙设计承受室外地面标准荷载为10kN/m2。

6、室外消防车道有覆土时,计算梁板荷载时根据覆土厚度取应力扩散后的等效荷载。

2.屋面、楼面附加恒荷载标准值(分项系数1.2)

特别说明:有消防车道处覆土厚度按1000

1)屋1(上人屋面)

10厚地砖0.25

25厚找平结合层0.50

考虑,无消防车道处覆土按照1200考虑

20厚砂浆0.40 6)车库、车

100厚砂浆面层2.0

防水层0.10

20厚砂浆找平0.40 吊顶或设备管线0.60

均150厚砂浆找坡3.00

2.1

取4.2

7)水泥楼面(机房等)

50厚水泥砂浆1.00

2)屋2(不上人屋面)

取1.0 25厚找平结合层0.50

20厚砂浆0.40

防水层0.10

20厚砂浆找平0.40

均150厚砂浆找坡3.00

8)楼面[50](卧室、客厅、厨房

等)

50厚面层(适当

考虑有面砖)

2.6取1.5

取4.4

3)屋3(瓦屋面)

屋面瓦0.60

20厚砂浆0.40

防水层0.10

20厚砂浆找平0.40

1.5 9)住宅阳台、卫生间

10厚地砖0.25

20厚水泥砂浆粘结层0.50

10厚水泥砂浆保护层0.20

防水层0.10

均厚找平结合层300.60

吊顶、设备管线0.60

取2.2

4)地下室顶板绿化(算法一) 50厚隔热砖0.35

25厚找平结合层0.50

20厚砂浆0.40

防水层0.10

20厚砂浆找平0.40

均180厚轻质材料找坡1.80 10)楼梯(板厚应按实际折算) 10厚地砖0.25

25厚水泥砂浆0.50

板(120,150)折算6.006.75 扶手等0.50

120,150取7.3,8.00

1200厚覆土21.6

*楼梯为两跑吊顶、设备管线0.6

取25.5

(覆土加做法总厚对应为1200)

5)地下室顶板(算法二)

20厚砂浆0.40

防水层0.10

20厚砂浆找平0.40

吊顶或设备管线

7.12

1.6

总厚1200覆土

3.墙体永久荷载标准值Gk:(地上部分外墙、卫生间墙体及隔墙采用煤矸石多孔砖,砖块容重取9kN/m

3,住宅外墙架空层及以下考虑挂石材)

a.外墙200厚煤矸石多孔砖墙(干挂石材或面砖)

20mm厚抹灰20.0×0.02×=0.8kN/㎡

-2-

華森建築與工程設計顧問有限公司杭州分公司

200mm厚煤矸石多孔砖墙9×0.2=1.8kN/㎡干挂石材

(面砖)0.56kN/㎡(0.5kN/㎡)

Gk总和取3.1

有梁处线荷载:3.1×2.40=7.44kN/m取7.5

无梁处线荷载:3.1×2.8=8.7kN/m取9.0

b.外墙、内墙200厚煤矸石多孔砖墙((双面抹灰)

20mm厚抹灰20.0×0.04×=0.8kN/㎡

200mm厚煤矸石多孔砖墙9×0.2=1.8kN/㎡

Gk总和2.6

有梁处线荷载:2.6×2.4=6.24kN/m取6.50

无梁处线荷载:2.6×2.80=7.28kN/m取7.30

c.内墙100厚砂浆砌墙体(双面抹灰)

20mm厚抹灰20.0×0.04×=0.8kN/㎡

200mm厚砂浆砌墙体9×0.1=0.9kN/㎡

Gk总和1.7

有梁处线荷载:1.7×2.4=4.08kN/m取4.1

无梁处线荷载:1.7×2.8=4.76kN/m取4.8

d.卫生间200厚煤矸石多孔砖墙((双面抹灰)

20mm厚抹灰20.0×0.04×=0.8kN/㎡

200mm厚煤矸石多孔砖墙9×0.2=1.8kN/㎡

8mm厚面砖0.25

Gk总和2.85取2.85有梁处线荷载:

2.85×2.4=6.8kN/m取6.8

无梁处线荷载:2.85×2.8=7.98kN/m取8.0

e.卫生间100厚煤矸石多孔砖墙((双面抹灰)

20mm厚抹灰20.0×0.04×=0.8kN/㎡

200mm厚煤矸石多孔砖墙9×0.1=0.9kN/㎡

8mm厚面砖0.25

Gk总和1.95取2.0有梁处线荷载:2.0×2.4=4.8kN/m

取4.8

无梁处线荷载:2.0×2.8=5.6kN/m取5.5

f.飘窗处线荷载:10kN/m

g.落地窗或推拉门统一用2kN/m,墙体开门窗洞荷载可根据实际情况取用

h.主阳台栏杆:2kN/m,

i.玻璃幕墙:2kN/m

j.其余阳台和露台及屋顶女儿墙:4kN/m(如有具体高度的,以实际荷载计算)

4.结构整体计算和主要参数

1)结构计算:采用中国建筑科学研究院PKPMCAD工程部编制的“高层建筑结构空间有限元分析与设计软件--SATWE”进行整体计算。(对计算结果应根据构造要求和概念设计进行部分调整)2)SATWE整体计算主要参数:

总信息..............................................

结构材料信息:钢砼结构

混凝土容重(kN/m3):Gc=26.00

钢材容重(kN/m3):Gs=78.00

水平力的夹角(Rad):ARF=0.00(如计算大于15度小于75度,应

带入反算)

地下室层数:MBASE=1或2(整体计算时把地下室底板当作一层输入,

以方便底板的抗浮计算)

竖向荷载计算信息:按模拟施工加荷计算方式

风荷载计算信息:计算X,Y两个方向的风荷载

地震力计算信息:计算X,Y两个方向的地震力

特殊荷载计算信息:不计算

结构类别:剪力墙结构(34,41层)

裙房层数:MANNEX=(按实际输)

转换层所在层号:MCHANGE=(按实际输)

墙元细分最大控制长度(m)DMAX=1.00

墙元侧向节点信息:内部节点

是否对全楼强制采用刚性楼板假定是(计算内力和配筋点否)(计算书中也应注明)

采用的楼层刚度算法层间剪力比层间位移算法

风荷载信息..........................................

修正后的基本风压(kN/m2):WO=0.35

地面粗糙程度:B类

结构基本周期(秒):T1=(一开始不知道基本周期是多少,那么先算一遍,查得数

值,回填,再算一遍)体形变化分段数:MPART=1

各段最高层号:NSTi=(按实际输)

各段体形系数:USi=1.4(根据平面形状按高规或荷载规范确定)

地震信息............................................

振型组合方法(CQC耦联;SRSS非耦联)CQC

计算振型数:NMODE=12(18层)9(11层)(该值影响有效质量系数,须大于90%)

地震烈度:NAF=6.00

场地类别:KD=2

设计地震分组:一组

特征周期TG=0.35

多遇地震影响系数最大值Rmax1=0.08

罕遇地震影响系数最大值Rmax2=-

框架的抗震等级:二级

剪力墙的抗震等级:二级

活荷质量折减系数:RMC=(计算主楼时按默认即可,计算裙房和地下室时不折

减)

周期折减系数:TC=剪力墙0.90

结构的阻尼比(%):DAMP=5.00

是否考虑偶然偏心:是

是否考虑双向地震扭转效应:是(可以根据高规补充,符合条件可点否)

斜交抗侧力构件方向的附加地震数=(注意有斜交抗侧力时要按实际角度)

活荷载信息..........................................

考虑活荷不利布置的层数考虑

柱、墙活荷载是否折减不折算

传到基础的活荷载是否折减折算

------------柱,墙,基础活荷载折减系数------------- 计算截面以上的层号---------------折减系数

11.00

2---30.85

4---50.70

6---80.65

9---200.60

>200.55+0.05

调整信息........................................

中梁刚度增大系数:BK=2.00(当位移角富裕较大时取1.5)梁端弯矩调幅系数:BT=0.85

梁设计弯矩增大系数:BM=1.00

连梁刚度折减系数:BLZ=0.80

梁扭矩折减系数:TB=0.40

全楼地震力放大系数:RSF=1.00

5.Qo调整起始层号:KQ1=1

2.2Qo调整终止层号:KQ2=顶层

顶塔楼内力放大起算层号:NTL=出大屋面开始算

顶塔楼内力放大:RTL=2.0

九度结构及一级框架梁柱超配筋系数CPCOEF91=1.15

是否按抗震规范5.2.5调整楼层地震力IAUTO525=1

是否调整与框支柱相连的梁内力IREGU_KZZB=0

剪力墙加强区起算层号LEV_JLQJQ=1

强制指定的薄弱层个数NWEAK=(有转换时应强制指定)

配筋信息........................................

梁主筋强度(N/mm2):IB=360

柱主筋强度(N/mm2):IC=360

墙主筋强度(N/mm2):IW=360

梁箍筋强度(N/mm2):JB=360

柱箍筋强度(N/mm2):JC=360

墙分布筋强度(N/mm2):JWH=360

梁箍筋最大间距(mm):SB=100.00

柱箍筋最大间距(mm):SC=100.00

墙水平分布筋最大间距(mm):SWH=200.00

墙竖向筋分布最小配筋率(%):RWV=0.20

设计信息........................................

结构重要性系数:RWO=1.00

柱计算长度计算原则:有侧移

梁柱重叠部分简化:不作为刚域

是否考虑P-Delt效应:否

柱配筋计算原则:按双偏压计算

钢构件截面净毛面积比:RN=0.85

梁保护层厚度(mm):BCB=20.00

柱保护层厚度(mm):ACA=25.00

是否按砼规范(7.3.11-3)计算砼柱计算长度系数:是

荷载组合信息........................................

恒载分项系数:CDEAD=1.20

活载分项系数:CLIVE=1.40

风荷载分项系数:CWIND=1.40

水平地震力分项系数:CEA_H=1.30

竖向地震力分项系数:CEA_V=0.50

特殊荷载分项系数:CSPY=0.00

活荷载的组合系数:CD_L=0.70

风荷载的组合系数:CD_W=0.60

活荷载的重力荷载代表值系数:CEA_L=0.50

本工程的几个特点和要注意事项:

1.有消防车道处覆土荷载按1000考虑,无消防车道处覆土按照1200考虑

2.万科项目,要注意图纸应尽量做细。

3.时间短,注意要控制时间节点,留出充分时间校审和签字。

kV真空断路器技术参数

目录 高压真空断路器 ZN12-12型户内高压真空断路器………………………………………型户内高压真空断路器……………………………………… ZN65-12型户内高压真空断路器………………………………………VS1-12型户内高压真空断路器…………………………………………ZN28-12型户内高压真空断路器………………………………………ZN28A-12型户内高压真空断路器………………………………………ZW32-12型户外高压真空断路器……………………………………… ZN12-12 户内高压真空断路器

一、概述 ZN12-12型真空断路器为额定电压12kV、三相交流50Hz的户内高压开关设备,是引进德国西门子公司3AF技术的国产化产品。 本断路器的操作机构为弹簧储能式,可以用交流或直流扣作,亦可用手动扣作。 本断路器结构简单,开断能力强,机械寿命长,操作功能齐全,无爆炸危险,维修简便,适于作发电厂、变电所等输配电系统的控制或保护开关,尤其适用于开断重要负荷及频繁操作的场所。 二、使用环境条件 海拔高度:低于1000m。 环境温度:最高+40℃,最低-25℃。 相对湿度:日平均不大于95%,月平均不大于90%。 地震烈度:低于8°。 无火灾、爆炸危险,无腐蚀性气体及无剧烈震动的场所。 三、技术参数

注:合闸速度指触头最后6mm时的平均速度 分闸速度指触头刚分6mm时的平均速度 采用小型化纵磁场灭弧室每相回路电阻≤40μΩ四、产品外形及安装尺寸

A 向 机械联锁孔位置 ◆表内所列为各项对应尺寸 e 210 230 250 280 c 610 650 690 750 d 514 554 594 514 注:图中尺寸b2000A 及以上为360,2000A 以下为350;2000A 及以上,上下出线端孔为4-M12,1600A 及以下,上下出线端孔为

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算 基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算 w k=βzμsμz w0,建筑物高度<30m,故βz=1.0 迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3 计算过程见下表 计算简图(单位:kN) 14.60 15.44 16.85 13.98 17.04

(二)内力计算 1.抗侧刚度和反弯点高度确定 计算过程见下表 2.剪力在各层分配(单位:kN ) ∑ == 5 n i i Pi P V ,Pi k ik V D D V ?= ∑ V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m ) 4.风荷载作用下的内力图 M 图(单位:kN ?m ) 62.98 51.34 32.5132.51 24.71 24.71 14.826.27 19.12 8.67 7.77 4.73 3.95 2.181.11 42.16 41.69 28.77 28.45 19.88 19.65 12.77 12.624.36 4.3157.21 57.21 57.23 34.9522.2837.9 15.6222.289.2818.26 27.54 16.98 3.69 13.296.536.5357.23 22.28 15.62 27.5416.9837.99.283.6934.95 22.28 18.26 6.53 13.29 6.53

V N V ,N 图(单位:kN ) 5.梁端柱边弯矩(单位:kN?m ) 28.11 19.18 13.25 8.51 2.91 35.13 36.8321.39 22.46 12.17 12.5 5.62 5.8 13.74 21.57 9.22 18.06 6.55 13.73 4.11 9.43 1.51 1.4 4.15 17.39 12.38 1.51 2.84 6.27 9.41

SATWE参数选取原则第三版

SATWE参数选取原则(第三版) SATWE 2010版(2013年10月版本) 一、总信息: 1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角大于15°,应在斜交抗侧力构件中输入角度,此处不必改动) 2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时取0; 3. 钢材容重:78; 4. 裙房层数:按实际计算层数输入(应计入地下室的层数); 5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体”而设置。对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室;(转换层自动默认为薄弱层). 6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。 7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判别影响很大,应准确输入该参数(应注意地下室层数的判断);8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”;

注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应定义弹性膜。 9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选; 10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算; 11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响) 12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应勾选; 13.结构材料信息:按实际类型填写; 14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效; 15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱等情况时,应注意修改加载的次序和层数。有吊柱的结构、钢结构及体育场馆等应采用模拟施工加载1。计算基础时,尤其是框剪、框筒结构时,采用模拟施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序)16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及轻钢屋面等结构选择“计算特殊风荷载”; 17.地震作用计算信息:一般建筑“计算水平地震作用”即可。对于规范规定的需要考虑竖向地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地震”,高层建筑选择“计算水平和反应谱方法竖向地震”; 18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况不需考虑。“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%,应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要求; 19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”; 结构所在地区:按项目所在地区填写,分为全国、上海和广东;20. 二、风荷载信息: 1. 地面粗糙度:根据项目的具体地点选择,一般城市市区选C,郊区选B,湖边、海边取A,慎选D; 2. 修正后的基本风压:一般按《建筑结构荷载规范》GB50009-2012附表E.5中50年一遇的风压取值。如表中无相关数据,应与甲方了解当地的取值。对于山区、远海海面和海岛的建筑应依据荷载规范8.2条采用相应的修正系数,门式刚架也应乘以1.05的修正系数后填入; 3. X向、Y向结构基本周期:先按照“0.1x层数”输入初始值,待SATWE计算出准确的结构自振周期后,将新的周期值代入重新计算;

PKPM参数选择

规范PM参数 1.电算时,荷载不应任意放大.内力放大系数,配筋放大系数,如果不是计算模型确实存在系统误差,一般取1.0,不必放大.对薄弱部位,重点部位应适当加强。 2.地基设计时应采用荷载效应标准组合最大轴力NMAX情况下的荷载(由JCCAD---基础人机交互输入----荷载输入-----目标组合(标准组合)--------读取荷载(SATWE数据荷载,不考虑地震荷载)输出)。 3.基础设计时应采用荷载效应的基本组合荷载.当有永久荷载效应控制时.可取上述标准组合荷载的1.35倍。 4.总信息栏: 结构体系:按实际工程选择 结构主材:按结构形式选择 结构重要性系数:一般填1.0(砼结构设计规范GB50010-2002第3.23条选用) 地下室层数:一般选0(但当地下室层参与结构整体分析时按实际情况填写,程序会对地下层特殊处理.) 与基础相连的下部楼层数:一般填1 梁混凝土保护层厚度:25(大于C25室内正常环境) 30(小于C25室内潮湿,露天环境) 框架梁端负弯矩调整系数0.85 5.材料信息栏 混凝土容重26KN/m3 (考虑粉刷重量) 钢材容重78.5KN/m3 钢构件钢材:Q235 钢截面净毛面积比值:1.0(表示截面被开洞后的削弱情况,可填0.5~1.0). 墙主筋类别:HRB335 主要墙体材料:砌体结构如实填写 砌体容重:18,包含0.7的粉刷重量 墙体水平分布筋间距一般悬200 墙体水平分布筋类别HPB235 墙竖向分布配筋率:一~三级抗震等级不应小于0.25%,四级抗震等级不应小于0.2%;框支剪力墙结构的剪力墙底部加强部位,配筋不应小于0.3%,间距不应大于200梁.柱箍筋类别HPB235 6.地震信息栏: 地震分组:按《建筑抗震设计规范》GB5001-2001附录A选用,对本省内均取第一组》 地震烈度:杭州选6(0.05)否则按《建筑抗震设计规范》GB5001-2001附录A选用 场地类别:按工程地质勘测报告 框架抗震等级:按《建筑抗震设计规范》表6.1.2 7.风荷载信息栏 杭州0.45,60米以上0.50.地面粗糙度选B类体型分段系数一般不分,选1. 高层主要控制轴压比,剪重比刚度比,位移比,周期比,刚重比 电梯机房的荷载就两个 一个是集中力(8人组的基本就是1000Kg合10KN,加上轿箱和缆绳基本也就3000Kg合30KN)加载在固定缆绳的梁上

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

断路器主要参数与特性

断路器主要参数与特性 断路器的特性主要有:额定电压Ue;额定电流In;过载保护(Ir或Irth)和短路保护(Im)的脱扣电流整定范围;额定短路分断电流(工业用断路器Icu;家用断路器Icn)等。 额定工作电压(Ue):这是断路器在正常(不间断的)的情况下工作的电压。 额定电流(In):这是配有专门的过电流脱扣的断路器在制造厂家规定的环境温度下所能无限承受的最大电流值,不会超过电流承受部件规定的温度限值。 短路继电器脱扣电流整定值(Im):短路脱扣继电器(瞬时或短延时)用于高故障电流值出现时,使断路器快速跳闸,其跳闸极限Im。 额定短路分断能力(Icu或Icn):断路器的额定短路分断电流是断路器能够分断而不被损害的最高(预期的)电流值。标准中提供的电流值为故障电流交流分量的均方根值,计算标准值时直流暂态分量(总在最坏的情况短路下出现)假定为零。工业用断路器额定值(Icu)和家用断路器额定值(Icn)通常以kA均方根值的形式给出。 短路分断能力(Ics):断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种。国标《低压开关设备和控制设备低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释: 断路器的额定极限短路分断能力:按规定的实验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力; 断路器的额定运行短路分断能力:按规定的实验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力;

额定极限短路分断能力的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V ,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA短路电流,断路器立即开断(open简称O),断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路仍处于热备状态,断路器再进行一次接通(close简称C)和紧接着的开断(O),(接通试验是考核断路器在峰值电流下的电动和热稳定性)。此程序即为CO。断路器能完全分断,则其极限短路分断能力合格。 断路器的额定运行短路分断能力(Icn)的试验程序为O—t—CO—t—CO。它比Icn的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。 因此,可以看出,额定极限短路分断能力Icn指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证;而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。 IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Ics的50%、75%和100%。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值。 无论是哪种断路器,虽然都具备Icu和Ics这两个重要的技术指标。但是,作为支线上

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

荷载计算及计算公式 小知识

荷载计算及计算公式小知识 1、脚手架参数 立杆横距(m): 0.6; 立杆纵距(m): 0.6; 横杆步距(m): 0.6; 板底支撑材料: 方木; 板底支撑间距(mm) : 600; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点长度(m):0.2; 模板支架计算高度(m): 1.7; 采用的钢管(mm): Ф48×3.5; 扣件抗滑力系数(KN): 8; 2、荷载参数 模板自重(kN/m2): 0.5; 钢筋自重(kN/m3) : 1.28; 混凝土自重(kN/m3): 25; 施工均布荷载标准值(kN/m2): 1; 振捣荷载标准值(kN/m2): 2 3、楼板参数 钢筋级别: 二级钢HRB 335(20MnSi); 楼板混凝土强度等级: C30; 楼板的计算宽度(m): 12.65; 楼板的计算跨度(m): 7.25; 楼板的计算厚度(mm): 700; 施工平均温度(℃): 25; 4、材料参数 模板类型:600mm×1500mm×55mm钢模板; 模板弹性模量E(N/mm2):210000; 模板抗弯强度设计值fm(N/mm2):205; 木材品种:柏木; 木材弹性模量E(N/mm2):9000; 木材抗弯强度设计值fm(N/mm2):13; 木材抗剪强度设计值fv(N/mm2):1.3; Φ48×3.5mm钢管、扣件、碗扣式立杆、横杆、立杆座垫、顶托。 16a槽钢。 锤子、打眼电钻、活动板手、手锯、水平尺、线坠、撬棒、吊装索具等。 脱模剂:水质脱模剂。 辅助材料:双面胶纸、海绵等。 1)荷载计算: (1)钢筋混凝土板自重(kN/m):q1=(25+1.28)×0.6×0.7=11.04kN/m; (2)模板的自重线荷载(kN/m):q2=0.5×0.6=0.3kN/m ; (3)活荷载为施工荷载标准值(kN):q3=(1+2)×0.6 =1.8kN;

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

试谈高压断路器的主要技术参数(doc 9页)

高压断路器的主要技术参数 通常用下列参数表征高压断路器的基本工作性能: (1)额定电压(标称电压):指断路器工作的某一级系统的额定电压,在三相系统中指的是线间电压,在单相系统中则为相电压。它表明断路器所具有的绝缘水平及它的灭弧能力。 它是表征断路器绝缘强度的参数,它是断路器长期工作的标准电压。为了适应电力系统工作

的要求,断路器又规定了与各级额定电压相应的最高工作电压。对3—220KV各级,其最高工作电压较额定电压约高15%左右;对330KV及以上,最高工作电压较额定电压约高10%。断路器在最高工作电压下,应能长期可靠地工作。 (2)额定电流:指断路器在额的电压下可以长时期通过的最大工作电流,此时导体部分的温升不能超过规定的允许值。它是表征断路器通过长期电流能力的参数,即断路器允许连续长期通过的最大电流。 (3)额定开断电流:它是表征断路器开断能力的参数。在额定电压下,断路器能保证可靠开断的最大电流,称为额定开断电流,其单位用断路器触头分离瞬间短路电流周期分量有效值的千安数表示。当断路器在低于其额定电压的电网中工作时,其开断电流可以增大。但受灭弧室机械强度的限制,开断电流有一最大值,称为极限开断电流。 (4)动稳定电流:它是表征断路器通过短时电流能力的参数,反映断路器承受短路电流电动力效应的能力。断路器在合闸状态下或关合瞬间,允许通过的电流最大峰值,称为电动稳定电流,又称为极限通过电流。断路器通过动稳定电流时,不能因电动力作用而损坏。 (5)关合电流:因为断路器在接通电路时,电路中可能预伏有短路故障,此时断路器将关合很大的短路电流。这样,一方面由于短路电流的电动力减弱了合闸的操作力,另一方面由于触头尚未接触前发生击穿而产生电弧,可能使触头熔焊,从而使断路器造成损伤。断路器能够可靠关合的电流最大峰值,称为额定关合电流。额定关合电流和动稳定电流在数值上是相等的,两者都等于额定开断电流的2.55倍。 (6)热稳定电流和热稳定电流的持续时间:执稳定电流也是表征断路器通过短时电流能力的参数,但它反映断路器承受短路电流热效应的能力。热稳定电流是指断路器处于合闸状态下,在一定的持续时间内,所允许通过电流的最大周期分量有效值,此时断路器不应因短时发热而损坏。国家标准规定:断路器的额定热稳定电流等于额定开断电流。额定热稳定电流的持续时间为2S,需要大于2S时,推荐4S。 (7)合闸时间与分闸时间:这是表征断路器操作性能的参数。各种不同类型的断路器的分、合闸时间不同,但都要求动作迅速。合闸时间是指从断路器操动机构合闸线圈接通到主触头接触这段时间,断路器的分闸时间包括固有分闸时间和熄弧时间两部分。固有分闸时间是指从操动机构分闸线圈接通到触头分离这段时间。熄弧时间是指从触头分离到各相电弧熄灭为止这段时间。所以,分闸时间也称为全分闸时间。 (8)操作循环:这也是表征断路器操作性能的指标。架空线路的短路故障大多是暂时性的,短路电流切断后,故障即迅速消失。因此,为了提高供电的可靠性和系统运行的稳定性,断路器应能承受一次或两次以上的关合、开断、或关合后立即开断的动作能力。此种按一定时间间隔进行多次分、合的操作称为操作循环。我国规定断路器的额定操作循环如下: 自动重合闸操作循环:分——t’——合分——t——合分 非自动重合闸操作循环:分——t——合分——t——合分

六氟化硫断路器通用技术条件

用户登陆: | 规程预案 首页 | 法规政 策 | 规定标 准 | 电力规 范 | 电力规 程 | 电力预 案 | 电力规 约 | QC 成 果 | 标准 化 | 您现在的位置: 中国电力资料网 >> 规定标准 >> 正文 六氟化硫断路器通用技术条件 作者:佚名 文章来源:不详 点击数: 577 更新时间:2006-5-18 机械电子工业部专业标准 六氟化硫断路器通用技术条件 ZBK43001-88 本标准适用于额定电压3~500kV ,频率50Hz 的户内,户外六氟化硫断路器。 除本标准规定外,六氟化硫断路器应符合GB1984《交流高压断路器》国家标准。 注:超出本标准的特殊要求由用户和制造厂协商。 | 网站首页 | 电力新闻 | 配电资料 | 变电资料 | 输电资料 | 发电资料 | 供电站所 | 用电营销 | 设为首页 | 继电保护 | 规程预案 | 电能计量 | 电力事故 | 电力工程 | 电力题库 | 电力范文 | 电力论文 | 加入收藏 | 电力设备 | 企业管理 | 安全管理 | 电力标准 | 电力调度 | 电力下载 | 电力商城 | 电力论坛 | 全站地图

1 使用环境条件 正常使用环境条件按GB1984规定。 2 名词术语 本标准所用的一般名词术语应符合GB2900.1《电工名词术语基本名词术语》、GB2900.20《电工名词术语高压开关设备》GB2900.19《电工名词术语高电压试验技术和绝缘配合》和GB7674《六氟化硫封闭式组合电器》标准。 2.1 绝缘外壳式 以瓷套或环氧制品等绝缘件作为灭弧室外壳和对地绝缘的六氟化硫断路器,如通常所称的瓷套支柱式和绝缘筒式等。 2.2 金属外壳式 以金属作为外壳并直接接地的六氟化硫断路器,如通常所称的罐式和封闭式等。 2.3 额定短路开断电流下的累计开断次数 指断路器在不检修条件下能开断额定短路开断电流的次数。 3 基本分类和额定参数 3.1 基本分类见下表: 3.2 额定参数

荷载及计算参数(已修改)

荷载及计算参数选择 主讲人王卫忠 一.荷载 1.墙体荷载 注:1. 门窗洞口面积>30%时应扣除洞口面积的墙重; 2. 计算梁上线荷应扣除梁高; 3.墙体线荷已包括面层,但若有外挂石材则应另考虑; 4. 当墙直接布置在楼板上,整体计算时,双向板可把墙均匀布于板跨,单向板可布置虚梁导荷;计算楼板 时应按《全国民用建筑工程设计技术措施》第2.7.1~2.7.3条(P18),分不同情况分别计算。 顶棚可统一按0.35 KN/m2,如考虑抹灰可按0.5 KN/m2. 2.消防车荷载(双向板)(KN/m2) 当符合《荷载规范》4.4.1条的条件时,双向板按表中荷载取值,当有覆土时,按表2-1取值,同时应按表2-2考虑动力系数。(计算梁时,宜考虑折减)。

(按满载总重为300KN车辆考虑) 3.施工荷载 地下室顶板室外部分宜考虑10KN/m2、室内(一般指住宅楼平面范围内)部分宜考虑5KN/m2的施工荷载。其与覆土、消防车活荷及人防荷载不同时考虑,且应在施工图中注明相关要求。当室内部分考虑施工荷载时,室内隔墙可不考虑。 4.屋顶荷载 一般屋面顶花园、地下室顶板为景观绿化时,其活荷载取3 KN/m2,其覆土容重宜按18KN/m3计算。当有大型构筑物、景观小品或树木时,可再另外计算,一般树木可按3 KN/m2。考虑。裙房屋顶宜考虑4KN/m2的施工荷载。屋面找坡时,找坡填料应在图中注明(一般按陶粒混凝土容重计算,如另有做法,单独核算)。

二.计算参数 PKPM程序现在有很多计算参数是由设计人员来填写。程序放开这些参数有两个原因,首先就是要让设计人员真正的掌握工程的设计过程,能够尽可能的控制设计过程。其次就是要把一些关键的责任交由设计人员来负,程序只能起到设计工具的作用,不能代替设计。所以就需要我们的结构设计人员充分的理解程序的适用范围、条件和校对结果的合理性、可靠性。《高层建筑混凝土结构技术规程》的5.1.16条要求“对结构分析软件的计算结果,应进行分析结果判断,确认其合理、有效后方可作为工程设计的依据”。PKPM 说明书也特别声明:使用者必须了解程序的假定并必须独立地核查结果。 SATWE设计参数 设计参数的合理确定至关重要。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 (一)、SATWE前处理——接PMCAD生成SATWE数据 分析与设计参数定义 总信息 1、水平力与整体坐标夹角(度):一般取0o和>15o的斜交方向。如体型复杂,可改变此数,使之按最大受力方向,近似可按地震力最大作用方向取(在WZQ.OUT中,逆时针为正。)。必须注意的是:风荷载体型系数也应相应修改。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。按公司规定一般取27。在自重荷载有利的情况下,宜取24。 3、钢材容重:隐含值78。可行。 4、裙房层数:按实际情况。(不含地下室) 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震构造措施。包括剪力墙底部加强部位等。 5、转换层所在层号:按自然层号填输,(含地下室的层数)。该指定为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区;

风荷载高度变化系数μz 计算公式 A类地区=1.379(z/10)0.24 B类地区= (z/10)0.32 C类地区=0.616(z/10)0.44 D类地区=0.318(z/10)0.6 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

断路器技术参数

断路器技术参数 参考标准:GB1984-2003;GB/T 11022-1999; 1、额定电压:126kV、252kV、550kV;(额定电压取值与IEC 60694不同) 2、额定绝缘水平: 表1 额定电压范围I的额定绝缘水平(与IEC 60694表1a中不完全一致) 额定电压 Ur kV(有效值)额定短时工频耐受电压Ud kV(有 效值) 额定雷电冲击耐受电压Up kV(峰 值) 通用值隔离断口通用值隔离断口 126 185 210 450 520 230 265 550 630 252 360 415 850 950 395 460 950 1050 460 530 1050 1200 表2 额定电压范围II的额定绝缘水平(与IEC 60694表2a中不完全一致) 额定电压Ur kV(有效值)额定短时工频耐受电 压Ud kV(有效值) 额定操作冲击耐受电压Us kV (峰值) 额定雷电冲击耐受电 压Up kV(峰值) 相对地和 相间 开关断口 和/或隔 离断口 相对地和 开关断口 相间隔离断口相对地和 相间 开关断口 和/或隔 离断口 550 630 800 1050 1680 1050(+ 450)1425 1425(+ 315) 680 1175 1760 1550 1550(+ 315) 3、额定频率:高压断路器额定频率的标准值为50Hz; 4、额定电流(Ir): 额定电流应当从GB/T 762规定的R10系列中选取:R10系列中包括数字:1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n 的乘积。 5、额定短时耐受电流(I k) 额定短时耐受电流应当从GB/T 762规定的R10系列中选取:R10系列中包括数字:1, 1.25,1.6,2, 2.5, 3.15,4,5,6.3,8及其与10n 的乘积。 额定短时耐受电流等于额定短路开断电流; 6、额定峰值耐受电流: 额定峰值耐受电流应该等于2.5倍额定短时耐受电流,额定峰值耐受电流等于额定短路关合电流; 7、额定短路持续时间: 额定短路持续时间的标准值为2s;如果需要,可以选取小于或大于2s的值。推荐值为 0.5s,1s,3s和4s。 8、操动机构和辅助及控制回路的额定电源电压(Ua)

相关文档
最新文档