高中数学专题练习:数形结合思想

高中数学专题练习:数形结合思想
高中数学专题练习:数形结合思想

高中数学专题练习:数形结合思想

[思想方法解读]数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.

数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.

数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的.

常考题型精析

题型一数形结合在方程根的个数中的应用

例1方程sin πx=x

4的解的个数是()

A.5

B.6

C.7

D.8

点评利用数形结合求方程解应注意两点

(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.

(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则

而采用,不要刻意去数形结合.

变式训练1 若函数f (x )=?????

x x -1

-kx 2,x ≤0,

ln x ,x >0有且只有两个不同的零点,则实

数k 的取值范围是( ) A.(-4,0) B.(-∞,0] C.(-4,0]

D.(-∞,0)

题型二 利用数形结合解决不等式参数问题

例2 设函数f (x )=a +-x 2-4x 和g (x )=4

3x +1,已知x ∈[-4,0]时,恒有f (x )≤g (x ),求实数a 的取值范围.

点评 利用数形结合解不等式或求参数的方法

求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择

适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答.

变式训练2若存在正数x使2x(x-a)<1成立,则a的取值范围是()

A.(-∞,+∞)

B.(-2,+∞)

C.(0,+∞)

D.(-1,+∞)

题型三利用数形结合求最值

例3(·北京)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()

A.7

B.6

C.5

D.4

点评利用数形结合求最值的方法步骤

第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.

第二步:转化为几何问题.

第三步:解决几何问题.

第四步:回归代数问题.

第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.

变式训练3已知P是直线l:3x+4y+8=0上的动点,P A、PB是圆x2+y2-2x -2y+1=0的两条切线,A、B是切点,C是圆心,求四边形P ACB面积的最小值.

高考题型精练

1.(·福建)已知函数f (x )=???

x 2+1,x >0,

cos x ,x ≤0,则下列结论正确的是( )

A.f (x )是偶函数

B.f (x )是增函数

C.f (x )是周期函数

D.f (x )的值域为[-1,+∞)

2.若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( ) A.[-1,1) B.k =±2

C.[-1,1]

D.k =2或k ∈[-1,1)

3.已知点P (x ,y )的坐标x ,y 满足???

x -2y +1≥0,

|x |-y -1≤0,则x 2+y 2-6x +9的取值范围

是( ) A.[2,4] B.[2,16] C.[4,10]

D.[4,16]

4.已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C. 2

D.2

2

5.已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( ) A.5 B.7 C.9 D.10

6.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围是( ) A.[-3,3]

B.(-3,3)

C.[-

3

3,

3

3] D.(-

3

3,

3

3)

7.(·北京西城区模拟)设平面点集A={(x,y)|(y-x)·(y-1

x)≥0},B={(x,y)|(x-1)

2

+(y-1)2≤1},则A∩B所表示的平面图形的面积为()

A.3

4π B.

3

C.4

7π D.

π

2

8.(·山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=4-x2关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.

9.设关于θ的方程3cos θ+sin θ+a=0在区间(0,2π)内有相异的两个实根α、β.

(1)求实数a的取值范围;

(2)求α+β的值.

10.已知函数f(x)=log a x+x-b(a>0,且a≠1),当2

x0∈(n,n+1),n∈N*,求n的值.

答案精析数形结合思想

常考题型精析

例1 C [在同一平面直角坐标系中画出y1=sin πx和y2=x

4的图象,如下图:

观察图象可知y1=sin πx和y2=x

4的图象在第一象限有3个交点,根据对称性可知,

在第三象限也有3个交点,在加上原点,共7个交点,所以方程sin πx=x

4有7个

解.]

变式训练1 B [当x>0时,f(x)=ln x与x轴有一个交点,即f(x)有一个零点.

依题意,显然当x≤0时,f(x)=

x

x-1

-kx2也有一个零点,即方程

x

x-1

-kx2=0只

能有一个解.

令h(x)=

x

x-1

,g(x)=kx2,则两函数图象在x≤0时只能有一个交点.

若k>0,显然函数h(x)=

x

x-1

与g(x)=kx2在x≤0时有两个交点,即点A与原点

O(如图所示).

显然k>0不符合题意.

若k<0,显然函数h(x)=

x

x-1

与g(x)=kx2在x≤0时只有一个交点,即原点O(如

图所示).

若k =0,显然函数h (x )=x

x -1与g (x )=kx 2在x ≤0时只有一个交点,即原点O .

综上,所求实数k 的取值范围是(-∞,0].故选B.] 例2 解 ∵f (x )≤g (x ),即a +-x 2-4x ≤4

3x +1, 变形得-x 2-4x ≤4

3x +1-a , 令y 1=-x 2-4x ,① y 2=4

3x +1-a .②

①变形得(x +2)2+y 2=4(y ≥0),

即表示以(-2,0)为圆心,2为半径的圆的上半圆; ②表示斜率为4

3,纵截距为1-a 的平行直线系. 设与圆相切的直线为AT ,其方程为y =4

3x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |

5

, 由

|-8+3b |5=2,得b =6或-2

3(舍去).

∴当1-a ≥6,即a ≤-5时,f (x )≤g (x ). 变式训练2 D

解析 因为2x >0,所以由2x (x -a )<1得x -a <12x =2-

x ,在直角坐标系中,作出函数f (x )=

x -a ,g (x )=2-x 的图象,如图.

当x>0时,g(x)=2-x<1,所以如果存在x>0,使2x(x-a)<1,则有f(0)<1,即-a<1,即a>-1,所以选D.

例3 B

解析根据题意,画出示意图,如图所示,

则圆心C的坐标为(3,4),半径r=1,且|AB|=2m.

因为∠APB=90°,连接OP,易知|OP|=1

2|AB|=m.

要求m的最大值,

即求圆C上的点P到原点O的最大距离.

因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,

即m的最大值为6.

变式训练3解从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上方

或右下方无穷远处运动时,直角三角形P AC的面积S Rt

△P AC =

1

2|P A|·|AC|=

1

2|P A|越来

越大,从而S

四边形P ACB

也越来越大;当点P从左上、右下两个方向向中间运动时,S四边形P ACB变小,显然,当点P到达一个最特殊的位置,即CP垂直直线l时,S四

边形P ACB 应有唯一的最小值,此时|PC|=

|3×1+4×1+8|

32+42

=3,

从而|P A|=|PC|2-|AC|2=2 2.

所以(S

四边形P ACB )min=2×

1

2×|P A|×|AC|=2 2.

高考题型精练

1.D [函数f (x )=???

x 2+1,x >0,

cos x ,x ≤0

的图象如图所示,由图象知只有D 正确.]

2.D [令y 1=x +k ,y 2=1-x 2, 则x 2+y 2=1(y ≥0). 作出图象如图:

而y 1=x +k 中,k 是直线的纵截距,由图知:方程有一个解?直线与上述半圆只有一个公共点?k =2或-1≤k <1.]

3.B [画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16. ∵d 2

=? ??

??|3-0-1|12

+(-1)22

=2. ∴取值范围是[2,16].]

4.C [如图,设O A →=a ,O B →=b ,O C →=c ,则C A →=a -c ,C B →=b -c .由题意知C A →⊥C B →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|O C →|= 2.]

5.C [由题意可知,f (x )是以2为周期,值域为[0,1]的函数. 又f (x )=lg x ,则x ∈(0,10],画出两函数图象, 则交点个数即为解的个数. 由图象可知共9个交点.]

6.C [设直线方程为y =k (x -4), 即kx -y -4k =0,

直线l 与曲线(x -2)2+y 2=1有公共点, 圆心到直线的距离小于等于半径即d =|2k -4k

k 2+1

|≤1,

得4k 2≤k 2+1,k 2≤13.所以-33≤k ≤3

3.] 7.D [因为对于集合A ,(y -x )? ????

y -1x ≥0,

所以????

?

y -x ≥0,y -1

x

≥0或?????

y -x ≤0,y -1x

≤0,其表示的平面区域如图.

对于集合B ,(x -1)2+(y -1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π.

由题意意知A ∩B 所表示的平面图形为图中阴影部分,曲线y =1

x 与直线y =x 将圆(x -1)2+(y -1)2=1分成S 1,S 2,S 3,S 4四部分.因为圆(x -1)2+(y -1)2=1与y =1x 的图象都关于直线y =x 对称,从而S 1=S 2,S 3=S 4,而S 1+S 2+S 3+S 4=π,所以S 阴影=S 2+S 4=π

2.] 8.(210,+∞) 解析 由已知得

h (x )+4-x 2

2

=3x +b ,所以h (x )=6x +2b -4-x 2

.h (x )>g (x )恒成立,即6x +2b -

4-x 2>4-x 2,3x +b >4-x 2恒成立.

在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),可得b

10

>2,即b >210,故答案为(210,+∞).

9.解 (1)原方程可化为sin(θ+π3)=-a 2,作出函数y =sin(x +π

3)(x ∈(0,2π))的图象. 由图知,方程在(0,2π)内有相异实根α,β的充要条件 是???

??

-1<-a

2<1,-a 2≠32,

即-2<a <-3或-3<a <2.

(2)由图知:当-3<a <2,即-a 2∈? ????-1,32时,直线y =-a 2与三角函数y =sin(x

+π3)的图象交于C 、D 两点,它们中点的横坐标为7π

6,所以α+β2=7π6, 所以α+β=7π

3.

当-2<a <-3,即-a 2∈? ????

32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图

象有两交点A 、B ,

由对称性知,α+β2=π6,所以α+β=π

3,

综上所述,α+β=π

3或7π3.

10.解由于2

故f(2)=log a2+2-b<0,

又log a3∈(1,2),3-b∈(-1,0),

故f(3)=log a3+3-b>0,

因此函数必在区间(2,3)内存在零点,故n=2.

高中数学解题四大思想方法

思想方法一、函数与方程思想 姓名: 方法1 构造函数关系,利用函数性质解题 班别: 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使2 43x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

2015高考数学专题十四:数形结合思想教师版含高考试题.docx

2015 高考数学专题十四:数形结合思想 ( 教师版含 14 年高考试题

2015 高考数学专题十四:数形结合思想 (教师版含 13 、 14 年高考题) 数形结合的思想在每年的高考中都有所体现,它常用来:研究方程根的情况,讨论函数的值域 (最值 )及求变量的取值范围等.对这类内容的选择题、填空题, 数形结合特别有效.从今年的高考题来看,数形结合的重点是研究“以形助数”,但“以数定形”在今后的高考中将会有所加强,应引起重视,复习中应提高用数 形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定 图形间的位置关系. 1.应用数形结合的思想应注意以下数与形的转化 (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程 ( 多指二元方程 ) 及方程的曲线; (5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (6)对于研究函数、方程或不等式 (最值 )的问题,可通过函数的图象求解 (函数 的零点、顶点是关键点 ),做好知识的迁移与综合运用. 热点一利用数形结合思想讨论方程的根 例 1 (2014 ·山东)已知函数 f(x) =| x- 2| +1 ,g (x) =kx ,若方程 f (x) =g (x) 有两个不相等的实根,则实数k 的取值范围是 () 11 A.(0 , )B.( ,1) 22 C. (1,2) D .(2 ,+∞) 答案B 解析先作出函数 f (x )= |x -2| +1 的图象,如图所示, 当直线 g ( x )= kx 与直线 AB 平行时斜率为 1 ,当直线 g ( x )=kx 过 A 点时斜率

备战2021届高考数学二轮复习热点难点突破专题15 数形结合思想(解析版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用 【例1】若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围. 【解析】利用数形结合的方法,直接观察得出结果.

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

“函数思想”在高中数学中的教学及意义

“函数思想”在高中数学中的教学及意义 【内容摘要】函数在高中数学的全部体系中,具有极其重要的地位,拥有起承转合的功能,为了给学习更多的函数及导数、极限与积分打下稳固的根基,在高中数学学习中要重点学习函数的奇偶性、单调性还有周期性等性质。此文特别研究“函数思想”的教育与突出意义,希望得到师生的看重。 【关键词】高中数学函数思想意义 一、学习函数的重要性 关于函数的定义,在初中时会学到,但是在高中还会在初中数学的根基下继续拓展新的含义,重点是关于映射的理论,这些新概念需要学生加深对函数理论、思维、含义的掌握,必须明白之中的关联,找出函数思想的真义,才可以在遇到实际问题时灵活多变

地利用函数思想处理难题。“函数思想”体现了认识来源于实践这一哲学认识论,它来源于我们的社会活动,而函数中变量的概念也印证了人类社会在量变和质变统一中的永久性变化,所以,关于量变的一些实际问题能够用“函数思想”来解决。 德国的克莱因和英国的贝利,是函数出现在中学阶段的数学教材的关键人物。克莱因的观点是,函数概念和思想是数学教育的一部分,他说过函数是数学教育的主题,需要将所有的数学教学内容都放置在函数概念四周,综合运用。中学数学教学任务与函数思想紧密连接,在高中数学中灌输函数思想需要一线数学老师的研究,本文章就是浅议函数思想。 在函数思想讲解的初级阶段,老师起初要引出学生对函数思想的兴趣,了解函数的初步含义,调动学生的热情。教师需要分层讲解函数思想的定义,使学

生掌握函数思想的重点,全面认识函数思想的深度含义,接着,教师再概括归纳出逻辑性性强的函数定义。函数关系可以看作是通向两个变量间的路,通过特定的数学关系把两者连接在一起。 对于高中函数思想的教学来说,具有四个关键意义,有函数的知识导向功能、考试导向功能、应用导向功能和教育导向功能。知识导向功能表示的是函数思想作为高中数学的主体,在高中数学中所占份额很大,是打造高中数学全部知识的框架,因此掌握好函数有益于理解其它知识点,提升眼界,锻炼数学思维。函数的应用导向功能是指通过函数思想解决日常生活中的实际问题。函数思想的考试导向是指高考数学卷中有关函数的题型比例大。函数思想的教育导向功能是指学生创设和运用函数模型,来解决生活中的数学的实际问题,提升学生的综合素质,比如思考意识和

七年级数形结合数学专题训练

平面直角坐标系------数形结合思想的平台 一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。 2、方法:画示意图、平移。 三、典型题目 (一)基础知识训练 称点是点C,则点C所表示的数是.在x轴上,到原 2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2); (2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM. ①写出点C的坐标; ②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求: (1)A、B两点间的距离; (2)写出点C的坐标; (3)四边形OABC的面积. 4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积. 6.已知点A(-4,-1),B(2,-1) =12.求点C的坐标(写必要的(1)在y轴上找一点C,使之满足S △AB C 步骤); =12的点C有多少个?这些(2)在直角坐标系中找一点C,能满足S △AB C 点有什么特征? 7.如图,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。(2)点C与E的坐标什么关系? (3)直线CE与两坐标轴有怎样的位置关系? (4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积? 8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC; (2)将△ABC向左平移4个单位,作出平移后的△A′B′C′; (3)点B′到x、y轴的距离分别是多少? 9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b. (1)求A、B、C三点的坐标,并在坐标系中描出各点; (2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由; (3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

数形结合思想在高中数学教学中的应用

数形结合思想在高中数学教学中的应用 更新时间:2018-9-25 19:11:00 浏览量:1250 【摘要】数形结合思想是一种重要的数学思想,在高中数学教学中,必须要注重对这种思想的应用,培养学生的数形结合意识,从而提高学生的知识能力。针对这种情况,文章对数形结合思想在高中数学教学中的应用进行了相应的分析和探讨。 【关键词】数形结合思想;高中数学教学;应用 数形结合思想在高中数学教学中的应用,有利于提高学生的数学知识能力,培养学生的思维能力和解题能力,提升学生的学习效果。但是在当前高中数学教学过程中,对于数形结合思想的实际教学应用尚有不足,因此需要注重强化数形结合思想在教学中的应用,采取有效的应用措施,从而提升教学质量和效果。 一、高中数学数形结合教学的现状 (一)数形结合教学意识不足 当前在我国高中数学教学过程中,数形结合的教学思想还没有得到充分应用,对于相应思想的教学运用尚有不足。随着我国课程教学改革工作的不断推进,传统的应试教学观念已经逐渐被人们所摒弃,在高中数学教学中越来越注重对学生数学能力和思维能力的培养。但是在实际教学中,大部分教师还停留在传统的教学模式上,只重视对学生数学基础和应试能力的培养,忽视了数形结合教学思想在教学中的应用。在这种教学观念的影响下,

学生的综合素质发展受到了一定的限制,教学过程忽视了对学生的数学思维能力和数形结合意识的培养,使得教学效果受到了一定的影响。并且在教学过程中,由于教师过于注重学生的成绩,导致学生在学习中逐渐出现了高分低能的现象,不利于学生未来的发展。 (二)传统教学模式的制约 传统的教学模式是影响高中数学教学发展的一个重要因素,同时也限制了数形结合思想在高中教学中的应用。在高中数学教学中,传统的教学模式大都采用填鸭式、满堂灌的教学方式,由教师主导整个课堂教学活动,向学生进行知识的灌输。在这种教学模式下,学生只能被动地接受教师的知识灌输。数形结合教学思想分散在教学之中,没有形成一定的教学规模,导致学生的数形结合意识较弱。并且严重忽视了学生的学习主体性以及学生之间的个体差异,导致学生的学习积极性和学习兴趣逐渐下降,甚至会影响到学生的学习质量和效率。 二、数形结合思想在高中数学教学中的应用分析 在高中几何数学中,可以通过观察图形,建立“数”与“形”的对应关系,找到解决问题的方法。也可以通过几何图形将数量的关系形象地展示出来,在图形上分析数量之间的关系,进而解决问题。几何图形和数量關系是相辅相成的,数量可以在图形上展示出来,也可以用数量关系来表达图形联系。例如:在例1的教学中,直接将数量关系转化成式子不容易,但是教师

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

高中数学四大思想

高中数学四大思想 1.数形结合思想 数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 实质:将抽象的数学语言与直观图形结合起来;将抽象思维和形象思维结合起来。抽象问题具体化,复杂问题简单化。 应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 2.分类讨论思想 分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决. 原则:化整为零,各个击破。无重复、无遗漏、最简。 步骤: 1)明确讨论对象,确定对象范围; 2)确定分类标准,进行合理分类,做到不重不漏; 3)逐类讨论,获得阶段性结果; 4)归纳总结,得出结论。 常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.

3.函数与方程思想 函数思想,即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; 方程思想,即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。 (2)密切注意一元二次函数、一元二次方程、一元二次不等式等问题;掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略。 4.转化与化归思想 转化与化归思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。 转化,是将数学命题由一种形式向另一种形式的变换过程; 化归,是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化有等价转化与不等价转化。等价转化后的新问题与原问题实质是一样的;不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正。 原则:化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与数的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

广东高考理数大二轮专项训练专题 数形结合思想(含答案)

2016广东高考理数大二轮专项训练 第2讲数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域.

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台
一、知识点: 1. 平 面 直 角 坐 标 系 的 定 义 ; 2. 坐 标 平 面 内 点 的 坐 标 的 定 义 ; 3. 各 象 限 内 及 坐 标 轴 上 点 的 坐 标 的 特 征 ; 4. 一 三 ( 二 四 ) 象 限 角 平 分 线 上 的 坐 标 特 点 ; 5. 与 坐 标 轴 平 行 的 直 线 上 的 点 的 坐 标 的 特 征 ; 6. 一 维 、 二 维 坐 标 ; 7、 点 的 坐 标 与 点 到 坐 标 轴 的 距 离 之 间 的 关 系 , 8、 坐 标 平 面 内 线 段 长 度 与 线 段 两 端 点 坐 标 之 间 的 关 系 ; 9、 面 积 割 补 法 ; 10 、 绝 对 值 的 性 质 ; 11 、 图 形 面 积 公 式 ; 12 、 平 移 的 性 质 ; 二、基本思想方法: 1、 思 想 : 数 形 结 合 思 想 、 分 类 讨 论 思 想 、 方 程 思 想 、 算 术 法 。 2、 方 法 : 画 示 意 图 、 平 移 。 三、典型题目 (一)基础知识训练 1 .如 图 ,数 轴 上 A , B 两 点 表 示 的 数 分 别 是 1 和 2 ,点 A 关 于 点 B 的 对 称 点 是 点 C ,则 点 C 所 表 示 的 数 是 点距离为 5 的坐标 分 别 为 ( 4, 1) , ( 1 , -2 ) ; ( 2 )在( 1 )的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M ,在 BM 的 延 长 线 上 截 取 MC=BM . ①写出点 C 的坐标; ② 平 移 线 段 AB 使 点 A 移 动 到 点 C , 画 出 平 移 后 的 线 段 CD , 并 写 出 点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) . .在 x 轴 上 ,到 原
2.( 1 )请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A , B 两 点 的 坐 标
1

《数形结合思想》专题(整理)doc初中数学

《数形结合思想》专题(整理)doc 初中数学 知识综述 〔1〕函数几何综合咨询题是近年来各地中考试题中引人注目的新题型,这类试题将几何咨询题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合咨询题的能力,此类试题倍受命题者青睐,究其缘故,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式显现。 〔2〕解答此类咨询题必须充分注意以下咨询题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 明白得二次函数与二次方程间的关系——抛物线与x 轴的交点,横坐标是对应方程的根。 d. 熟练把握几个距离公式: 点P 〔x ,y 〕到原点的距离PO x y =+22 AB x x a =-= |||| 12? e. 具备扎实的几何推理论证能力。 一、填空题〔每空5分,共50分〕 1. 假如a ,b 两数在数轴上的对应点如下图: 那么化简:||||a b a b ++-=__________。 2. A ,B 是数轴上的两点,AB=2,点B 表示数-1,那么点A 表示的数为__________。 3. △ABC 的三边之比是752::,那么那个三角形是__________三角形。 4. 点A 在第二象限,它的横坐标与纵坐标之和是1,那么点A 的坐标是__________。〔写出符合条件的一个点即可〕 5. 如图,在梯形ABCD 中,AB ∥CD ,E 为CD 的中点,△BCE 的面积为1,那么△ACD 的面积为__________。 6. 二次函数y ax bx c =++2 的图象如下图,那么由抛物线的特点写出如下含有系数a ,

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

中学数学中四种重要思想方法

中学数学中四种重要思想方法 一、函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想. 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想. 二、数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合. 1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短. 2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂. 3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质. 4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系. 5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现. 6.我们要抓住以下几点数形结合的解题要领: (1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用; (3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的. 三、分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答. 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的; (2)运用的数学定理、公式、或运算性质、法则是分类给出的;

相关文档
最新文档