2017初二 代数方程分式方程和无理方程讲义

2017初二 代数方程分式方程和无理方程讲义
2017初二 代数方程分式方程和无理方程讲义

12.易错专题:分式与分式方程中的易错题

易错专题:分式与分式方程中的易错题◆类型一分式值为0时求值,忽略分母不为0 1.若分式x2-16 x-4 的值为零,则x的值为( ) A.0 B.4 C.±4 D.-4 2.若分式 x2-9 x2+x-12 =0,则x的值是( ) A.3或-3 B.-3 C.3 D.9 ◆类型二自主取值再求值时,忽略分母或除式不为0 3.先化简,再求值:x-2 x2-1 · x+1 x2-4x+4 + 1 x-1 ,其中x是从-1、0、1、2 中选取的一个合适的数. 4.先化简x2-4 x2-9 ÷ ? ? ? ? ? 1+ 1 x-3 ,再从不等式2x-3<7的正整数解中选出使原式 有意义的数代入求值.

◆类型三解分式方程不验根 5.解方程:1-x x-2 = 1 2-x -2.【易错9】 ◆类型四无解时忽略分式方程化为一次方程后未知数系数为0的情况【易错10】 6.★若关于x的分式方程2m+x x-3 -1= 2 x 无解,则m的值为( ) A.-1.5 B.1 C.-1.5或2 D.-0.5或-1.5 7.已知关于x的分式方程 a x+1 - 2a-x-1 x2+x =0无解,求a的值.

◆类型五已知方程根的情况求参数的取值范围时忽略分母为0时参数的值【方法18】 8.若关于x的分式方程 x x-2 =2- m 2-x 的解为正数,则满足条件的正整数m 的值为( ) A.1,2,3 B.1,2 C.1,3 D.2,3 9.已知关于x的分式方程a-x x+1 =1的解为负数,求a的取值范围.

参考答案与解析 1.D 2.B 3.解:原式=x -2(x +1)(x -1)·x +1(x -2)2+1x -1=1(x -1)(x -2) +1x -1=x -1(x -1)(x -2)=1x -2.当x =0时,原式=-12 (x 不能取-1、1、2). 4.解:原式=(x +2)(x -2)(x +3)(x -3)·x -3x -2=x +2x +3 .解不等式2x -3<7,得x<5,其正整数解为1,2,3,4.∵x+3≠0且x -2≠0且x -3≠0,∴x≠-3且x≠2 且x≠3,∴x=1或4.当x =1时,原式=34;当x =4时,原式=67 . 5.解:去分母,得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0.∴x=2不是原分式方程的解,故原分式方程无解. 6.D 解析:分式方程化简得(2m +1)x =-6.当2m +1=0,即m =-0.5时,原分式方程无解;当2m +1≠0时,x =-62m +1 ,当x =3时,原分式方程无解,即-62m +1=3,解得m =-1.5;当x =0时,原分式方程无解,即-62m +1 =0,此方程也无解.综上所述,m 为-0.5或-1.5,故选D. 7.解:去分母,得ax -2a +x +1=0,分两种情况讨论:①分式方程有增根,∴x(x+1)=0,得x =-1或0.当x =-1时,-a -2a -1+1=0,解得a =0;当x =0时,-2a +1=0,解得a =12 . ②方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a+1=0,a = -1.综上可知,a =0或12 或-1. 8.C 解析:方程两边都乘以x -2,得x =2(x -2)+m ,解得x =4-m.由题意得???x >0,x -2≠0,即???4-m >0,4-m -2≠0, 解得m <4且m≠2,∴满足条件的正整数m

分式方程和无理方程

分式方程和无理方程 一. 解分式方程和无理方程必需检验 1. 方程01312=--+x x 的解是_________. 2.方程x x -=-2的解是 __________. 3. 方程x x =+2的解是 ___________. 4.方程 1415112-=--+-x x x x 的解是 __________. 5.方程 2x-332=+x 的解是 ( ) A. 21 和3 B. 21 C. -2 1 和3 D. 3 6. 关于x 的方程x k k x -=-的根为 ( ) A. x = k B. x 1 = k+1 , x 2 = k – 1 C. x 1 = k , x 2 = k + 1 D. x = 2k 7. 方程 4 42144122-=+++-x x x x x 的解是 ( ) A. x 1 = -2 , x 2 = 4 B. x 1 = 2, x 2 = – 4 C. x = 4 D. x = - 4 8.方程3 12)3(42+-=++x x x 的根的个数是 ( ) A. 0个 B. 1个 C. 2个 D. 无数多个 二. 与增根有关的填空与选择题. 1. 解分式方程 3 31+=--x m x x 时去分母一步产生了增根,那么m 的值是 ____________. 2. 当m = _____时 , 去分母解方程2 22-=--x m x x 时会产生增根. 3. 解关于x 的方程x m m x x -=--131得 x = 1 34-m m ,当m = ____时,此根是增根. 4. 使分式方程212-=-+x k x x 产生增根的k 的值是 ( ) A. k = 0 B. k = 0, k = 2 C. k = 1 D. k = 2 5. 解关于x 的方程1 3213+-=++x x ax x 有增根x = -1,则a 的值是 ( ) A. 0或1 B. 0 C. 3 D. –2 6. 方程011522=-?-+y y y 的解是 ( ) A. 3 B. 3或-5 C. –5或 –1 D. 3 , -5 ,1 7. 方程 0345=-?-x x 的解是 ( )

分式及分式方程精典练习题分析

分式及分式方程精典练习题 一、填空题: ⒈当x 时,分式1 223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac b 25的最简公分母是 ; ⒊化简:2 42--x x = . ⒋当x 、y 满足关系式________时, )(2)(5y x x y --=-25 ⒌化简=-+-a b b b a a . ⒍分式方程3 13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3 1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务 9、已知关于x 的方程32 2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题: ⒈下列约分正确的是( ) A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= ⒊下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22 -=+-b a b a D 、x y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+-

分式方程与无理方程(非常规)

分式方程与无理方程(非常规) 例1、求方程x+2-x =4+2的实数解 例2、解方程x a -+b x -=b a -(a >b ) 例3、解方程x x 1- +x 1-1=x 例4、解方程1-x +24-y +39-z =2 1 (x+y+z ) 例5、解方程x -5+x +2=5+2 例6、求方程的整数解2x +y 2=32 例7、已知实数x 1,x 2,???x n 满足 1+2 11 x x = 1 +2 22 x x =???= 1 +2 n n x x , x 1+x 2+???x n + 11x +21x +???+n x 1=3 10 。 求x 1 例8、已知实数a ,b ,c ,d 互不相等,且a+b 1=b+c 1=c+d 1=d+a 1 =x , 试求x 的值 例9、已知关于x 的方程(a 2 -1)(1-x x )2-(2a+7)( 1 -x x )+1=0有实数根 (1)求a 的取值范围 (2)若原方程的两个实数根为x 1,x 2,且1-11x x +1-22x x =11 3 ,求a 的值 练习: 1、方程 x - x 4=x x 3的实数根的个数为 个 2、如果a+b-21-a -42-b =33-c - 2 1 c-5,则a+b+c 的值为 3、若方程p x -=x 有两个不相等的实数根,则实数p 的取值范围是 4、若实数x ,y ,z 满足x+ y 1 =4,y+z 1=1,z+x 1=37,则xyz 的值为 5、满足x y +x y-x 2003-y 2003+xy 2003 =2003的正整数对的个数是 6、已知 a 1-a =1,那么代数式a 1 +a 的值为 7、对于x 的哪些实数值,等式12-+ x x +1-2-x x =2成立? 8、解方程16+16x +x x +16= 416x

易错专题:分式与分式方程中的易错题

北师版八年级数学下册 易错专题:分式与分式方程中的易错题 ◆类型一 分式值为0时求值,忽略分母不为0 1.若分式x 2-16x -4 的值为零,则x 的值为( ) A .0 B .4 C .±4 D .-4 2.若分式x 2-9x 2+x -12 =0,则x 的值是( ) A .3或-3 B .-3 C .3 D .9 ◆类型二 自主取值再求值时,忽略分母或除式不为0 3.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1 ,其中x 是从-1、0、1、2中选取的一个合适的数. 4.先化简x 2-4x 2-9÷? ???1+1x -3,再从不等式2x -3<7的正整数解中选出使原式有意义的数代入求值. ◆类型三 解分式方程不验根 5.解方程:1-x x -2=12-x -2.【易错9】

◆类型四 无解时忽略分式方程化为一次方程后未知数系数为0的情况【易错10】 6.★若关于x 的分式方程2m +x x -3 -1=2x 无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5 7.已知关于x 的分式方程a x +1-2a -x -1x 2+x =0无解,求a 的值. ◆类型五 已知方程根的情况求参数的取值范围时忽略分母为0时参数的值【方法18】 8.若关于x 的分式方程x x -2=2-m 2-x 的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,3 9.已知关于x 的分式方程a -x x +1 =1的解为负数,求a 的取值范围.

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

数学初高中衔接之分式方程和无理方程

2.2 分式方程和无理方程 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握 (1) 不超过三个分式构成的分式方程的解法,会用” 去分母” 或” 换元法” 求方程的根,并会验根; (2) 了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用” 平方” 或” 换元法” 求根,并会验根. 一、可化为一元二次方程的分式方程 1 .去分母化分式方程为一元二次方程 【例 1 】解方程. 分析:去分母,转化为整式方程. 解:原方程可化为: 方程两边各项都乘以: 即,整理得: 解得:或. 检验:把代入,不等于 0 ,所以是原方程的解; 把代入,等于 0 ,所以是增根. 所以,原方程的解是. 说明: (1) 去分母解分式方程的步骤: ① 把各分式的分母因式分解;② 在方程两边同乘以各分式的最简公分母; ③ 去括号,把所有项都移到左边,合并同类项;④ 解一元二次方程;⑤ 验根. 26

(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式 方程可能产生的增根,就是使分式方程的分母为 0 的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为 0 .若为 0 ,即为增根;若不为 0 ,即为原方程的解. 2 .用换元法化分式方程为一元二次方程 【例 2 】解方程 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程 的结构特点,设,即得到一个关于的一元二次方程.最后在已知的 值的情况下,用去分母的方法解方程. 解:设,则原方程可化为:解得或. (1) 当时,,去分母,得; (2) 当时,. 检验:把各根分别代入原方程的分母,各分母都不为 0 . 所以,,都是原方程的解. 说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值. 【例 3 】解方程. 分析:注意观察方程特点,可以看到分式与互为倒数.因此,可 以设,即可将原方程化为一个较为简单的分式方程. 27

分式方程和无理方程

天材教育学科教师辅导讲义

分式方程 【知识梳理】 A 1.分式概念:若A、B表示两个整式,且B中含有字母,则代数式一叫做分式. B 2?分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3 .分式运算 4?分式方程的意义,会把分式方程转化为一元一次方程. 5. 了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】 1. 类比(分式类比分数)、转化(分式化为整式) 2. 检验 【例题精讲】 八“x22x 1 x 1 1.化简:22 X 1 XX 2 x 2x 2x 4 卄亠小匚 2 ?先化简,再求值:2x 2 ,其中x 2 V2 . x24 x 2 1 x 3 ?先化简(1 )2x,然后请你给x选取一个合适值,再求此时原式的值. x 1 x 1 「小 5 1 - x 2 x 2 16 4 ?解下列万程(1) 2 20 (2)2 x 3x x x x 2 x 2 x 4 则根据题意所列方程正确的是() 312 312 d312 312 , =1 _ = 1 A. x x—2& B.兀+ X 巫-匹=1 21L-竺" c.工X十% D. X—2戌X (二) 无理方程 【一】知识梳理: 1、无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程. 2、有理方程:整式方程和分式方程统称为有理方程;有理方程和无理方程统称为初等代数方程,简称代数 方程. 3、解无理方程基本思路:通过乘方,把无理方程转化为有理方程. 4、无理方程的增根:(解无理方程验根的必要性) 乘方之后所得整式方程的根,代入原无理方程检验得不是原无理方程的根.

分式及分式方程综合练习题

分式及分式方程综合练习题 一、填空题: ⒈当x 时,分式1 223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac b 25的最简公分母是 ; ⒊化简:2 42--x x = . ⒋当x 、y 满足关系式________时, )(2)(5y x x y --=-25 ⒌化简=-+-a b b b a a . ⒍分式方程3 13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3 1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务 9、已知关于x 的方程32 2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题: ⒈下列约分正确的是( ) A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= ⒊下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22 -=+-b a b a D 、x y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+-

初二 代数方程分式方程和无理方程讲义

代数方程2---分式方程 无理方程 板块一、分式方程 1、用“去分母”的方法解分式方程 例题1. 解分式方程 12244212=-+-++x x x x 例题2、解分式方程 2123x x x ++- + 2226x x x -+-=2632 x x x --+ 限时训练: 1、已知方程(1)11=+x x (2)6323=+x x (3)11182=+x (4)1=x x 中, 分式方程的个数是( ) (A ) 1 (B ) 2 (c )3 (D )4 2、分式226232 x x x x +---的值等于零,则x 的值应是________________ 3、分式方程1 214--=+x x x 的根是______________ 4、分式方程14 1212=-++x x 的最简公分母是________________ 5、分式方程21 32=+-x x 去分母后化为整式方程是___________________ 压轴题: 1、已知方程 24k 2-x 12x 2x -=-+有增根,求k 的值。 2、已知关于x 的分式方程 () 02222=-++-+-x x k x x x x x 只有一个解,求k 的值。

2、用“换元法”解分式方程: 例1、解分式方程 012 1863222=+-+-+-x x x x 例2:解下列分式方程: 2 122112122=+++-+x x x x 限时训练: 1、 分式方程0101712=+?? ? ??--??? ??-x x x x ,若设y x x =??? ??-1,则原方程可化为关于y 的整式方程为___________________________ 2、 在分式方程41 331122=+++++x x x x 中,可设____________=y ,则原方程化为关于y 的整式方程为__________________________ 3、 解分式方程12 222422=+-+ -x x x x ,宜用_______法来解,并且设____________=y 较合适。 4、 解分式方程组???????=++=-+871033y y x y y x 时,可设m=______________,n=_______________, 原方程组可化为整式方程组_________________ 压轴题: 1、已知:622122=+++ x x x x ,求x x 1+的值 2、解方程:22 356635620x x x x -+- +=

分式和分式方程 专题复习讲义设计(含答案)

分式和分式方程 专题复习讲义 中考考点知识梳理: 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B 就可以表示成 B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A 叫做分式的分子,B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 (1) ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? (2));()(为整数n b a b a n n n = (3) ;c b a c b c a ±=± (4) bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程

的根。 3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 考点典例 一、分式的值 【例1】当x= 时,分式 x-2 2x+5的值为0. 【答案】2. 【解析】 试题分析:∵x-2 2x+5 的值为0,∴x-2=0且2x+5≠0,解得x=2. 考点:分式. 【点睛】使分式的值为零必须满足分子等于0分母不等于零这两个条件. 【举一反三】 1.使分式 1 1 x- 有意义的x的取值范围是() A.x≠1 B.x≠﹣1 C.x<1 D.x>1 【答案】A. 考点:分式有意义的条件. 2.若分式 21 1 x x - + 的值为0,则x= 【答案】1 【解析】 试题分析:根据题意可知这是分式方程, 21 1 x x - + =0,然后根据分式方程的解法分解因式后约分可得x-1=0,

最新微分方程与差分方程

微分方程与差分方程

第八章微分方程与差分方程 一、作业题 1.?Skip Record If...? ?Skip Record If...? ?Skip Record If...?,?Skip Record If...?为任意常数 (2)?Skip Record If...? 设?Skip Record If...?,?Skip Record If...?,?Skip Record If...? (代入上式) ?Skip Record If...? ?Skip Record If...?,?Skip Record If...? ?Skip Record If...?,?Skip Record If...? (3)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? (4)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 满足?Skip Record If...?的特解为?Skip Record If...? (5)设?Skip Record If...?代入(1)式中, ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?满足初始条件的特解为?Skip Record If...? (6)特征方程为?Skip Record If...?,解得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢70

(完整版)初中数学知识点总结分式方程和无理方程

初中数学知识点总结分式方程和无理方程 知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。 2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。 2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解; ④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主; (2)分式方程的解法,是段考、中考考查的重点。 误区提醒

八年级数学上《分式及分式方程》期末复习专题试卷及答案

2016-2017学年度第一学期八年级数学 期末复习专题分式及分式方程 姓名:_______________班级:_______________得分:_______________ 一选择题: 1.在式子、、、、、中,分式的个数有() A.2个 B.3个 C.4个 D.5个 2.用科学记数法表示0.000 000 000 000 002 56为() A.0.256×10﹣14 B.2.56×10﹣15 C.0.256×10﹣15 D.256×10﹣17 3.如果分式中的与都扩大为原来的2倍,那么分式的值() A.扩大为原来的2倍 B.缩小为原来的一半 C.不变 D.以上三种情况都有可能 4.下列各式变形正确的是() A. B. C. D. 5.下列等式成立的是() A.= B.= C.= D.=﹣ 6.下列关于分式的判断,正确的是() A.当时,的值为零 B.无论为何值,的值总为正数 C.无论为何值,不可能得整数值 D.当时,有意义 7.x克盐溶解在克水中,取这种盐水m克,其中含盐( )克 A. B. C. D. 8.下列结论错误的是() (1);(2);(3); (4);(5);(6) (A)1个(B)2个(C)3个(D)4个

9.用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是() A. B. C. D. 10.若分式的值为0,则b的值是() A.1 B.﹣1 C.±1 D.2 11.已知x2-4xy+4y2=0,则分式的值为() A. B. C. D. 12.在正数范围内定义一种运算☆,其规则为☆=,根据这个规则☆的解为() A. B. C.或1 D.或 13.解关于x的方程(m2-1)x=m2-m-2(m2≠1) 的解应表示为() (A)x=(B)x=(C)x=(D)以上答案都不对 14.若,则、、的大小关系是( ) A. B. C. D. 15.若实数满足1

初中数学专题复习分式方程与无理方程(含答案)

第15课分式方程与无理方程 目的:复习分式方程和无理方程的概念和解法. 中考基础知识 1.分式方程:分母含有_______的方程. 2.分式方程的解法: (1)分式方程转化为______方程来解; (2)分式方程转化为______方程为解. 3 (1)无理方程转化为_________方程来解; (2)无理方程转化为_________方程来解. 4x的取值范围扩大了,可能会出现_____根,因此在解无理方程和分式方程时必须______根,解分式方程是代入________去分母验根,解无理方程是代入______验根. 备考例题指导 例1.解方程31 1 x x - + - 2 1 x x - - =1+ 2 2 1 x- . 解:分解分母:31 1 x x - + - 2 1 x x - - =1+ 2 (1)(1) x x -+ , 方程两边同乘以(x+1)(x-1)(这一步是关键) 得(3x-1)(x-1)+(2-x)(x+1)=(x+1)(x-1)+2,化简得x2-3x+2=0, (x-2)(x-1)=0, x1=2,x2=1. 检验:把x1=2,x2=1分别代入(x+1)(x-1) 当x1=2时,它不等于0,当x2=1时,它等于0 ∴得x=1是原方程的增根,x=2是原方程的根. ∴原方程的解是x=2 (一定要验根) 例2.解方程 2 2(1) 1 x x + + + 2 6(1) 1 x x + + =7. 分析:直接去分母难度较大,宜用换元法. 解:设 21 1 x x + + =y,则原方程转化为方程:

2y+6 y =7,去分母得2y2-7y+6=0, 解之得y1=3 2 ,y2=2. 当y=3 2 时,有 21 1 x x + + = 3 2 ,解得x1= 3 4 + ,x2= 3 4 - . 当y=2时,有 21 1 x x + + =2,解得x3x4=1 经检验:x1,x2,x3x4 例3-2x+1=0. =2x-1, (想一想为什么要这样移项) 平方,得4x+1=(2x-1)2, 解之得x1=0,x2=2. 把x1,x2代入原方程检验得,x1是原方程的增根,x2是原方程的根.∴原方程的解为x=2. 例4.解方程3x2-6x-+4=0. 分析:采用例3方法会出现难解的高次方程,因此可用换元法. 解:变形,3x2-8=0. =y,则原方程变为:3y2-2y-8=0, 解之得y1=2,y2=-4 3 (不合算术根定义,舍去) =2,解之得x1=0,x2=2. 经检验:x1,x2都是原方程的解; ∴原方程的根为:x1=0,x2=2. 注:这个方程也可用因式分解法降次求解:

八年级分式与分式方程培优专题

4 2 《分式与分式方程》培优专题 1下列各式中,无论 X 取何值,分式都有意义的是( ) 八 1 x 小 3x +1 A . B . C . D 2 2x ::1 2 x -,-1 x x a 2.分式 ------- 中,当x 二_a 时,下列结论正确的是( ) 3x _1 (1) C ?右a 工 时,分式的值为零; D 3 2 3.当x 时,分式 x 一1的值为零. 2 x 亠 x —2 5.商店通常用以下方法来确定两种糖混合而成的什锦糖的价格:设 A 种糖的单价为a 元/千克,B 种糖的单价为b 元/千克,则m 千克A 种糖和n 千克B 种糖混合而成的什锦糖的单价为 ma ' nb 元 m n /千克(平均价)。现有甲乙两种什锦糖,均由 A 、B 两种糖混合而成;其中甲种什锦糖由 10千克A 种糖和10千克B 种糖混合而成,乙种什锦糖由 100元A 种糖和100元B 种糖混合而成,你认为哪 一种什锦糖的单价较高?为什么? A .分式的值为零; B .分式无意义 2x 2 ■ 1 1 若a 工时,分式的值为零 3 4.计算:(1)已知 1 x -3 5 x +3 xy _5y ,求—— x _ 2xy _y 的值. x y z xy yz zx 右 — ,求 2 2 2 2 3 4 x + y -z (2) 的值.

4 2 _ 2 6.已知a —6a 9与|b -1|互为相反数,求 a - b 2 2 ab —a b 2 b ■ 2ab i_ ■-的值。 a

7.化简下列各式 (1) x _1 1 1 1 + -------------------- + x(x 1) -------------( x ■ 1)( x 2) ---------- (x ■ 2)( x 3)+ IH + (x - 9)( x - 1 0) x 2X +1x - 6x 2x - 5 8 解方程. Q侖邳千耳 ——一19.解方程— x - 1 x - 1x +2x 7x - 3x - 6 2 m 10.如果关于x的方程 1 一 x — 3 x — 有增根, 3 则m的值等于( ) A. -3 B. -2 C. -1 D. 3 2 11.m为何值时,关于x的方程m x—会产生增根? x —2x - 4 x2 12.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和水流速度。

分式与分式方程中的易错题专题

易错专题:分式与分式方程中的易错题 ◆类型一 分式值为0时求值,忽略分母不为0 1.若分式x 2-16x -4 的值为零,则x 的值为( ) A .0 B .4 C .±4 D .-4 2.若分式x 2-9x 2+x -12 =0,则x 的值是( ) A .3或-3 B .-3 C .3 D .9 ◆类型二 自主取值再求值时,忽略分母或除式不为0 3.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1 ,其中x 是从-1、0、1、2中选取的一个合适的数. 4.先化简x 2-4x 2-9÷? ???1+1x -3,再从不等式2x -3<7的正整数解中选出使原式有意义的数代入求值. ◆类型三 解分式方程不验根 5.解方程:1-x x -2=12-x -2.【易错9】 ◆类型四 无解时忽略分式方程化为一次方程后未知数系数为0的情况【易错10】

6.★若关于x 的分式方程2m +x x -3 -1=2x 无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5 7.已知关于x 的分式方程a x +1-2a -x -1x 2+x =0无解,求a 的值. ◆类型五 已知方程根的情况求参数的取值范围时忽略分母为0时参数的值【方法18】 8.若关于x 的分式方程x x -2=2-m 2-x 的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,3 9.已知关于x 的分式方程a -x x +1 =1的解为负数,求a 的取值范围. 参考答案与解析

分式与分式方程专题复习

分式与分式方程 (一)分式 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 知识点二:与分式有关的条件 分式有意义:分母不为0(0B ≠) 分式值为0:分子为0且分母不为0(? ? ?≠=00B A ) 分式值为1:分子分母值相等(A=B ) 分式值为-1:分子分母值互为相反数(A+B=0) 知识点三:分式的基本性质—分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 知识点四:分式的约分—根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 知识点五:分式的通分—分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 知识点六:分式的四则运算与分式的乘方 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。 1.同分母加减法则: ()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.分式的乘方:n n n b a b a =?? ? ?? 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn 7.负指数幂: a -p = 1p a a 0=1

第10章 微分方程与差分方程

第十章 微分方程与差分方程 A 级自测题 一、选择题(每小题5分,共20分) 1.下列方程中为可分离变量方程的是( ). A .xy y e '=. B .x xy y e '+=. C .22()()0x xy dx y x y dy +++=. D .0yy y x '+-=. 2.下列方程中为可降阶的方程是( ). A .1y xy y '''++=. B .2()5yy y '''+=. C .x y xe y ''=+. D .2(1)(1)x y x y ''-=+. 3.若连续函数()f x 满足关系式30()()ln 33 x t f x f dt =+?,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +. 4.函数28x x y A =?+是差分方程( )的通解. A .21320x x x y y y ++-+=. B .12320x x x y y y ---+=. C .128x x y y +-=-. D .128x x y y +-=. 二、填空题(每小题5分,共20分) 1.微分方程2sin d d ρρθθ +=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________. 3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________. 4.差分方程12x x y y +-=的通解为 . 三、求下列微分方程的通解(每小题5分,共40分) 1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;

第七讲 分式方程和无理方程的解法

分式方程和无理方程的解法 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 分析:去分母,转化为整式方程. 解:原方程可化为: 142 12(2)(2)2 x x x x x +-=++-- 方程两边各项都乘以2 4x -: 2(2)42(2)4x x x x -+-+=- 即2 364x x -=-, 整理得:2 320x x -+= 解得:1x =或2x =. 检验:把1x =代入2 4x -,不等于0,所以1x =是原方程的解; 把2x =代入24x -,等于0,所以2x =是增根. 所以,原方程的解是1x =. 说明: (1) 去分母解分式方程的步骤: ①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根. (2) 验根的基本方法是代入原方程实行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.所以我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程 【例2】解方程 22 23()4011 x x x x --=-- 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点, 设 2 1x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程 2 1 x y x =-. 解:设 2 1 x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.

相关文档
最新文档