武器装备体系概念模型

武器装备体系概念模型
武器装备体系概念模型

Powerdesigner数据库建模--概念模型--ER图

目标: 本文主要介绍PowerDesigner中概念数据模型CDM的基本概念。 一、概念数据模型概述 数据模型是现实世界中数据特征的抽象。数据模型应该满足三个方面的要求:1)能够比较真实地模拟现实世界 2)容易为人所理解 3)便于计算机实现 概念数据模型也称信息模型,它以实体-联系(Entity-RelationShip,简称E-R)理论为基础,并对这一理论进行了扩充。它从用户的观点出发对信息进行建模,主要用于数据库的概念级设计。 通常人们先将现实世界抽象为概念世界,然后再将概念世界转为机器世界。换句话说,就是先将现实世界中的客观对象抽象为实体(Entity)和联系(Relationship),它并不依赖于具体的计算机系统或某个DBMS系统,这种模型就是我们所说的CDM;然后再将CDM转换为计算机上某个DBMS所支持的数据模型,这样的模型就是物理数据模型,即PDM。 CDM是一组严格定义的模型元素的集合,这些模型元素精确地描述了系统的静态特性、动态特性以及完整性约束条件等,其中包括了数据结构、数据操作和完整性约束三部分。 1)数据结构表达为实体和属性; 2)数据操作表达为实体中的记录的插入、删除、修改、查询等操作; 3)完整性约束表达为数据的自身完整性约束(如数据类型、检查、规则等)和数据间的参照完整性约束(如联系、继承联系等); 二、实体、属性及标识符的定义 实体(Entity),也称为实例,对应现实世界中可区别于其他对象的“事件”或“事物”。例如,学校中的每个学生,医院中的每个手术。 每个实体都有用来描述实体特征的一组性质,称之为属性,一个实体由若干个属性来描述。如学生实体可由学号、姓名、性别、出生年月、所在系别、入学年份等属性组成。 实体集(Entity Set)是具体相同类型及相同性质实体的集合。例如学校所有学生的集合可定义为“学生”实体集,“学生”实体集中的每个实体均具有学号、姓名、性别、出生年月、所在系别、入学年份等性质。 实体类型(Entity Type)是实体集中每个实体所具有的共同性质的集合,例如“患者”实体类型为:患者{门诊号,姓名,性别,年龄,身份证号.............}。实体是实体类型的一个实例,在含义明确的情况下,实体、实体类型通常互换使用。

储层地质模型

1、什么是储层地质模型?为什么要建立三维储层地质模型? 答:储层地质模型是指能定量表示地下地质特征和各种储层(油藏)三维空间分布的数据体,一个完整的储层地质模型应包括构造模型、沉积模型、储层模型和流体模型等。 三维储层地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维地质模型,其核心是对井间储层进行三维定量化及可视化的预测,与传统的二维储层研究相比具有以下的优势: 1)更客观地描述并展现储层各种属性的空间分布,克服了用二维图件描述三维储层的局限性。三维储层建模可以从三维空间上定量的表征储层的非均质性,从而有利于油藏工程师进行合理的油藏评价及开发管理。 2)更精确地计算油气储量。在常规的储量计算时,储层参数(含油面积、有层厚度、孔隙度、含有饱和度等)均用平均值表示,这显然忽视了储层非均质性的影响。应用三维储层模型计算储量时,储量的基本计算单元是三维空间上的网格(分辨率比二维高得多),因为每一个网格均附有储集体(相)类型的孔、渗、饱等参数。因此,通过三维空间运算,可计算出实际的含油储集体(砂体)体积、孔隙体积及油气体积,其计算精度比二维储量计算高得多。 3)有利于三维油藏数值模拟。三维油藏数值模拟要求有一个把油藏各项特征参数在三维空间上定量表征出来的地质模型。粗化的三维储层地质模型可以直接作为油藏数值模拟的输入器,而油藏数值模拟成败的关键在很大程度上取决于三维储层地质模型的准确性。 2、如何理解储层概念模型、静态模型和预测模型?它们有何异同? 答:储层概念模型是指把所描述油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。只追求油藏(储层)总的地质特征和关键性地质特征的描述,基本符合实际,并不追求所有局部的客观描述。 静态模型也称实体模型,是把一个具体研究对象(一个油田、一个开发区块或一套层系)的储层,依据资料控制点实测的数据将其储层表征在三维空间的变化和分布如实的描述出来而建立的地质模型,并不追求控制点间的预测精度。 预测模型不仅忠实于资料控制点的实测数据,而且追求控制点间的内插与外推值具有相当的精度,并遵循地质和统计规律,即对无资料点有一定得预测能力。 概念模型、静态模型和预测模型的区别: 1)研究阶段的区别。概念模型应用于油田的勘探与开发早期;静态模型应用于油田开发中期,一般是开发井网完成后进行;预测模型应用于油田开发后期。 2)研究方法的区别。概念模型一般以储层地质学(沉积学)和写实的描述方法为基本手段,尽可能直接利用岩心资料来建立概念模型,避免依赖测井解释等间接资料;静态模型的研究方法主要是在概念模型的基础上,充分应用开发井的各种资料,采用地质统计学方法来描述储层在二维或三维空间的实际特征;预测模型主要是采用随机建模技术,即将等概率的随机抽样方法(蒙特卡洛)与确定性的插值方法(克里金)相结合,所形成的地质统计学

概念数据模型设计讲解

、新建概念数据模型 1)选择File-->New,弹出如图所示对话框,选择CDM模型(即概念数据模型)建立模型。 2)完成概念数据模型的创建。以下图示,对当前的工作空间进行简单介绍。(以后再更详细说明).

3)选择新增的CDM模型,右击,在弹出的菜单中选择“Properties ”属性项,弹出如图所示对话框。在“General ”标签里可以输入所建模型的名称、代码、描述、创建者、版本以及默认的图表等等信息。在 “Notes ”标签里可以输入相关描述及说明信息。当然再有更多的标签,可以点击 按钮,这里就不再进行详细解释。?牯?尾 二、创建新实体 1 )在CDM的图形窗口中,单击工具选项版上的Entity工具,再单击图形窗口的空白处,在单击的位置 就出现一个实体符号。点击Pointer工具或右击鼠标,释放Entitiy 工具。如图所示

2)双击刚创建的实体符号,打开下列图标窗口,在此窗口“General ”标签中可以输入实体的名称、代码、描述等信 、添加实体属性 1 )在上述窗口的“ Attribute ”选项标签上可以添加属性,如下图所示

迴扌 ftitity Propertr 已s - Entity 2 (Entity ?) 注意: 数据项中的“添加属性”和“重用已有数据项”这两项功能与模型中 Data Item 的Unique code 和Allow reuse 选项有关。 P 列表示该属性是否为主标识符 ;D 列表示该属性是否在图形窗口中显示 ;M 列表示该属性是否为强制的, 即该列是否为空值。 如果一个实体属性为强制的,那么, 这个属性在每条记录中都必须被赋值,不能为空。 2)在上图所示窗口中,点击插入属性按钮,弹岀属性对话框,如下图所示 General Attributes | Idenhfiers ] Notes 1 Rules 表示是否为主标识符 ami \ Code Data 7ype Donwiri M 建立标识符 b 尸单于…』 二、二如馨;二 __ 1 = …— 一追力 q“属性 描入属性 衣示该属性为融' 制不能为空值广 T 厂厂 厂厂*r r'匚厂 r 厂广亡看 rr 厂厂F 广厂厂厂厂厂「厂广厂厂 □K | 匚 anew A.PF.M | Help 袤示是否在图形窗口中 II H'+'lll-oRIIH- ?laii' + 'IIB'-'HII' 一上丄 J-:'- ■ :

试述数据模型的概念

试述数据模型的概念,数据模型的作用和数据模型的三个要素: 答案: 模型是对现实世界的抽象。在数据库技术中,表示实体类型及实体类型间联系的模型称为“数据模型”。 数据模型是数据库管理的教学形式框架,是用来描述一组数据的概念和定义,包括三个方面: 1、概念数据模型(Conceptual Data Model):这是面向数据库用户的实现世界的数据模型,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的DBMS 无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。 2、逻辑数据模型(Logixal Data Model):这是用户从数据库所看到的数据模型,是具体的DBMS所支持的数据模型,如网状数据模型、层次数据模型等等。此模型既要面向拥护,又要面向系统。 3、物理数据模型(Physical Data Model):这是描述数据在储存介质上的组织结构的数据模型,它不但与具体的DBMS有关,而且还与操作系统和硬件有关。每一种逻辑数据模型在实现时都有起对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作又系统自动完成,而设计者只设计索引、聚集等特殊结构。 数据模型的三要素: 一般而言,数据模型是严格定义的一组概念的集合,这些概念精确地描述了系统的静态特征(数据结构)、动态特征(数据操作)和完整性约束条件,这就是数据模型的三要素。 1。数据结构 数据结构是所研究的对象类型的集合。这些对象是数据库的组成成分,数据结构指对象和对象间联系的表达和实现,是对系统静态特征的描述,包括两个方面: (1)数据本身:类型、内容、性质。例如关系模型中的域、属性、关系等。 (2)数据之间的联系:数据之间是如何相互关联的,例如关系模型中的主码、外码联系等。 2 。数据操作 对数据库中对象的实例允许执行的操作集合,主要指检索和更新(插入、删除、修改)两类操作。数据模型必须定义这些操作的确切含义、操作符号、操作规则(如优先级)以及实现操作的语言。数据操作是对系统动态特性的描述。 3 。数据完整性约束 数据完整性约束是一组完整性规则的集合,规定数据库状态及状态变化所应满足的条件,以保证数据的正确性、有效性和相容性。

2.污染场地水文地质调查

第二章 地下水污染调查与监测 第二章 地下水污染调查与监测 (1) 第一节污染场地水文地质调查 (1) 一、初步场地勘察及初始评估 (2) 二、初步野外调查 (4) 三、详细场地调查 (4) 四、野外试验与室内实验 (6) 五、调查工作的总结及报告的编写 (11) 第二节 地下水污染调查与监测 (12) 一、污染源与污染途径的调查 (12) 二、调查范围与水化学监测网设计 (13) 三、地下水样采集与保存 (14) 四、现场分析与监测 (15) 五、地下水化学数据分析 (16) 第一节污染场地水文地质调查 污染场地水文地质调查是地下水污染研究的基础和出发点。其主要目的是: (1)探测与识别地下污染物; (2)测定污染物的浓度; (3)查明污染物在地下水系统中的迁移特性; (4)确定地下水的流向和速度,查明主径流向及控制污染物运移的因素,定量描述控制地下水流动和污染物运移的水文地质参数。 为实现以上目的,必须确定一个严格的、针对特定场地的调查程序。 表4-1污染场地水文地质调查的主要步骤 步骤工作内容 已有资料的搜集整理 步骤1初步场地踏勘和初始评估 场地踏勘 确立初步的水文地质概念模型 布置初始监测孔 步骤2初步野外调查 大体厘定含水层 开展其它野外工作 扩充监测孔网及沉积物采样 步骤3详细现场调查和试验 获取水文地质参数,评估污染物运移途径 步骤4编写报告 绘制平面及剖面流网 列出重要物理参数值

总结(报告)及对以后的监测工作进行安排 一、初步场地勘察及初始评估 这一阶段包括已有资料的搜集整理和场地踏勘。该阶段的目的是: (1)描述场地的基本地质特征及对已搜集整理资料信息进行验证; (2)搜集当地的水文资料,包括降雨和地表排水; (3)搜集有关污染源和污染特性的资料; (4)确立或改进地下水系统概念模型; (5)评价与健康和安全有关的潜在问题。 (一)搜集前人资料 1 污染现场历史资料 在第一阶段调查中最关键的资料涉及有以下几个方面: 1).已知污染物或可能存在的污染物的性质 2).污染物的来源或可能来源 3).污染程度 4).健康与安全 2 地质与水文地质资料 前人的现场调查报告可以提供有关地形、岩土体和填埋材料的厚度及分布、含水层的分布、基岩高程、岩性、厚度、区域地质条件、构造特征(例如基岩中的断层)等方面的资料。 3 水文资料 调查内容包括地表水的位置、流动情况、水质、与地下水的联系方式等。 如果可能的话,已有资料还应包括场地水文地质平面图、剖面图及初步的概念模型。 (二)初步现场踏勘 在这一阶段,应完成以下重要的踏勘任务:

数学模型在地质学中的应用

数学模型在地质学中的应用 一、绪论 数学模型是一门新兴学科,是数学理论与实际问题相结合的一门科学.数学模型就是通过研究观察到的现象及实践经验,将其归结成一套反映其内部因素数量关系的数学公式、逻辑准则和具体算法,用以描述和研究客观现象的运动规律.它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、理论和方法进行深入的分析和研究,从定性或定量的角度描述实际问题,并为解决现实问题提供精确的数据和可靠的指导.数学建模是指建立数学模型,是运用数学的语言和方法,通过抽象、简化等方法来建立能够近似描述和解决实际问题的一种强有力的数学手段. 数学模型的应用相当广泛,在分析与设计、预报与决策、控制与优化、规划与管理等方面都发挥了巨大的作用,取得了良好的社会效益和经济效益,为世人所瞩目,成为知识经济的推动力.同样,在广泛的地质学领域中,数学建模也处处存在,数学建模的存在,将地质学的发展推向了一个新的浪潮,可能有希望将地质学从一门定性科学转换成为一门定量科学[1].如今,在地质学的众多分支学科中,数学模型都得到了极其广泛的应用. 本文主要运用数学模型来分析地质学中的一些实际问题,并把两者有机的结合起来,拓宽数学模型的发展领域,增加其对实践的指导意义,并为地质学的研究与发展提供新的方法. 二、数学模型在矿产资源评价中的应用 在矿产资源评价中,地质模型和数学模型的结合点是按有效的成矿理论建立区域成矿模式,然后用数学模型逼近,确定成矿地质条件与矿产资源量之间的关系,建立定量评价模型.简言之,矿产资源定量评价模型是用数学语言阐明地质条件与矿产资源量之

间的关系[2].矿产资源评价中的数学模型是实现定量评价的工具,在矿产资源评价的实际工作中使用的数学模型可以是概率统计模型,也可以是确定性模型.1973年,D.P.Harris确定了矿产资源量(R)与地质条件(g1、g2、……、g n)之间的数学关系: R= f(g1、g2、……、g n)+ e + μ(1)式中,f为g1、g2、……、g n的函数,在一般情况下指评价使用的数学模型;e为函数f(g1、g2、……、g n)的估计误差;μ与g1、g2、……、g n以外的地质变量有关.公式(1)表明了地质模型转化为数学模型的基本原理,同时也表明了可以用数学模型来沟通矿产资源量与地质环境.从中也可以看到采用合理的数学模型描述矿产资源与地质条件之间关系是矿产资源评价实践的关键. 随着数学模型的引进,矿产资源的评价进入了新的时代,用数学模型评价矿产资源,用经济指标圈定矿体成为主流.对于用经济指标圈定矿体,一种指标代替多种指标,不仅方便快捷,而且是经济合理的.下面介绍评价矿产资源的几个常用模型.矿产资源经济指数计算公式: σt=[(P0+△P t)/P0]/[(Q0+△Q t)/Q0]=αt/βt (2)式中,σt为矿产资源经济指数;P0、αt分别为基准年和t年矿产资源工业储量潜在价值及指数;Q0、βt分别为基准年和t年沿海地区工业总产值及指数;△P t、△Q t分别为矿产潜在价值增量与工业总产值增量. 矿山资产评估模型(此处为期权定价的Black-Sholes模型): C=e-r T [FN(d1)-XN(d2)] (3)其中d1=[ln(F/X)- (σ2/2)T]/ σ[(T)1/2],d2= d1-σ[(T)1/2]. 式中,C为欧式看涨期权的价格;X为执行价格;T为一年表示的权利期间的长短;

水文地质学知识点整理

地下水的概念P1:地下水是赋存于地表以下岩石(土)空隙中各种形态的水的总称。既有液态的水液,也有气态的水汽,也包括固态的水冰,还有介于它们之间其他形态的水。 地下水的功能属性P2:地下水的资源属性,地下水是生态因子,地下水是环境(灾害)因子,地下水是一种重要的地质营力,地下水是地球深部的信息载体。 水文地质学的研究方法P4:野外调查,野外试验,室内试验,遥感,地球物理勘察,信息技术的应用。 第一章水循环与地下水赋存 1、了解地球内部圈层构P7 地球圈层构造划分表 地球外部圈层:由五个大致成层分布的自然子系统组成,按照性质可以分成3类。即3个无机子系统———大气圈、水圈、岩石圈。1个类有机子系统———土壤圈。1个有机子系统———生物圈。 2、地球水圈可以划分为地质水圈和水文水圈。P9 3、地球上的水循环P10:地球各个圈层中的水相互联系、相互转化的过程统称为大气水的水循环,又叫做自然界的水循环。按其循环途径的长短、循环速度的快慢以及涉及层圈的范围,可分为地质循环和水文循环两类。 4、岩石(土)介质中水的存在形式P17页

5、赋存介质的水理性质P19-20:指与水的储容和运移有关的赋存介质的性质,主要包括空隙的大小、多少、连通程度及其分布的均匀程度,这些性质的差异,会使其储容、滞留、释放以及透过水的能力不同。表征介质水理性质的指标有容水度,给水度,持水度。 容水度:指介质能够容纳一定水量的性质。 给水性:指饱水介质在重力作用下,能够自由给出一定水量的性质持水性:指重力释水后,介质能够保持一定水量的性能。 二、地下水的基本类型及其特征 1、包气带和饱水带:P21 2、越流P22:把两个含水层透过该弱透水层发生垂直水量交换的现象称为地下水的越流。 按照地下水的埋藏条件,可以把地下水分为潜水、承压水、与上层滞水。其中潜水和承压水在一定条件下是可以相互转化的。P23 3、潜水的概念P26:潜水是地表一下埋藏在饱水带中第一个稳定隔水层智商的具有自由水面的重力水。

概念数据模型,逻辑数据模型,物理数据模型 (原创)

概念数据模型设计与逻辑数据模型设计、物理数据模型设计是数据库及数据仓库模型设计的三个主要步骤。 在数据仓库领域有一个概念叫conceptual data model,中文一般翻译为“概念数据模型”。 概念数据模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。 概念数据模型的内容包括重要的实体及实体之间的关系。在概念数据模型中不包括实体的属性,也不用定义实体的主键。这是概念数据模型和逻辑数据模型的主要区别。 概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的最高层次的关系。 在有些数据模型的设计过程中,概念数据模型是和逻辑数据模型合在一起进行设计的。 在数据仓库领域有一个概念叫logical data model,中文一般翻译为“逻辑数据模型”。 逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。 逻辑数据模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理。 逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。 逻辑数据建模不仅会影响数据库设计的方向,还间接影响最终数据库的性能和管理。如果在实现逻辑数据模型时投入得足够多,那么在物理数据模型设计时就可以有许多可供选择的方法。 在数据仓库领域有一个概念叫physical data model,中文一般翻译为“物理数据模型”。 物理数据模型是在逻辑数据模型的基础上,考虑各种具体的技术实现因素,进行数据库体系结构设计,真正实现数据在数据库中的存放。 物理数据模型的内容包括确定所有的表和列,定义外键用于确定表之间的关系,基于用户的需求可能进行发范式化等内容。在物理实现上的考虑,可能会导致物理数据模型和逻辑数据模型有较大的不同。

常见主流数据库的分类与详细比较

常见主流数据库分类 1、IBM 的DB2 DB2是IBM著名的关系型数据库产品,DB2系统在企业级的应用中十分广泛。截止2003年,全球财富500强(Fortune 500)中有415家使用DB2,全球财富100强(Fortune100)中有96家使用DB2,用户遍布各个行业。2004年IBM的DB2就获得相关专利239项,而Oracle 仅为99项。DB2目前支持从PC到UNIX,从中小型机到大型机,从IBM到非IBM(HP及SUN UNIX 系统等)的各种操作平台。 IBM绝对是数据库行业的巨人。1968年IBM在IBM 360计算机上研制成功了IMS这个业界第一个层次型数据库管理系统,也是层次型数据库中最为著名和最为典型的。1970年,IBM E.F.Codd发表了业界第一篇关于关系数据库理论的论文“A Relational Model of Data for Large Shared DataBanks”,首次提出了关系模型的概念。1974年,IBM Don Chamberlin和Ray Boyce通过System R项目的实践,发表了论文“SEQUEL:A Structured English Query Language”,我们现在熟知SQL就是基于它发展起来的。IBM 在1983年发布了DATABASE 2(DB2)for MVS(内部代号为“Eagle”),这就是著名的DB2数据库。2001年IBM以10亿美金收购了Informix的数据库业务,这次收购扩大了IBM分布式数据库业务。2006 DB2 9作为第三代数据库的革命性产品正式在全球发布。 作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R系统的原型,1980年开始提供集成的数据库服务器——System/38,随后是SQL/DSforVSE 和VM,其初始版本与SystemR研究原型密切相关。 DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。 2、Oracle Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。 Oracle公司是目前全球最大的数据库软件公司,也是近年业务增长极为迅速的软件提供与服务商。IDC(Internet Data Center)2007统计数据显示数据库市场总量份额如下:Oracle 44.1% IBM 21.3%Microsoft 18.3% Teradata 3.4% Sybase 3.4%。不过从使用情况看,BZ Research的2007年度数据库与数据存取的综合研究报告表明76.4%的公司使用了Microsoft

太原地区水文地质概念模型_冯玉明

增刊(总第114期)山西水利科技(To tal No.114) 1996年12月SHANXI HYDROT EC HNICS Dec.1996太原地区水文地质概念模型 冯玉明 常发强 (太原市水利科学研究所) (山西省水利职工大学) 文摘 本文在系统全面分析了太原地区的地质条件、构造发育特征、水文地质条件、地下水含水介质的岩性特征、地下水类型及其赋存分布规律、地下水流系统及水动力场、水文地球化学特征和水同位素特征的基础上,对太原地区的水文地质概念模型进行了概化,尤其对多年来人们一直争论的兰村泉域、晋词泉域以及东山娘子关泉域及其边界和它们之间的联系进行重新划分和充分的论述。 主题词 地下水 泉 水文地质 概念模型 水补给 水文分析 自由词 兰村泉域 晋祠泉域 娘子关泉域。 1 前 言 一个地区的水文地质概念模型是在全面系统地分析该区含水介质的岩性特征、水循环条件、水化学场、水动力学特征及水同位素分布特征的基础上建立的,是地下水资源评价的基础和依据。 同时,一个地区水文地质概念模型的合理概化,对于该地区地下水资源的科学规划,合理开发利用,水污染的防治和水源保护以及水行政主管部门对水资源进行分区目标管理,总量控制等都是至关重要的。 笔者在国家“七五”科技攻关项目75570306《太原市水资源系统规划和调度优化》中,对太原地区水文地质概念模型进行了概化,依此进行地下水资源评价,取得了满意的结果。太原地区水文地质概念模型图见图1。 图1 太原地区水文地质概念模型 · ·6

2 系统分区 根据地下水类型、含水层岩性、富水特征、水流型式、水循环条件、水化学及水同位素特征将太原地区地下水系统进一步划分为五个系统,即西山岩溶裂隙水系统、北山岩溶水系统、东山岩溶裂隙水系统、娄烦裂隙岩溶水系统及盆地区孔隙水系统。 3 系统边界 太原地区地下水系统边界:北部以石岭关、康家会至柳科府断裂构造带为界,与北部变质岩地区接壤,为二类隔水边界;北东部边界受系山断裂带的控制,北部为变质岩地区,为二类隔水边界;东部边界位于杨兴乡善都至盂县西烟一带,为一地下水分水岭,边界水位约1020m,东侧的温川水位980m,西侧阳曲盆地水位小于820m,东南边界由北东向的寺家坪张家河断裂带组成,断裂带伴有岩脉侵入,东段边界上寒武系高于1600m以上,远高于两侧地下水位,为一隔水边界,其西段龙王堂至张家河为一开放段。南部孔隙水边界以行政区划为界。西部边界南段以狐堰山山字型挤压构造带为界,为二类隔水边界。北段以娄烦县与外地区的行政区划界线为界,边界含水层均为变质岩系,亦视其为隔水边界。总体上看,系统的西、北、东三面高,向南及东南倾伏,呈簸箕状,下面就系统内部边界作一简述: 娄烦裂隙岩溶水系统与西山岩溶裂隙水系统以狐堰山山字型构造为分界,为二类隔水边界,位于柳科府、罗家曲至白家滩一线。 西山岩溶裂隙水系统与北山岩溶水系统的分界:北段以柳林河为界,河谷中出露地层为下奥陶统,主要含水岩层奥陶系中统上下马家沟组均被切割,而下奥陶统在太原地区普遍具有相对隔水,可视为隔水边界,南段以横跨汾河的北石横背斜至王封地垒为界,北石横背斜核部地层为寒武系,出露于汾河河谷,由于该背斜的阻隔作用,形成玄泉寺泉群,并与兰村泉分开。 北山岩溶水系统的南部边界为三给隐伏地垒,地垒上岩溶水位616m,北侧兰村水位800m,南侧白家庄岩溶水位806m,亦为一地下分水岭。 北山岩溶水系统与东山岩溶裂隙水系统的分界:北部为田家梁背斜,南部为东山背斜,背斜核部奥陶系被抬升于区域岩溶水位之上,可视其为隔水边界。 山区岩溶裂隙水系统与盆地区孔隙水系统的分界为东西边山断裂带,一般为弱透水边界,唯土堂断裂北段(兰村)为一强透水边界。 4 含水介质 (1) 娄烦裂隙岩溶水系统,地下水类型为变质岩裂隙水和少量碳酸盐岩类岩溶水,含水介质主要为前寒武系变质岩。 (2) 西山岩溶裂隙水系统,地下水主要为奥陶系碳酸盐岩类岩溶水,上覆石碳二迭系碎屑岩裂隙孔隙水,含水介质主要为奥陶系中统上下马家沟组和峰峰组石灰岩,径流排汇区上覆石炭二迭系碎屑岩。 (3) 北山岩溶水系统,地下水类型为碳酸盐岩类岩溶水,含水介质主要为奥陶系中统上下马家沟组石灰岩。 (4) 东山岩溶裂隙水系统,地下水类型主要为碳酸盐岩类岩溶水,含水介质主要为奥陶系统上下马家沟组和峰峰组石灰岩,上覆石岩二迭系碎屑岩。 (5) 盆地区孔隙水系统,含水介质为第四系下更新统至全新统松散堆积物砂砾石层和砂层。 5 水流型式及水动力特征 · ·7

地质构造模型

实习七地质构造模型 目的:初步建立各种产状的岩层、褶皱、断层和角度不整合的立体概念。 要求: 在教师带领下,观察下列各种模型,并将观察结果填入实习报告。 1.三种基本产状的岩层在平面、剖面上的特点。 2.熟悉褶皱要素及背斜和向斜在平面及剖面上的表现。 3.熟悉断层要素及各种断层在平面、剖面上的表现。 4.观察角度不整合在平面、剖面上的表现。 注意事项:对地质构造,常需从平面和剖面上进行观察,这样才能全面掌握其形态特征。剖面按方向与地质构造的走向是垂直还是平行,分为横剖面和纵剖面。 在平面及剖面上观察地质构造特征的主要内容有: 1.地层层面界线的形状是直线还是曲线,界线是否连续。 2.不同时代的层面界线是平行还是相交,它们的倾角大小有无变化。 3.新老岩层出现的顺序和分布,有无缺失或重复,是对称重复出现还是不对称重复出现。 从平面上观察大体能反映地质构造的地表特征,如果知道各岩层的产状要素,一般就可推测剖面上的情况。如果在平面上看到不同时代的岩层有规律的对称生复出现时,则大多数情况下的褶皱;不对称重复或有缺失则说明有可能有断层存在。由于实习所用木块模型缺乏地形,因而不能反映地形对地质界线的影响。与地质图上的表现有一定差异。例如,水平岩层在地形起伏时可出现不同时代地层;倾斜岩的地质界线在地质图上往往是曲线等。 横剖面的方向与地质构造走向相垂直,因而能正确地、较全面地反映地质构造的主要

形态特征。在角地质构造所属的类型。 纵剖面的方向与地质构造走向相平行,因而一般不能反映地质构造的形态特征,岩层界线往往是水平的。只有当构造沿走向有变化时(如褶皱枢纽有起伏时),纵剖面上才有反映。 实习时,要分类观察地质构造模型,从简单到复杂,循序渐进,并填写实习报告。 实习用模型图示如下:

概念模型和数据模型课堂练习和习题

概念模型和数据模型课堂练习和习题一、单项选择题 1.数据模型一般来说是由三个部分组成(即三要素) A.完整性规则 B.数据结构 C.恢 复,其中不包括 C D.数据操作 2.按照数据模型分类,数据库系统可以分为三种类型: A. 大型、中型和小型 B.西文、中文和兼容 C.层次、网状和关系 D.数据、图形和多媒体 3.在关系数据库中,要求基本关系中所有的主属性上不能有空值,其遵守的约束规则是(). A.参照完整性规则 B.用户定义完整性规则 C.实体完整性规则 D.域完整性规则 4.在()中一个结点可以有多个双亲,节点之间可以有多种联系. A.网状模型 B.关系模型 C.层次模型 D.以上都有 5.用二维表结构表示实体以及实体间联系的数据模型称为(A.网状模型 B.层次模型C.关系模型) D.面向对象模型 6.层次模型的特点是 ( ) A.只有一个叶结点 B.只有两个叶结 点 C.只有一个根结 点 D.至少有一个根结点 7.在一个用于表示两个实体间联系的关系中 A.关键字 B.任何多个属性集8.E-R图是( ) A.表示实体及其联系的概念模型 C.数据流图 ,用来表示实体间联系的是该关系中 的 C.外部关键字 D.任何一个属 性 B. 程序流程图 D. 数据模型图 ( ) 9.在下面给出的内容中,不属于DBA职责的是() A.定义概念模式 B.修改模式结构 C.编写应用程序10.学校中有多个系和多名学生,每个学生只能属于一个系, D.编写完整性规则 一个系可以有多名学生,从学 生到系的联系类型 是 ( ) A.多对多 B.一对 一 C.多对 一 D.一对多 11.描述数据库中全体数据的逻辑结构和特征是() A.内模式 B.模式 C. 外模式 D.存储模式 12.下列关于数据库三级模式结构的说法中,哪一个是不正确的?()A.数据库三级模式结构由内模式、模式和外模式组成 B.DBMS在数据库三级模式之间提供外模式/模式映象和模式/内模式映像 C.外模式/模式映象实现数据的逻辑独立性 D.一个数据库可以有多个模式 13.数据库系统的体系结构是() A.两级模式结构和一级映象 B.三级模式结构和一级映象 C.三级模式结构和两级映象 D.三级模式结构和三级映象 14.概念模型是现实世界的第一层抽象,这一类最著名的模型是().

概念数据模型设计讲解

一、新建概念数据模型 1)选择File-->New,弹出如图所示对话框,选择CDM模型(即概念数据模型)建立模型。 2)完成概念数据模型的创建。以下图示,对当前的工作空间进行简单介绍。(以后再更详细说明).

3)选择新增的CDM模型,右击,在弹出的菜单中选择“Properties”属性项,弹出如图所示对话框。在“General”标签里可以输入所建模型的名称、代码、描述、创建者、版本以及默认的图表等等信息。在“Notes”标签里可以输入相关描述及说明信息。当然再有更多的标签,可以点击 按钮,这里就不再进行详细解释。?牯?尾 二、创建新实体 1)在CDM的图形窗口中,单击工具选项版上的Entity工具,再单击图形窗口的空白处,在单击的位置就出现一个实体符号。点击Pointer工具或右击鼠标,释放Entitiy工具。如图所示

2)双击刚创建的实体符号,打开下列图标窗口,在此窗口“General”标签中可以输入实体的名称、代码、描述等信 息。. 三、添加实体属性 1)在上述窗口的“Attribute”选项标签上可以添加属性,如下图所示。

注意: 数据项中的“添加属性”和“重用已有数据项”这两项功能与模型中Data Item的Unique code 和Allow reuse选项有关。 P列表示该属性是否为主标识符;D列表示该属性是否在图形窗口中显示;M列表示该属性是否为强制的,即该列是否为空值。 如果一个实体属性为强制的,那么,这个属性在每条记录中都必须被赋值,不能为空。 2)在上图所示窗口中,点击插入属性按钮,弹出属性对话框,如下图所示。

地质建模复习题2013-1-28

三维地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维模型。其核心是对井间储层进行多学科综合一体化、三维定量化及可视化的预测。与传统的二维储层研究相比,三维地质建模具有以下明显的优势: 井数据的网格化:选择参与插值的井,并将单井相数据根据建模网格层进行网格化采样,生成沿井轨迹的网格化沉积相数据;选择参与模拟的井,并将单井储层参数数据根据建模网格层进行网格化采样,生成沿井轨迹的网格化储层参数数据。 参数截断变换是对井数据做统计直方图,查看数据分布情况。如分布图中存在奇异值的情况,可设置数据最大、最小值进行截断,超过最大值部分将变换为最大值,小于最小值部分将变换为最小值。截断变换还可针对建模结果进行设置。另外,如果选择相控参数建模,应分相统计分析并设置截断值。 变差函数是区域化变量空间变异性的一种度量,反映了空间变异程度随距离而变化的特征。强调三维空间上的数据构形,从而可定量描述区域化变量的空间相关性,是克里金技术以及随机模拟的一个重要工具。 变程(Range):指区域化变量在空间上具有相关性的范围。在变程范围之内,数据具有相关性;而在变程之外,数据之间互不相关,即在变程以外的观测值不对估计结果产生影响。 克里金方法是一种实用的、有效的插值方法。优于传统方法,在于它不仅考虑到被估点位置与已知数据位置的相互关系,而且还考虑到已知点位置之间的相互联系,因此更能反映客观地质规律,估值净度相对较高,是定量描述储层的有力工具。 序贯模拟:也为顺序模拟,其总体思路是沿着随机路径序贯地求取各节点的累积条件分布函数ccdf,并从ccdf中提取模拟值。其中用于求取ccdf的条件数据不仅包括原始的样品点,还包括已模拟好的点。 模型粗化是使细网格的精细“转化”为粗网格模型的过程。在这一个过程中用一系列等效的粗网格去“替代”精细模型中的细网格,并使该等效粗网格模型能反映原模型的地质特征及流动响应。 净毛比模型是指有效储层网格模型;根据有效储层的孔隙度截断值和三维孔隙度模型,对各三维网格的含油有效性进行分析,建立各小层的有效层网格模型。其中有效网格赋值为1,无效网格赋值为0 角点网格是目前应用较广的一种结构化网格类型,网格位置能用i , j , k 定义,并且单元网格的长、宽大小可变,垂向连接顶底网格点的网格面可以是倾斜的。角点网格的特点是网格的走向可以沿着断层线,边界线或尖灭线,也就是说网格可以是扭曲的。

数据库模型基础知识及数据库基础知识总结

数据库模型基础知识及数据库基础知识总结 数据库的4个基本概念 1.数据(Data):描述事物的符号记录称为数据。 2.数据库(DataBase,DB):长期存储在计算机内、有组织的、可共享的大量数据的集合。 3.数据库管理系统(DataBase Management System,DBMS 4.数据库系统(DataBase System,DBS) 数据模型 数据模型(data model)也是一种模型,是对现实世界数据特征的抽象。用来抽象、表示和处理现实世界中的数据和信息。数据模型是数据库系统的核心和基础。数据模型的分类 第一类:概念模型 按用户的观点来对数据和信息建模,完全不涉及信息在计算机中的表示,主要用于数据库设计现实世界到机器世界的一个中间层次 ?实体(Entity): 客观存在并可相互区分的事物。可以是具体的人事物,也可以使抽象的概念或联系 ?实体集(Entity Set): 同类型实体的集合。每个实体集必须命名。 ?属性(Attribute): 实体所具有的特征和性质。 ?属性值(Attribute Value): 为实体的属性取值。 ?域(Domain): 属性值的取值范围。 ?码(Key): 唯一标识实体集中一个实体的属性或属性集。学号是学生的码?实体型(Entity Type): 表示实体信息结构,由实体名及其属性名集合表示。如:实体名(属性1,属性2,…) ?联系(Relationship): 在现实世界中,事物内部以及事物之间是有联系的,这些联系在信息世界中反映为实体型内部的联系(各属性)和实体型之间的联系(各实体集)。有一对一,一对多,多对多等。 第二类:逻辑模型和物理模型 逻辑模型是数据在计算机中的组织方式

数据库种类及其特点

大型数据库 一、Microsoft SQL Server 适用于入门者。 1、开放性:只能在windows上运行,没有开放性,操作系统的系统的稳定对数 据库是十分重要的,Windows9X系列产品是偏重于桌面应用。 2、伸缩性:并行实施和共存模型并不成熟,很难处理日益增多的用户数和数据 卷,伸缩性有限。 3、安全性:没有获得任何安全证书。 4、性能:多用户时性能不佳 5、客户端支持及应用模式:C/S结构,只支持windows客户,可以用ADO、DAO、 OLEDB、ODBC连接 6、操作性:操作简单,但只有图形界面。 7、使用风险:完全重写的代码,经历了长期的测试,不断延迟,许多功能需要 时间来证明。并不十分兼容。 二、Oracle 强大的功能和可配置、可管理能力。 1、开放性:能在所有主流平台上运行(包括 windows)。完全支持所有的工业 标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。 2、伸缩性与并行性:并行服务器通过使一组结点共享同一簇中的工作来扩展 windows NT的能力,提供高可用性和高伸缩性的簇的解决方案。如果windows NT不能满足需要,用户可以把数据库移到UNIX中。Oracle的并行服务器对各种UNIX平台的集群机制都有着相当高的集成度。 3、安全性:获得最高认证级别的ISO标准认证。 4、性能:性能最高,保持开放平台下的TPC-D和TPC-C的世界记录。 5、客户端支持及应用模式:多层次网络计算,支持多种工业标准,可以用ODBC、 JDBC、OCI等网络客户连接。 6、操作性:较复杂,同时提供GUI和命令行,在windows NT和unix下操作相

(完整版)专门水文地质学期末考试题

一、水文地质调查的目的 1、查明地下水的形成、赋存和运移特征 2、查明地下水水量、水质的变化规律 3、为地下水资源评价、开发利用、管理和保护以及环境问题防治提供水文地质依据。 二、水文地质调查的任务 1.查明地下水的赋存条件-含水介质特征及埋藏分布. 2.查明地下水运动特征-地下水的补给、径流和排泄条件及渗流参数,为地下水资源定量评价和开采设计提供水文地质资料. 3.查明地下水的动态特征-地下水位、水量、水温和水质等随时间变化的规律及其控制因素,为地下水资源开发利用、管理和保护提供资料. 4. 查明地下水的水文地球化学特征-地下水和地表水的化学成分,为地下水水质评价、地下水的形成条件及运动特征提供资料. 三、水文地质调查工作阶段的划分 1.供水水文地质勘察共划分为:地下水普查、详查、勘探和开采四个阶段。 2. 农田供水水文地质勘察阶段的划分:区域水文地质勘察阶段、详细勘察阶段、开采阶段。 四、水文地质测绘的目的 1.水文地质测绘是认识水文地质条件的基础,是水调查的第一步工作。根据一定的精度要求,在地表对地下水和与其相关的地质—水文地质现象进行实地的观察、测量、描述、综合分析,并将它们绘制成图件,总结出该地区水文地质规律。 2.水文地质测绘成果是布置各种水文地质勘探、试验、动态观测等工作的主要依据。 五、水文地质测绘的基本任务 1.确定地下水的基本类型及各类型地下水的分布与相互联系; 2.确定主要含水层(带)及其埋藏和分布情况,隔水层的特征与分布; 3.查明褶皱构造和断裂构造的水文地质特征; 4.查明地下水的补给、径流与排泄条件; 5.查明地下水的水化学成分及水文地球化学环境; 6.概略评价各含水层(带)的富水性、区域地下水资源量、水化学特征及其动态变化规律; 7.查明与地下水有关的环境地质问题。 六、干旱半干旱、山间河谷地区地下水资源分布特征 七、地下水资源的特点 1、系统性:是指由一定的地质结构组织而成的、具有密切水力联系的统一整体。 2、流动性:地下水是流体,是动态资源,在补给、径流、排泄的过程中,不断循环流动。 3、可恢复性:地下水资源的可恢复性(可再生性)是地下水资源可持续利用的保证。 4、可调节性:可调节性主要针对水量,指地下水在系统结构的作用下,使不连续的降水和水量输入变为相对连续、均匀输出的这种自然特性。 八、地下水资源的分类 1.补给量:指天然状态或开采条件下,单位时间内,通过各种途径进入含水层(或含水系统)的水量。 2.储存量:指储存在单元含水层中的重力水体积。 3.可开采量:指通过技术经济合理的取水构筑物,在整个开采期内出水量不会减少,动水位不超过设计要求,水质和水温变化在允许范围内,不影响已建水源地正常开采,不发生危害性环境地质现象等前题下,单位时间内从含水系统或取水地段中能够取出的水量。 九、开采量由三部分组成 Q 开= ΔQ 补 +ΔQ 排 + μ·F·Δh/Δt 1.增加的补给量(ΔQ 补),可称为开采夺取量; 2.减少的天然排泄量(ΔQ 排),可称为开采截取量; 3.可动用的储存量(μ·F·Δh/Δt )。 十、地下水开采资源组成 :补给量、存储量、允许开采量 十一、生活饮用水评价 首先要按照规定进行取样、检测分析,分析项目应不少于生活饮用水水质标准中所列项目;其次要对分析结果和采用的分析方法进行全面的复查:然后按照《生活饮用水卫生标准》规定的指标逐项进行对比评价。只有全部项目符合标准要求时,才能作为生活饮用水。 )(Q Q 潜水-排补t h F ??±=μ)(Q Q 承压水-排补t h F ??±=*μ

相关文档
最新文档