骨骼肌纤维类型与运动训练

骨骼肌纤维类型与运动训练
骨骼肌纤维类型与运动训练

骨骼肌纤维三联体的结构

骨骼肌纤维: 骨骼肌纤维是一种多核细胞,核的数量随肌纤维的长短而异,短者核少;长者细胞核数量可达100~200个,位于肌膜下方。核呈卵圆形,染色较淡,核仁清楚。 1.结构特征 一般情况下,人类绝大部分骨骼肌中Ⅰ型肌纤维的直径略小于Ⅱ型肌纤维,II型肌纤维的肌浆网较Ⅰ型肌纤维发达2倍,故型肌纤维肌浆网的摄Ca2能力大于Ⅰ型肌纤维,从而加快了Ⅱ型肌纤维的反应速度;Ⅰ型肌纤维的线粒体数量较型肌纤维多且直径大,同时Ⅰ型肌纤维周围的毛细血管分布比Ⅱ型肌纤维多,II型肌纤维肌原纤维含量较I型肌纤维多,意味着肌纤维内部含有较多的肌球蛋白横桥,收缩时可产生较大的收缩力。不同类型骨骼肌纤维的形态学特征 2.神经支配 特征肌任维类型I 型Ⅱa型Ⅱb型 平均肌纤维面积/um2 1730 2890 运动单位540·μ-1 440·μ-1 750·μ-1 轴突传导速度/m·s-1 8.5 100 100 毛细血管分布多多少 线粒体含量高中低 肌浆网(SR)Ⅱ型肌纤维的SR为Ⅰ型肌纤维的2倍 Z带Ⅰ型肌纤维的Z带较Ⅱ型肌纤维宽

结缔组织Ⅰ型肌纤维的胶原纤维多于Ⅱ型肌纤维 不同类型骨骼肌纤维由大小不同的运动神经元所支配,大运动神经元支配Ⅱ型肌纤维,其轴突较粗,神经冲动传导速度快(>90m·s —1); 3.肌纤维面积肌纤维面积大小取决于肌纤维的直径并受年龄、训练和肌纤维类型的影响。一般情况下,出生后到青春发育期结束,肌纤维的面积随年龄的增长呈线性递增。人类两种不同类型肌纤维面积差异较小,且有较大个体差异。 骨骼肌纤维三联体的结构: 肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管(图6-5).位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网.每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)(图6-5).在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜.肌浆网的膜上有丰富的钙泵(一种ATP酶),有调节肌浆中Ca2+浓度的作用.

骨骼肌纤维的类型与运动的关系

骨骼肌纤维的类型与运动的关系 (一)运动员的肌纤维类型 1、时间短、强度大的运动项目的运动员:快肌纤维百分比大; 2、耐力性运动项目的运动员:慢肌纤维百分比大; 3、对有氧能力和无氧能力需求均较高的运动员其两类肌纤维分布接近。 (二)训练对肌纤维的影响 1、运动训练对肌纤维类型的转变的影响:“遗传学派”,“训练—适应学派”。 2、运动训练对肌纤维的面积和数量的影响:肌纤维增粗,即肥大;肌纤维数目增多。。 3、训练对肌纤维代谢特征的影响 (1)训练对肌纤维有氧能力的影响; (2)训练对肌纤维无氧能力的影响; (3)训练对肌纤维影响的专一性,即训练所引起的肌纤维的适应性变化。 血液的组成 (一)血浆(无形成分):占血液总量50%~60%。 (二)血细胞(有形成分):占血液总量40%~50%。包括红细胞、白细胞和血小板。(三)红细胞比容(或称为压积):红细胞占全血容积的百分比,健康成年男子红细胞比容约为40%~50%,女子约为37%~48% 四、血液的机能 (一)维持内环境的相对稳定 (二)运输机能 1、运输气体; 2、运输营养; 3、运输代谢产物; 4、运输热量。 (三)参与调节 激素随血液循环运送到相应的靶细胞,以调节其机能活动。 (四)防御与保护机能 1、白细胞→吞噬分解作用→细胞防御; 2、血浆中免疫物质→免疫→化学防御; 3、血小板→凝血和止血→保护作用。 心脏泵功能的评定 (一)心输出量 1、每搏输出量:左心室每次收缩所射出的血量,简称搏出量。 2、射血分数:每搏输出量占心室舒张末期的容积百分比。 3、每分输出量:左心室每分钟射出的血量,通常所说的心输出量是指每分输出量。 4、心指数:空腹、安静状态下每平方米体表面积计算的心输出量。 5、心力贮备:心输出量随机体代谢需要而增长的能力,包括心率贮备和搏出量贮备。 6、心脏作功量 (二)影响心输出量的因素 1、影响搏出量 (1)前负荷(心室充盈量);(2)后负荷(动脉血压);(3)心肌收缩能力。 2、心率的影响在一定的范围内,心率与心输出量呈正变关系。 二、动脉血压 (一)概念:在血管内流动的血液对血管壁的侧压力。 (二)动脉血压的形成 1、血管内有足够的血液充盈; 2、心脏收缩射血; 3、外周阻力; 4、大动脉弹性。

肌肉纤维类型百分比是天生的

肌肉纤维类型百分比是天生的,判断好自己的肌肉纤维类型才能针对自己做出最好的训练计划。以下是转帖:如何根据肌肉纤维的类型来选择训练方法一些人经过一段时间的刻苦训练,虽有长进,但效果不显著。这里面牵涉到一个肌纤维类型的重要问题。人的肌纤维类型是不一样的,以致练习速度的快慢、次数的多少、时间的长短也不一样。因此,只有先了解自己的肌纤维属于哪种类型,才能使锻炼收到较好的效果。 一、肌纤维的类型和特征 从生理学的角度来讲,肌纤维按照收缩的特性可分为两种类型;慢肌纤维(ST)和快肌纤维(FT)。这两种肌纤维在许多方面都有所不同,包括肌肉收缩速度、收缩力量和耐力水平。快肌纤维收缩速度快、力且大,但易疲劳;慢肌纤维收缩速度慢、力量小,但不易疲劳。人休肌肉由快肌纤维和慢肌纤维组成。两种类型的肌纤维共存于每块肌肉中,且身体每块肌肉的肌纤维类型也不尽相同。若使肌纤维在肌肉中所占的比例大,则肌肉以快肌纤维为主若但肌纤维在肌肉中所占的比例大,则肌肉以慢肌纤维为主。 二、肌纤维类型的判别 1、活检。确定肌纤维类型的精确方法是进行活检,即从身上取出一小块肌肉,在显微镜下对其进行分析,以判别肌纤维类型。这种方法精确,但很麻烦,且对局部肌肉有损害,所以一般人没有必要用这种方法来判断。 2、测试肌肉耐力。这种方法是通过观察肌肉疲劳特点评估肌纤维类型。该法效果较好。做法是:若用肌肉收缩最大力量的80%能重复练习的次数>15次,则为慢肌纤维占较高百分比;若用肌肉收缩最大力量的80%能重复练习的次数<5次,则为快肌纤维占较高百分比。 3、评估肌肉的发展。一般来说,快肌纤维比慢肌纤维在增长肌肉体积方面具有更大的潜力。若你的肌肉发展得比较快;则可认为自己具有较高百分比的快肌,反之则具有较高百分比的慢肌。 三、练习重复次数和时间 一旦对自己肌纤维类型有了大致的了解,练健美时就可以利用它来制定练习的重复次数。肌纤维选择性肥大原理告知耐力训练能引起慢肌纤维的选择性肥大;速度--爆发力训练可引起快肌纤维的选择性肥大。 所以,天生体内有较高百分比慢肌纤维类型的人也许能从相对较高重复次数的练习中获得最大的益处,因为这种肌纤维类型比较适合耐力训练。一般来说;其臀部练习次数可达20-25次,腿部为15-20次,上肢躯干为10-15次。对天生体内快肌纤维占优势的人来说,完成相对较低的重复次数而速度较快的练习会获得较好的效果。一般来说;其臀部练习次数可达10-15次,腿部为9-12次,上肢躯干为6-8次。 肌肉练习必须在一定时间内以适宜的强度来完成,这样才能增加肌肉的体积和力量。一般来说,臀部练习和适宜时间范围为90-120秒,腿部为60-90秒,上肢躯干为40-70秒。 若能按照上述方法去做,那你的健美训练定会取得更好的效果。

运动生理学

第三篇运动生理学 绪论 (一)运动生理学的研究对象、目的和任务(二)生命的基本特征 (三)人体生理机能的调节第一章骨骼肌机能(一)肌肉收缩的原理 1 神经肌肉接头的兴奋传递 2 肌肉收缩的滑行学说 3 肌纤维的兴奋-收缩偶联 (二)肌肉收缩的形式 1 向心收缩 2 等长收缩 3 离心收缩 (三)骨骼肌不同收缩形式的比较 1、力量 2、肌肉酸疼 (四)肌肉收缩的力学特征 1 张力与速度的关系

2 肌肉力量与运动速度的关系 3 肌肉力量与爆发力 (五)不同类型骨骼肌纤维的形态、生理及代谢特征 1 形态特征 2 生理特征 3 代谢特征 (六)骨骼肌纤维类型与运动的关系 1 运动员的肌纤维类型 2 运动训练对骨骼肌纤维的影响 (七)肌电的研究与应用 第二章血液 (一)血液概述 1 体液 2 血液组成 3 内环境的概念及生理意义 (二)血液的功能 1 维持内环境相对稳定的功能

2 运输功能 3 调节作用 4 保护和防御功能 (三)渗透压和酸碱度 (四)运动对红细胞和血红蛋白的影响 1 运动对红细胞的影响 2 运动对血红蛋白的影响 第三章循环机能 (一)心输出量和心脏做功 1 心输出量及其影响因素 2 心脏泵血功能及其评价 (二)血管中的血压和血流 1 动脉血压的成因及其影响因素 2 静脉回流及其影响因素 (三)运动对心血管功能的影响 1 肌肉运动时血液循环功能的变化及调节 2 运动训练对心血管系统的影响 3 脉搏(心率)和血压测定在运动实践中的意义第四章呼吸

(一)呼吸运动与肺通气 1 呼吸的定义及全过程组成 2 呼吸的形式 3 肺通气功能的评价 4 训练对通气功能的影响 (二)气体的交换肺换气和组织换气(三)氧气的血液运输与氧解离曲线的意义 1 氧气的血液运输 2 氧解离曲线及其生理意义 (四)呼吸运动的调节 1 化学因素对呼吸的调节 2 运动时呼吸的变化和调节 (五)运动时的合理呼吸 1 减小呼吸道阻力 2 提高肺泡通气效率 3 呼吸与技术动作相适应 4 合理运用憋气

骨骼肌类型与运动的关系 组织学

骨骼肌类型与运动的关系 人类骨骼肌由不同类型的肌纤维混合而成,通常根据肌纤维的收缩速度可将其分为慢肌纤维和快肌纤维两类,人体骨骼肌纤维分为Ⅰ和Ⅱ两个类型,Ⅱ型中又分为三个亚型。即Ⅰ型为慢缩红肌,Ⅱ型为快缩肌,Ⅱa型为快缩红肌,Ⅱb型为快缩白肌,Ⅱc型为一种未分化的较原始的肌纤维。 骨骼肌纤维的类型与运动的关系(一)运动员的肌纤维类型1、时间短、强度大的运动项目的运动员:快肌纤维百分比大;2、耐力性运动项目的运动员:慢肌纤维百

分比大;3、对有氧能力和无氧能力需求均较高的运动员其两类肌纤维分布接近。(二)训练对肌纤维的影响1、运动训练对肌纤维类型的转变的影响:“遗传学派”,“训练—适应学派”。2、运动训练对肌纤维的面积和数量的影响:肌纤维增粗,即肥大;肌纤维数目增多。。3、训练对肌纤维代谢特征的影响(1)训练对肌纤维有氧能力的影响;(2)训练对肌纤维无氧能力的影响;(3)训练对肌纤维影响的专一性,即训练所引起的肌纤维的适应性变化。

各类骨骼肌形态特征:快肌纤维直径较粗,肌浆少,肌红蛋白含量少,呈苍白色;其肌浆中线粒体数量和容积小,但肌质网发达,对钙离子的摄取速度快,从而反应速度快;快肌纤维接受脊髓前角大运动神经元支配,大运动神经元的胞体大,轴突粗,与肌膜的接触面积大,一个运动神经元所支配的肌纤维数量多。慢肌纤维直径较细,肌浆丰富,肌红蛋白含量高,呈红色;其肌浆中线粒体直径大、数量多,周围毛细血管网发达;支配慢肌纤维的神经元是脊髓前角的小运动神经元,其胞体小,轴突细,神经

肌肉接点小,终末含乙酰胆碱的囊泡数量小,一个运动神经元所支配的肌纤维数量小。2)代谢特征。快肌纤维无氧代谢能力较高。表现为肌纤维中参与无氧氧化过程酶的活性较慢肌纤维高,肌糖原含量较高。慢肌纤维有氧氧化能力较高。表现为线粒体数量多,体积大,氧化酶活性较高,甘油三酯含量高。毛细血管丰富,肌红蛋白含量高。3)生理特征。快肌纤维收缩的潜伏期短,收缩速度快,收缩时产生的张力大,但收缩不能持久、易疲劳。慢肌纤维收缩的潜伏期长,收缩速度慢,张力小,能持久、抗疲劳能力强。人类同一块肌

胚胎发育时期骨骼肌纤维类型的分化

胚胎发育时期骨骼肌纤维类型的分化 原文来源:Te, K.G. and C. Reggiani, Skeletal muscle fibre type specification during embryonic development. J Muscle Res Cell Motil, 2002. 23(1): p. 65-9. 摘要:在过去十年里越来越多关于胚胎发育时期肌形成和肌纤维类型分化的信号机制的研究:这篇文章主要回顾最近的相关发现。脊椎动物中MyoD家族在肌肉分化中发挥着重要作用,该家族是一系列的转录因子,可激活肌肉分化基因的转录。反过来,MyoD家族会应答体节周边组织尤其是脊索和神经管的诱导信号。Hedgehog和Wnt是其中的诱导信号之一,在未来的成肌细胞中发现其应答通路包括Ptc, Smu和Gli。该信号机制已在小鼠、鸡、斑马鱼和果蝇等模式生物中做过分析。有些转录因子的同源物在不同物种中可完成类似的功能,但其他的转录因子在不同物种中则存在重要的不同之处:例如在果蝇中twist编码一种促进肌形成的转录因子,但是他的同源物在小鼠中则抑制或阻止肌形成。相反的,nautilus是果蝇中MyoD的同源物,他在小鼠的肌肉分化中没有普遍作用,只是在特定类型的肌纤维的分化中发挥功能。 介绍 不同肌纤维类型的生化、结构和功能特征的异质性是近十年来许多人的研究对象。其中肌形成的预决定和神经支配、激素及调节肌纤维表型机制的作用研究的最为详细。而关于信号因子、转导途径和调控基因在肌形成和最终在肌纤维分化中的研究近几年才刚刚开始。在不同模式生物中的相关研究揭示了几种影响肌肉发育的普遍因素,同时也发现了物种发育的种属性特征。 肌形成和MyoD家族 理解胚胎发育时期肌纤维类型的分化过程,首先必须了解肌形成的调控机制。在脊椎动物中,MyoD家族的转录因子是决定肌形成的最上游因子。bHLH转录因子类型的MyoD家族成员有MyoD,Myf-5, myogenin 和MRF4。在高等脊椎动物胚胎发育时期,这四种肌肉生长调控因子(MRF)由多种诱导通路激活并以一种特定的时空顺序表达。 神经管和脊索的诱导信号hedgehog和Wnt1可激活体节中Myf5在背内侧区域的表达,该基因又能诱导MRFs在哺乳动物和鸟类的发育中的体节表达。起始表达Myf5的细胞成为轴上肌肉系,将来发育成背肌。相反的,发育中体节的侧面细胞中MyoD的起始表达依赖于背外胚层的诱导信号Wnt7。起始表达MyoD的细胞将来发育成为轴下肌肉。侧中胚层合成的TGF-β家族成员BMP4会阻止MyoD的表达及体节侧面区域的早期分化。BMP4的活性则被Noggin,Chordin 和follistatin抑制。 因此,流动型信号因子的竞争浓度参与激活肌形成和成熟肌节的特定类型细胞。肌节形成过程中表达myogenin的细胞比表达Myf5和MyoD的细胞出现的晚的多,但是MRF4可持续表达。第一阶段体节中的myogenin激活表达,第二阶段二型肌纤维便形成。

骨骼肌细胞的超微结构特点

骨骼肌细胞的超微结构特点 肌肉和肌纤维周围均包有结缔组织,按其位置不同分为肌外膜、肌束膜和肌内膜。 包在整块肌肉外面的致密结缔组织,称肌外膜。 若干条肌纤维集成束,束的外周包有较厚的结缔组织,称肌束膜。 分布在每条肌纤维周围的少量结缔组织,称肌内膜。 骨骼肌纤维表面附有肌卫星细胞,肌纤维损伤后肌卫星细胞分化形成肌纤维。 (一)骨骼肌纤维的光镜结构 骨骼肌纤维呈长圆柱形,一条肌纤维内含多个细胞核,核呈扁椭圆形,位于肌膜下方; 肌浆内含大量肌原纤维,每条肌原纤维上都有明暗相间的横纹,后者由明带和暗带组成明带又称Ι带,其中部为Z线 暗带又称A带,其中部较浅的窄带称H带,H带中央为M线 * 肌节(sarcomere)为两条相邻Z线之间的一段肌原纤维,由?I带+A带+?I带组成;是骨骼肌收缩的基本结构单位 肌膜外有基膜紧贴,肌膜与基膜间有肌卫星细胞,肌纤维损伤后,肌卫星细胞分化形成肌纤维。 (二)骨骼肌纤维的超微结构 肌原纤维、横小管和肌浆网等是骨骼肌纤维最主要的超微结构。 1.肌原纤维(myofibril) 由粗、细两种肌丝(myofilament)规律排列组成。 粗肌丝位于肌节的暗带,中央固定在 M线上,两端游离。 细肌丝位于肌节两端,一端附于Z线,另一端伸至粗肌丝间,末端游离,止于H带外侧; Ι带仅有细肌丝;H带(A带中部) 仅有粗肌丝;H带两侧的A带既有粗肌丝,又有细肌丝; (1)粗肌丝的分子结构: 由肌球蛋白分子组成,肌球蛋白形似豆芽,分头和杆两部分,头部具有ATP酶活性。 (2)细肌丝的分子结构: 细肌丝由肌动蛋白、原肌球蛋白、肌原蛋白组成。 骨骼肌肌纤维的结构 骨骼肌由骨骼肌纤维组成。骨骼肌纤维呈长圆柱状,其大小因肌肉类型和生理活动的状况而不同,一般长度约3--40mm,镫骨肌纤维最短,长约lmm;缝匠肌纤维长达125mm。肌纤维的宽度约为10--100μm,加强体育锻练能使肌纤维体积增粗。

动训练与骨骼肌纤维类型

一、骨骼肌纤维类型的分类 (2) 1.根据色泽和机能划分 (2) 2.根据组织化学染色方法 (2) 3.根据代谢特征 (2) 4.根据基因蛋白划分 (2) 二、骨骼肌纤维类型的形态、机能特点和运动特征 (2) 1.形态特点 (2) (1)肌纤维直径 (2) (2)肌浆网 (2) (3)毛细血管密度 (3) (4)神经支配 (3) (5)线粒体 (3) 2.机能特点 (3) (1)肌肉收缩力量 (3) (2)肌肉收缩速度 (3) (3)抗疲劳能力 (3) 3.代谢特点 (3) (1)能源物质含量 (3) (2)代谢酶活性 (4) 4.运动时骨骼肌纤维的动员 (4) 三、肌纤维的分布特征 (4) 1.动物骨骼肌纤维的分布特征 (4) 2.一般人骨骼肌纤维分布特征 (5) 3.运动员的骨骼肌纤维类型分布特征 (5) 四、运动训练与骨骼肌纤维类型 (6) 1.骨骼肌纤维类型与运动员选材 (6) 2.骨骼肌纤维类型的无损伤测定 (6) (1)肌肉力量 (6) (2)耐力工作时间 (6) (3)肌电图(EMG) (6) 3.肌纤维类型的无损伤推测 (7) 4.骨骼肌纤维类型对运动训练的适应 (7) (1)肌纤维面积 (7) (2)肌纤维酶活性变化 (7) 5.运动训练与肌纤维类型转变 (8) (1)骨骼肌纤维类型决定于遗传 (8) (2)交又神经支配可引起肌纤维类型的转变 (8) (3)运动训练对肌纤维亚型的影响 (8) (4)运动训练对快慢肌纤维的影响 (9)

骨骼肌纤维根据其结构、机能特点分为快肌和慢肌纤维。劳伦悉尼(Loranzini,1673)首次报道兔骨骼肌有些颜色较红,有些颜色较白,并发现肌肉的色泽与运动能力有关。仑威尔(Ranvier,1883)用电刺激方法证明红肌纤维收缩速度慢而相对持久,白肌纤维收缩速度快,但容易疲劳,并将骨骼肌纤维分为“红肌”和“白肌”两种类型。1962年伯格斯特隆(Bergstrom)发明肌肉活检技术以来,对运动员的骨骼肌纤维特征与运动机能进行了大量研究,证实骨骼肌纤维类型与运动员科学选材和运动训练有着十分密切的关系。 一、骨骼肌纤维类型的分类 骨骼肌纤维根据不同的分类方法,可分为若干种不同的类型。 1.根据色泽和机能划分 用肉眼观察动物的骨骼肌可以发现不同的肌肉其色泽不同,有些肌肉颜色较红,称为红肌,有些肌肉颜色较白,称为白肌。红肌纤维的收缩速度较慢,所以又称为慢肌纤维(slow twitch muscle fibers,ST),白肌纤维的收缩速度较快,又称快肌纤维(fast twitch muscle fibers,FT),快肌纤维又可以分为快肌纤维A(FTa)和快肌纤维B(FTb)。 2.根据组织化学染色方法 采用组织化学染色方法,发现不同类型的肌纤维在不同条件下的染色不同,有些肌纤维染色较轻或不着色,有些肌纤维染色较重,根据肌纤维ATP酶染色方法,可将肌纤维分为Ⅰ型和Ⅱ型,Ⅱ型纤维又进一步分为a、b、c三种亚型。Ⅰ型纤维的收缩速度慢,相当于慢肌,Ⅱ型纤维的收缩速度快,相当于快肌,Ⅱ型纤维中,Ⅱb的收缩速度快于Ⅱa,Ⅱc。纤维则为介于Ⅱa和Ⅱb之间的中间纤维。 3.根据代谢特征 根据肌纤维的有氧代谢酶和无氧代谢酶活性,可将肌纤维分为慢氧化型(slow oxidative,S0)、快氧化型(fast oxidative glycolytic,FOT)和快酵解型(fast glycolytic,FT)。S0的收缩速度慢,肌纤维中琥珀酸脱氢酶活性高,肌肉收缩时以有氧代谢供能为主;FOG的收缩速度相对较快,也以有氧供能形式为主;而FG则收缩速度快,肌纤维的乳酸脱氢酶活性高,肌肉收缩时以糖无氧代谢供能为主。 4.根据基因蛋白划分 为了观察肌纤维类型是否随年龄和运动训练等后天因素而发生改变,根据肌肉收缩蛋白中肌凝蛋白重链(myosin heavy chain)的基因表达,可将肌纤维的MHC分为Ⅰa、Ⅰc、Ⅱa、Ⅱac、Ⅱc、Ⅱab和Ⅱb七种类型。 骨骼肌纤维类型的分类方法和分型见(表2)。 二、骨骼肌纤维类型的形态、机能特点和运动特征 不同类型的骨骼肌纤维具有不同的形态、机能和代谢特征,这在运动实践中具有十分重要的意义。1.形态特点 不同类型骨骼肌纤维的形态学特征主要表现在肌纤维直径、肌浆网、毛细血管密度和神经支配等方面。 (1)肌纤维直径 快肌纤维与慢肌纤维相比,直径粗,体积大,这种形态学特征保证快肌纤维具有较大的收缩力量。 (2)肌浆网 快肌纤维的肌浆网较慢肌纤维发达,因此,快肌纤维在接受刺激后向胞浆释放Ca2+的速度比慢肌纤维快,兴奋收缩偶联时间短,表现为肌纤维收缩速度快。

正常人体运动学第三章骨骼肌

第三章骨骼肌运动学 本章内容 骨骼肌的生物学基础 骨骼肌的运动适应机制 骨骼肌的运动控制与协调 骨骼肌的功能与运动障碍 第一节肌的生物学基础 骨骼肌——动力器官(人体运动) 心肌——心脏的跳动 平滑肌——胃肠道的运动等 第一节肌的生物学基础 一、骨骼肌的功能解剖 肌细胞:肌膜、肌浆(细胞质)、细胞核。肌浆中有平行排列的肌原纤维和复杂的肌管系统。 (一)肌原纤维 纵贯肌纤维全长,直径约1-2 m。平行排列的粗、细肌丝组成。 肌小节:两条Z线之间的结构。 (二)肌丝的分子组成 粗肌丝:头部有一膨大部——横桥①能与细肌丝上的结合位点发生可逆性结合②具有ATP酶的作用。 细肌丝:肌动蛋白原肌球蛋白肌钙蛋白 ●肌钙蛋白是含有三个亚单位的复合体。亚单位I、亚单位T和亚单位C分别对肌动蛋白、原肌球蛋白和Ca2+ 具有高亲和力。 ●把原肌球蛋白附着肌动蛋白上。

●Ca2+通过和肌钙蛋白结合,诱发横桥和肌动蛋白之间的相互作用。 (三)肌管系统 包绕在每一条肌原纤维周围的膜性囊管状结构,是骨骼肌兴奋收缩耦联过程的形态学基础。 ●横小管系统:肌细胞膜从表面横向伸入肌纤维内部的膜小管系统。 ●纵小管系统:肌质网系统。 ●终池:肌质网在接近横小管处形成特殊的膨大。 ●三联管结构:每一个横小管和来自两侧的终末池构成复合体。 (四)兴奋在神经肌肉接头的传递 1.神经——肌肉接头的结构 神经——肌肉接头的结构又称为运动终板。 ①接头前膜(终板前膜) ②接头后膜(终板后膜) ③接头间隙(终板间隙) 运动神经末梢去极化 Ca2+进入神经膜内(兴奋- 分泌耦联) ACh的释放(神经分泌) R-ACh (化学接受) 终板电位 肌膜锋电位 肌肉收缩 (五)肌肉的兴奋—收缩耦联 终池膜上的钙通道开放==终池内的Ca2+进入肌浆==Ca2+与肌钙蛋白结合==肌钙蛋白的构型改变==原肌球蛋白位移,

运动心理学复习题

运动心理学复习题

绪论 1·运动生理学:是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础科学理论。 2·新陈代谢:是生物体自我更新最基本的生命活动过程,包括同化和异化两个过程。 3·兴奋性:在生物体内可兴奋组织具有感受刺激、产生兴奋的特性,成为兴奋性。 4·刺激:能引起可兴奋组织产生兴奋的各种环境变化称为刺激。 5·应激性:机体或一切活体组织对周围环境变化具有发生反应的能力或是特殊性称为应激性。 6·适应性:生物体所具有的适应环境的能力,称为适应性。 7·内环境:细胞外液被称为集体的内环境。 第一章骨骼肌机能 8·静息电位:细胞处于安静状态时,细胞膜内外所存在的电位差称为静息电位。 9·动作电位:可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称为动作电位。 10·肌电图:用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形,称为肌电图。 11·滑行学说:肌肉的缩短是由于肌小节中细肌丝在粗肌丝之间滑行造成的。 12·向心收缩:肌肉收缩时,长度缩短的收缩称为向心收缩。 13·离心收缩:肌肉在收缩产生张力的同时被拉长的的收缩称为离心收缩。 14·等长收缩:肌肉在收缩时其长度不变,这种收缩称为等长收缩。 15·等动收缩:在整个关节运动范围内肌肉以恒定的速度,肌肉收缩时产生的力量始终与阻力相等的肌肉收缩称为等动收缩。等张收缩:肌肉的收缩只是长度的缩短而张力保持不变的收缩。 16·运动单位:一个α运动神经元和受其支配的肌纤维所组成的最基本的肌肉收缩单位称为运动单位。

思考题:1.试述骨骼肌肌纤维的收缩原理。 l 2.骨骼肌有几种收缩形式?它们各有什么生理学特点? (一)向心收缩:肌肉收缩时,长度缩短的收缩称为向心收缩。 特点:收缩时肌肉长度缩短、起止点相互靠近,因而引起身体运动。 (二)等长收缩:肌肉在收缩对其长度不变 (三)离心收缩:肌肉在收缩产生张力的同时被拉长的收缩 (四)等动收缩:在整个关节运动范围内肌肉以恒定的速度,肌肉收缩时产生的力量始终与阻力相等的肌肉收缩。 l 3.为什么在最大用力收缩时离心收缩产生的张力比向心收缩大? ①是牵张反射,肌肉受到外力的牵张时会反射性地引起收缩。在离心收缩时肌肉受到强烈的牵张,因此会反射性地引起肌肉强烈收缩。 ②是离心收缩时肌肉中的弹性成分被拉长而产生阻力,同时肌肉中的可收缩成分也产生最大阻力。 l 4.骨骼肌肌纤维类型是如何划分的?不同类型肌纤维的形态学、生理学和生物化学特征是什么? (一)按颜色肌纤维红色的为红肌,象长途飞行的鸽子胸肌是红肌,家鸡的胸肌呈白色的为白肌。这种红白肌 之分,主要和肌纤维内肌红蛋白含量的多少相关。 (二)按肌肉收缩的速度不同的肌纤维类型,按其收缩快慢不同,可划分为慢肌和快肌两种类型 (三)按肌肉收缩及代谢特点慢、氧化型(SO),快、糖酵解型(FG)和快、氧化、糖酵解型(FOG)三种类型。 (四)根据收缩特性及色泽快白、快红和慢红三种类型。 (五)布茹克司Ⅰ型和Ⅱ型;Ⅱ型中又根据对NADH(四唑)还原酶的显色反应不同分为Ⅱa、Ⅱb和Ⅱc三个亚型。 1)不同肌纤维形态特征:①快肌纤维直径大于慢肌纤维②慢肌纤维周围毛细血管网多于快肌纤维

肌纤维总结

需弄清楚几个问题: 1.肌纤维组分及其分子构成; 肌球蛋白是一个由高度保守的多基因编码,含有多种同功蛋白的家族,是骨 骼肌的主要收缩蛋白。肌球蛋白分子由2个肌球蛋白重链(myosin heavy chain,M yHC)和2 对起调节作用的肌球蛋白轻链组成, 具有ATPase 活性。在哺乳动物的骨骼肌和心肌上共发现8 种异构体, 在成年哺乳动物的骨骼肌上表达的有4种类型: type slow/ B(Ⅰ)、2a、2b和2x。由不同的MyHC 组成的肌肉表现出不同的收缩能力和ATPase 活性。 猪出生时骨骼肌纤维大多是氧化型, 酵解型纤维几乎没有分化[13, 14 ] , 一些肌纤维具有在生长过程中转化成酵解型纤维的能力。在猪出生后1~ 4 周内, 氧化型纤维的比例下降,酵解型肌纤维急剧增加[13肌肉的质量主要由肌纤维数 目(TN F) 和肌纤维横截面积(CSA ) 决定, 而动物出生后, TN F 保持不变[18 ]。因此, 肌肉的增长体现在CSA 的增加。酵解型肌纤维的CSA 在4 种肌纤维类型中最大[13 ]。提示, 在肌纤维数目一定的情况下, 酵解型肌纤维比例的增加必将导致肌肉质量的增加, 体质量的增加。猪背最长肌肌纤维类型的组成呈现明显的发育性变化规律, 并且在品种间存在显著的差异, 而这种差异主要表现在90 日龄后的快速生长期。大白猪é 型纤维比例的显著下降和2b 型纤维比例的显著增加与其肌肉的快速沉积有关, 而二花脸猪背最长肌较高比例的M yHCé 型和2a 型纤维与其优良的肉质相关。 肌肉由肌纤维组成,根据代谢与收缩特性,肌纤维一般可分为四种:慢速氧化型(I型)、快速氧化型(Za型)、快速酵解型(Zb型)和中间型(Zx型),其中Za、Zb、Zx统称为H型纤维。I型纤维细小,脂质、肌红蛋白含量较高,因此I型纤维比例较高的肌肉品质(肉色、嫩度、’风味等)较好;而Hb型纤维粗大,肌红蛋白、脂质含t较低,糖原含量较高,含Hb型纤维较多的肌肉纹理粗糙,肉色浅淡,嫩度、风味欠佳,并且在应激状况下容易发生PSE肉。 动物体内的肌肉可以分为三大类:骨骼肌、心肌和平滑肌。对于肉品学研究上主要是指骨骼肌.骨骼肌约占体重的40一60%。骨骼肌由大量的肌纤维(myofiber)组成,每个肌纤维就是一个肌细胞。肌纤维与肌纤维之间有一层很薄的结缔组织膜围绕隔开,此膜叫肌内膜(endomysiUrn),大约20一300条肌纤维聚集成束,称为肌束(~debulldle),外包一层结缔组织鞘膜,称为肌束膜卜

骨骼肌的兴奋与收缩:骨骼肌纤维的结构

骨骼肌的兴奋与收缩:骨骼肌纤维的结构 AP传导到神经末梢,触发神经递质的释放,神经递质与接头后膜上的受体结合,使肌纤维产生动作电位,引起肌肉收缩。 骨骼肌是由大量成束的肌纤维组成的,每条肌纤维就是一个肌细胞。肌纤维平行排列成肌束,两端与由结缔组织构成的肌腱相融合,后者附着在骨上。通常四肢的骨骼肌在附着点之间至少要跨过一个关节,通过肌肉的收缩和舒张,就能导致肢体的屈曲和伸直。骨骼肌纤维接受运动神经末梢的支配,在有神经冲动传来时,发生收缩。当神经冲动传导到神经末梢,首先进行神经-肌肉接头的兴奋传递(AP传导到神经末梢,触发神经递质的释放,神经递质与接头后膜上的受体结合,使肌纤维产生动作电位的全过程。),使骨骼肌纤维产生自己的AP;然后,肌纤维内部的兴奋-收缩偶联(在横桥作用下,细肌丝沿粗肌丝之间的间隙,向肌小节中央(M线)作相对滑动,使肌小节缩短而产生收缩。)机制导致肌纤维产生收缩。 骨骼肌纤维的结构 骨骼肌纤维在结构上最突出的特点,是含有大量的肌原纤维和丰富的肌管系统,且其排列高度规则有序。肌纤维是肌肉的结构和功能单位。每个肌纤维内含有大量平行排列,纵贯肌纤维全长的肌原纤维(fibrils),肌原纤维是很多肌小节串联而成的长纤维结构。肌小节是肌肉收缩和舒张的最基本单位。 (一)肌原纤维与肌小节 在光镜下,每条肌原纤维的全长呈现规则的明暗交替,分别称为明带和暗带。暗带的长度固定,不论肌肉处于静止、被牵拉或收缩状态,它都保持1.5μm的长度。暗带的中央,有一段相对透明的区域,称为H带。其长度随肌肉的状态不同而有变化,在肌肉安静时较长,肌肉收缩时变短。H带的中央,亦即暗带的中央,有一条横向的暗线,称为M线。明带的中央也有一条横向的暗线,称为Z线。明带的长度在肌肉安静时较长,在肌肉收缩时也变短。已经肯定,肌原纤维上每一段位于两条Z线之间的区域,是肌肉收缩和舒张的最基本单位,称为肌小节,它由两侧各1/2个明带和位于中间的暗带构成(左图)。由于明带的长度可变,肌小节的长度在不同状态下可在 1.5-3.5μm之间变动,安静时肌小节的长度约为2.0-2.2μm。 肌小节的明带和暗带包含更细的,平行排列的丝状结构,称为肌丝。暗带中含有的肌丝较粗,称为粗肌丝,长度与暗带相同。实际上,暗带正是由于成束的粗肌丝通过M线固定在某些

骨骼肌纤维类型与运动

第二章骨骼肌纤维类型与运动[试题部分] 一、名词解释 1、兴奋性 2、阈强度 3、阈刺激 4、强度—时间曲 5、基强度 6、时值 7、神经冲动 8、神经肌肉接头 9、肌肉收缩的滑行学说 10、"单收缩 11、"强直收缩 二、单项选择 1、下列有关兴奋在神经肌肉接点传递特征的错误叙述是。 A.电传递 B.单向性 C.有时间延搁 D.易受药物或其他环境因素的影响 2、"依据肌丝滑行理论,骨骼肌收缩表现为。

A.明带缩短,H带不变 B.明带缩短,H带变窄或消失 C.暗带缩短,H带消失 D.暗带长度不变,H带不变 3、环绕肌原纤维的横管系统是。 A.Ca2+进出肌纤维的通道; B.营养物质进出肌纤维的通道; C.细胞外液与细胞内液交换的通道; D.将兴奋时的电变化传入细胞内部; 4、"位于肌浆网两端的终末池是。A实现肌纤维内外物质交换的场所;BCa2+的库;C Ca2+的和Mg2+的库; D Ca2+的释放库 5、目前认为实现骨骼肌细胞兴奋收缩耦联的关键因素是。 A兴奋沿横管系统传至细胞内部;B兴奋沿肌浆网传播融发Ca2+的释放;C 三联管兴奋引起终末池释放Ca2+;D终末池对Ca2+通透性增大 6、一般认为肌肉作等张收缩时。 A负荷恒定,速度恒定;B负荷恒定,速度改变;C负荷改变,速度改变;D负荷改变,速度恒定 7、屈膝纵跳起,股四头肌。 A只做等长收缩;B只做等动收缩;C先做拉长收缩再做等张收缩;D先做等张收缩再做拉长收缩 8、与慢肌纤维相比,属快肌纤维的形态特征是。

A肌纤维直径粗,毛细血管丰富;B肌纤维直径粗,线立体数目多;C肌纤维直径粗,肌浆网发达;D肌纤维直径细,毛细血管少 9、与快纤维相比,属快肌纤维的形态特征是。 A肌纤维直径较大,受胞体大的α运动神经元支配; B肌纤维直径较小,毛细血管的密度高; C肌纤维直径较大,线立体数量多; D肌纤维直径较小,肌浆网发达 10、"慢肌纤维的生理特征表现为。 A收缩力量大,耐持久;B收缩速度慢,抗疲劳的能力低; C收缩速度慢,兴奋阈值低;D收缩力量小,不持久 11、"快肌纤维的生理特征表现为。A兴奋阈值低,收缩速度快;B收缩速度快,抗疲劳的能力低; C收缩速度快,力量小;D收缩力量大,能持久 12、"腿部肌肉中快肌纤维占优势的人,较适宜从事。 A 800M跑; B 1500M跑; C 100M跑; D 100M游泳 13、"腿部肌肉中慢肌纤维占优势的人,较适宜从事。 A 100M跑;B跳高和跳远;C马拉松跑;D 800M跑 14、"训练对肌纤维横断面积的影响表现为。 A可使两类肌纤维都肥大;B对肌肌纤维横断面积大小无影响;C肌纤维出现选择性肥大;D举重训练使慢肌纤维肥大 15、"耐力训练可使肌纤维中。 A线粒体数目和体积增加,琥珀酸脱氢酶活性提高;

健身基础知识汇总-共8页

一、肌纤维的类型和特征 从人体生理学的角度来看,根据肌纤维的收缩的特性能把肌纤维分为两种:慢肌纤维(ST)、快肌纤维(FT)。这两种纤维在很多方面都会有所不同,包括肌肉的耐力水平、收缩力量、收缩速度。快肌纤维的特点是:收缩速度快、力量大,但是会易疲劳;慢肌纤维的特点是:收缩速度慢、力量小但不容易疲劳。 人体的所有肌肉块主要是由慢肌纤维和快肌纤维组成的。每块肌肉中这两种肌肉纤维都会共存,并且每块肌肉的纤维类型也不同。如果快肌纤维在肌肉块中占的比例大于慢肌纤维,那这块肌肉是以快肌纤维为主;反之则肌肉以慢肌纤维为主。 二、肌纤维类型、辨别方法与训练方法 1、活检。确定肌纤维类型的精确方法是进行活检,即从身上取出一小块肌肉,在显微镜下对其进行分析,以判别肌纤维类型。这种方法精确,但很麻烦,且对局部肌肉有损害,所以一般人没有必要用这种方法来判断。 2、测试肌肉耐力。这种方法是通过观察肌肉疲劳特点评估肌纤维类型。该法效果较好。做法是:若用肌肉收缩最大力80%的力量能重复练习的次数>15次,则为慢肌纤维占较高百分比;若用肌肉收缩最大力量80%的力量能重复练习的次数<5次,则为快肌纤维占较高百分比。 3、评估肌肉的发展。一般来说,快肌纤维比慢肌纤维在增长肌肉体积方面具有更大的潜力。若你的肌肉发展得比较快;则可认为自己具有较高百分比的快肌,反之则具有较高百分比的慢肌,当对自己肌纤维类型有了大致的了解,在增肌训练的时就可以利用它来制定练习的重复次数。 肌纤维选择性肥大原理:耐力训练能引起慢肌纤维的选择性肥大、速度和爆发力训练能够引起快肌纤维的选择性肥大。所以,天生体内有较高百分比慢肌纤维类型的人也许能从相对较高重复次数的练习中获得最大的益处,因为这种肌纤维类型比较适合耐力训练。一般情况下身体的肌肉可按以下正常情况下来训练 .臀部练习次数可达20~25次, .腿部为 15~20次, .上肢躯干10~15次 对天生体内快肌纤维占优势的人来说,完成相对较低的重复次数而速度较快的练习会获得较好的果。 .臀部练习次数可达10~15次 .腿部9~12次 .上肢躯干为6~次 肌肉练习必须在一定时间内以适宜的强度来完成,这样才能增加肌肉的体积和力量。 .臀部练习和适宜时间范围为 90~120秒 .腿部为 60~90秒 .上肢躯干为40~70秒 急性的肌肉酸疼 急性的肌肉酸疼,往往是因为运动的过程中,运动过于剧烈,肌肉内的氧供应不上,所以会造成肌肉内大量的乳酸(无氧糖酵解的产物)堆积。乳酸属于酸性的物质,它会刺激人体肌肉的神经未梢,让人有肌肉产生疼痛感;此外,乳酸在肌肉中堆积过多、局部渗透压过大的话,这就会把周围的水份吸过来,这样就会造成肌肉的水肿。而这种肿胀的刺激往往是引发肌肉酸疼的主要原因。在运动以后,肌肉内堆积的乳酸就会逐渐的被血液运走,这样肌肉的酸疼感也会慢慢消失。 延迟性肌肉酸疼 而相对延迟性肌肉酸疼发生的原因,目前在还没有比较一致的说法。有人认为在长时间的运动以后人体内的肌纤维会有少量的撕裂;也有人认为是长时间的运动造成肌肉的结缔组织损伤。这两种说法目前还没有具体的科学证据。对于这种原因导致的肌肉酸疼,可对本酸痛部位的肌肉做一些有氧运动和拉伸运动能够缓解并加速肌肉的恢复,减少疼痛。

骨骼肌纤维动作电位的测定

骨骼肌纤维动作电位的测定 【目的要求】 1.学习用标准玻璃微电极技术测定单肌纤维动作电位的方法。 2.观察单个骨骼肌纤维跨膜动作电位的基本特征。 【基本原理】 神经和肌肉纤维的电活动包括安静时的静息电位和兴奋时的动作电位。 在静息状态下,肌细胞膜表面的任何两点都是等电位的,但细胞膜内、外却存在明显的电位差,此即为静息电位。当肌细胞受到刺激而发生兴奋时,膜内外的电位发生可扩布的变化,称为动作电位。 应用标准玻璃微电极技术,把尖端直径小于1μm 的玻璃微电极(引导电 极)插入肌细胞内,把无关电极置于细胞外,以观察和测定肌细胞的静息电位和动作电位。 【动物与器材】 蟾蜍或蛙、常用手术器械、示波器、微电极放大器、电子刺激器、刺激 隔离器、微操纵器、解剖显微镜、屏蔽实验台、玻璃微电极拉制器、毛坯玻璃管、肌槽、Ag-AgCl 乏极化电极、无关电极、锌铜弓、1cm 长的不锈钢针若干、任氏液。 【方法与步骤】 1.玻璃微电极的制备按第一章玻璃微电极一节中的要求,进行微电极的 拉制和充灌3mol/LKCl 溶液。微电极的阻抗可在实验前用电子管电压表测量,也可在开始实验时用微电极放大器进行测量。本实验要求玻璃微电极的阻抗约为10—20MΩ。制备好的微电极要妥善保存,以避免折断尖部或溶液 蒸发。 2.坐骨神经-缝匠肌标本的制备按实验2 的步骤制备蟾蜍或蛙的坐骨神 经-缝匠肌标本。将标本移入放有任氏液的肌槽内,缝匠肌内侧面向上,用不锈钢针将耻骨端固定于肌槽的一侧,另一端拉紧结扎线,将肌肉伸长到原来的1.2—1.5 倍,并用钢针固定。将坐骨神经轻轻搭在肌槽的刺激电极上。3.实验仪器的连接与参数的调整 (1)刺激系统按图2-14 连接刺激系统,包括刺激器、隔离器和肌槽上 的刺激电极。刺激器采用“手控”,“波宽”为0.1—0.2ms,刺激强度以肉眼可见到肌肉稍有收缩为准。 (2)探测系统包括玻璃微电极、无关电极以及微操纵器(图2-15)。 将制备好的玻璃微电极放入微操纵器的夹持器内,把一根与微电极放大器探头正极相连的Ag-Agcl 乏极化电极插入玻璃微电极的KCl 溶液内。调节微操纵器的水平位移旋钮,使玻璃微电极正置于待插肌纤维的上方。再调节垂直位移粗调。使微电极尖端进入靠近肌纤维的任氏液内。与微电极放大器探头负极相连的无关电极插入肌槽的任氏液内。 (3)按图2-16 连接微电极放大器和示波器。放大器的“增益”置于1 倍,其探头应尽量靠近肌槽。示波器从以“DC”双端输入,“灵敏度”为 20mV/cm。记录静息电位时,用连续扫描, 时基为0.5—2s/cm。记录动作电位时,用外触发扫描。

骨骼肌纤维的类型与运动的关系

骨骼肌纤维地类型与运动地关系 (一)运动员地肌纤维类型 、时间短、强度大地运动项目地运动员:快肌纤维百分比大; 、耐力性运动项目地运动员:慢肌纤维百分比大; 、对有氧能力和无氧能力需求均较高地运动员其两类肌纤维分布接近. (二)训练对肌纤维地影响 、运动训练对肌纤维类型地转变地影响:“遗传学派”,“训练—适应学派”. 、运动训练对肌纤维地面积和数量地影响:肌纤维增粗,即肥大;肌纤维数目增多.. 、训练对肌纤维代谢特征地影响 ()训练对肌纤维有氧能力地影响; ()训练对肌纤维无氧能力地影响; ()训练对肌纤维影响地专一性,即训练所引起地肌纤维地适应性变化. 血液地组成 (一)血浆(无形成分):占血液总量~. (二)血细胞(有形成分):占血液总量~.包括红细胞、白细胞和血小板. (三)红细胞比容(或称为压积):红细胞占全血容积地百分比,健康成年男子红细胞比容约为~,女子约为~文档来自于网络搜索 四、血液地机能 (一)维持内环境地相对稳定 (二)运输机能 、运输气体;、运输营养;、运输代谢产物;、运输热量. (三)参与调节 激素随血液循环运送到相应地靶细胞,以调节其机能活动. (四)防御与保护机能 、白细胞→吞噬分解作用→细胞防御; 、血浆中免疫物质→免疫→化学防御; 、血小板→凝血和止血→保护作用. 心脏泵功能地评定 (一)心输出量 、每搏输出量:左心室每次收缩所射出地血量,简称搏出量. 、射血分数:每搏输出量占心室舒张末期地容积百分比. 、每分输出量:左心室每分钟射出地血量,通常所说地心输出量是指每分输出量. 、心指数:空腹、安静状态下每平方米体表面积计算地心输出量. 、心力贮备:心输出量随机体代谢需要而增长地能力,包括心率贮备和搏出量贮备. 、心脏作功量 (二)影响心输出量地因素 、影响搏出量 ()前负荷(心室充盈量);()后负荷(动脉血压);()心肌收缩能力. 、心率地影响在一定地范围内,心率与心输出量呈正变关系. 二、动脉血压 (一)概念:在血管内流动地血液对血管壁地侧压力. (二)动脉血压地形成 、血管内有足够地血液充盈;、心脏收缩射血; 、外周阻力;、大动脉弹性.

骨骼肌

第四节骨骼肌特性 一、骨骼肌的物理特性 伸展性:骨骼肌在受到外力牵拉或负重时可被拉长的特性。 弹性:而当外力或负重取消后,肌肉的长度又可恢复的特性。 粘滞性:肌浆内各分子之间的相互摩擦作用所产生的特性。

二、骨骼肌的生理特性 (一)骨骼肌的兴奋性 骨骼肌是可兴奋组织,受到刺激后可产生兴奋(即产生动作电位),这种特性称为兴奋性。 引起兴奋的刺激条件: ①刺激强度:引起肌肉兴奋的最小刺激强度 阈上刺激、阈下刺激 ②刺激的作用时间 ③刺激强度变化率

二、骨骼肌的收缩性 肌肉受到刺激产生兴奋后,立即产生收缩反应,这种特性称为收缩性。 整块骨骼肌或单个肌细胞受到一次刺激时,先产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。 收缩期 舒张期 刺 激 10ms 单收缩曲线 潜伏期

如果增加刺激频率,则各刺激所引起的单收缩可以相互融合,若后一刺激均在前次收缩的舒张期结束之前刺激肌肉时,则形成不完全强直收缩。 如果刺激频率继续增加,后一次刺激就会落在前次收缩的收缩期内,形成新的收缩,于是各次收缩的张力变化或长度缩短完全融合或叠加,肌肉处于更强的持续收缩状态,称为完全强直收缩。 相对张力 0 1 2 3 100 200 300 400 500 600 700 800 900 1000 时间(ms ) 单收缩 完全强直收缩 S S S S S S S S S S S S S S S 不完全强直收缩

第五节骨骼肌收缩形式 一、骨骼肌的收缩形式 (一)向心收缩 概念:肌肉收缩时,长度 缩短的收缩称为向心收 缩。(也有叫缩短收缩) 特点:收缩时肌肉长度缩 短、起止点相互靠近,因 而引起身体运动。

相关文档
最新文档