电力系统频率测量误差成因分析

电力系统频率测量误差成因分析
电力系统频率测量误差成因分析

电力系统频率测量误差成因分析

内容预览

电力系统频率测量误差成因分析

肖遥,孟·让·柯洛德

(1.湖北省电力试验研究院,湖北省430077;2.布鲁塞尔自由大学)摘要:系统频率是大家普遍关注的电能质量指标之一。大量应用新技术对频率测量精度的要求也越来越高。近年来用于精确测量频率的新方法也常见于报道,但这些方法几乎都在波形畸变上做文章。文中通过理论分析和试验,揭示了引起频率测量偏差的主要原因是系统中的发电机出力、负荷和系统结构发生变化,导致被测电压信号初相角发生突变所致。

关键词:系统频率;频率测量;电能质量

1引言

电力系统频率是重要的电能质量指标之一。对于系统频率监测和控制来讲,其测量误差达到10mHz应该说是基本满足要求的。但是一些新技术在电力系统的应用中要求有精确的频率测量结果作为参考值。测量系统频率的通常手段是通过检测电压波形的过零点,利用1个或几个周期过零点的时间间隔来推算出此段波形的频率。然而,研究表明,在有信号干扰的情况下,用此方法测量的频率不很精确。人们还发现,即便是在同一电网的不同位置,在同一时刻的频率测量结果也不一致。经研究,发现波形畸变、暂态过程中的非周期分量、噪声干扰等是造成频率测量精度不高的原因,有人试图利用现代数学理论来提高频率测量精度[1~9]。关于频率测量的诸多方法的介绍可以参考文献[10],本文不多述评。这些频率测量算法的共同点是在波形上做文章,有的甚至将电压初相角恒定作为假设条件。然而其最终结果却不尽如人意。

笔者通过实验和理论分析认为:导致系统频率测量精度差的主要原因是系统中的发电机出力、负荷波动以及系统结构发生变化,使电压信号的相位发生突变所致。

2系统频率的定义

设有如式(1)的电压信号

式中ω(t)/2π为系统频率f s。

当信号的基波相角和谐波相角稳定时,式(2)的频率就是系统的频率。从式(2)还可以看出,该频率与信号的幅值没有任何联系,这从试验中也得到证明。事实上,对任意波形的稳态周期信号,其频率是稳定且唯一的。在电力系统中,系统频率f s基本稳定,只在标准允许的范围内缓慢变化,故式(2)中角频率ω(t)的导数几乎为零。对频率测量的唯一影响因素是基波电压初相角φ1(t)的变化。系统某点电压相角在小范围内变化是频繁而随机的。如图1示,在系统电压保持稳定的条件下,根据式(3),当负荷Z L变化时会引起P1处的电压幅值和初相角发生变化,电压初相角的突变必然使得P1处的频率测量结果偏离

系统的真实频率。

用图1还可以解释在同一系统的不同位置,频率测量结果有差异的原因。在P2处,其电压为

即同一负荷变化时所引起的系统各点电压初相角的变化是不同的。系统的负荷每时每刻在波动,故而系统频率的测量中每时每刻存在着误差。当然,当系统的电源电压或系统结构发生突变时,观测点的电压初相角也会发生突变。

3实验结果

用比利时ACTLEM公司生产的电能质量综合监测仪Qwave进行测量频率的试验。频率测量的主要原理基于电压波形的过零点。该仪器还可以对电力系统谐波、闪变、三相电压不平衡度、电压偏差、电压下凹和上凸等进行实时连续监测。其信号分析的采样周期是10周。利用Qwave对3种不同的信号源进行了频率测量分析。

(1)测量用于继电保护装置检测试验的信号发生器Omicron CMC56发出的电压信号的频率。

Omicron CMC56可以发出频率恒定的基波和谐波叠加信号,信号中基波和谐波的幅值和初相角分别可调。当突然改变基波或谐波幅值时,Qwave测量到的频率非常稳定并十分接近于给定值,误差不超过0.5 mHz。一旦给基波的相位加上一突变量,则该相位突变期间采样的频率测量结果就会有较大的偏差。当频率给定值发生突变时,频率的测量结果亦有偏差。

(2)在动模实验室建立如图1所示的简单供电系统,在P2处监测系统频率。

电源来自于电力系统,负荷为一并联阻抗。当人为改变负荷阻抗时,负荷突变期间的电压信号频率测量结果有较大的偏差。频率偏差的变化规律是:若电压信号的初相角突然增大,则频率测量值大于真实频率;若电压信号的初相角突然减小,则频率测量值小于真实频率。图2为动模实验中进行连续频率测量的结果。由图可以看出,当负荷阻抗投切时,频率测量结果的偏差可达5 mHz以上。当电源侧电网结构发生变化或系统侧的其它负荷投切时,也会使频率测量结果有小的偏差。此外,从图2中还可以观察到系统频率的缓慢变化。图2中的横坐标是采样窗口,每个采样窗口计10个周期。

(3)现场频率监测。

图3为某工厂配电变压器380 V母线上的连续频率测量曲线。该工厂有一大容量6脉动整流冲击性负荷,其快速启停,造成观测点的频率测量结果以系统频率为中轴上下快速波动。系统侧的其它负荷干扰或电源波动也会引起频率测量的偏差。现场观测到的相邻采样窗口频率测量结果最大突变量在10mHz以上。

比较3种信号的频率测量结果:Omicron CMC56因为信号稳定,测量结果最接近于设定值,而且结果相当稳定;动模实验室的负荷由恒定阻抗模拟,在阻抗不变时不存在对观察点电压相位的扰动,唯一的扰动是电源侧的电源变化或网络结构变化所引起的干扰;现场观测点除了负荷变动的干扰外,还有电源侧对电压相位的干扰。可见,现场观测到的频率偏差最大且频繁。

4高精度频率测量的应用

某些高新技术在电力系统中的应用需要高精度的频率测量作保障。一种新的系统阻抗测量方法要求通过高精度的频率来对不同时间的采样数据进行同步处理[12]。其原理是:通过不同时间的电压、电流采样得到2组数据

系统阻抗可以表示为

理论分析得出阻抗测量误差与频率测量偏差成正比,并得到试验认证

式中N为从式(5)的数据采样起点到式(6)数据采样起点的信号总周期数。

正常情况下系统中的电压波动在2%以内,如果以10周为一个采样周期,则N=20时,频率测量偏差每增加1 mHz,则会使阻抗的测量误差增加12.52%。而现行频率测量算法[1~9,11]中其误差可达5%,显

然使阻抗测量精度大打折扣。

5对策及建议

非稳态波形畸变、暂态过程时的非周期分量和噪声干扰会使电压相位发生不确定的漂移。但相比之下,电压初相角的突变应该是造成频率测量不精确的主要因素。

事实上,式(2)中含有2个频率,一个是系统频率ω(t)/2π,由系统总出力和总负荷的平衡关系确定,也是系统中唯一的频率,在图2和图3中表现为缓慢变化。而式(2)的最终结果f l是系统在某处的局部频率,是局部干扰迫使电压初相位摄动的结果,在图2和图3中表现为围绕系统真实频率上下快速波动。精确频率测量的目的是试图使局部频率的测量结果实时逼近系统频率,从而反映系统运行的真实状况。

因为试验条件所限,对如何反映系统真实频率提出如下设想和建议:(1)大容量电厂高压母线的电压相角应该比系统其它位置的电压相角稳定,除非邻近系统结构有较大的变动或有发电机并网等操作。一般情况下,发电机转子的惯性会维持系统的频率相对稳定。

(2)系统的局部频率测量误差和观测点电压相位突变之间的关系为

在有的工程中,曾见到通过频率测量结果来校核电压相位的方法。这种方法的缺陷是频率测量结果本身就含有相位突变的影响,如果试图通过频率测量结果来校正相角突变,然后通过相位突变来校正频率测量误差,则会陷入一种循环怪圈。事实上,系统各处在同一时刻有许多种操作,系统观测点l的电压初相角φl在同一时刻的突变量在空间上服从均值为0的高斯分布

因此利用GPS时钟同步测量系统测量各地(如各发电厂出口)的局部频率,取测量结果中5%~95%范围内局部频率的均值应该可以逼近系统频率(指各观测点的测量结果按照由小到大排序,比如100个测量点,去掉5个最小值和5个最大值,剩下的90个结果取平均值,以便排除系统中操作引起的电压相角大突变),然后将这一结果发往各地共享。

(3)现有的频率测量算法当遇到相位扰动时则显得无能为力,因此进行新的算法探讨势在必然。

6结论

电压信号的初相角受到扰动是影响频率测量精度的主要原因之一。进行频率测量算法研究时要充分考虑到这一因素。

参考文献:

[1]Terzija V V,Djuric M B,Kovacevic BD.Voltage phasor and lo-cal system frequency estimation using Newton type algorithm[J].IEEETrans on PD,1994,9(3):1368-1374.

[2]Eckhardt V,Hippe P,Hosemann G.Dynamic measuring of fre-quency and frequency oscillations

in multiphase power systems[J].IEEETrans on PD,1989,4(4):95.

[3]Girgis A A,Peterson W L.Adaptive estimation of power fre-quency deviation and its rate of change for calculating suddenpower system overloads[J].IEEE Trans on PD,1990,5(2):585.

[4]Giray M M,Sachdev M S.Off-nominal frequency measurementsin electric power systems [J].IEEE Trans on PD,1989,4(3):1573.

[5]Sidhu T S,Sachdev M S.An iterative technique for fast and ac-curate measurement of power system frequency[J].IEEE Trans on PD,1998,13(1):109.

[6]Begovic M M,Djuric PM,Dunlap S,etal.Frequency tracking inpower networks in the presence of harmonics[J].IEEETrans on PD,1993,8(2):480.

[7]Lai LL,Chan W L,Tse CT,et al.Real-time frequency and har-monic evaluation using artificialneuralnetworks[J].IEEETranson PD,1999,14(1):52.

[8]Moore PJ,Carranza R D,John A T.1 new numerical techniquefor high-speed evaluation of power system frequency[J].IEE Proc-Gener Transm Distrib,1994,141(5).

[9]Moore P J,Allmeling JH,John A T.Frequency relaying basedon instantaneous frequency measurement[J].96WM 066-1,PWRD.

[10]谢小荣,韩英铎.电力系统频率测量综述[J].电力系统自动化,1999,23(3).

[11]刘涤尘,夏利民,商志会.基于人工神经网络的电网频率测量方法[J].电网技术,2000,24(8).[12]Xiao Y,Maun JG,et al.Harmonic impedance measurement using harmonic voltage and current increments from disturbing loads [C].9th ICHQP Proceedings,2000:220-225.

电力系统频率的二次调节.doc

电力系统频率的二次调节 一、频率的二次调节基本概念 上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。 Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。 系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。 频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。 如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。 反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

电力系统调频调压

第一章电力系统调频 第一节系统频率标准 1.1 福建电网与华东电网并列运行时,频率调整按《华东电力系统调度规程》执行。标准频率为50 赫兹,频率偏差不得超过50±0.2赫兹,超出50±0.2赫兹为事故频率,事故频率的允许持续时间为:超出50±0.2赫兹,持续时间不得超过30分钟;超出50±0.5赫兹,持续时间不得超过15分钟。在正常情况下,发电机组AGC 投入时,系统频率应保持在50±0.1赫兹范围内运行。 1.2 当发生省网或省内局部地区独立网运行时,独立网用电负荷为300万千瓦及以上,频率偏差正常不得超过50±0.2 赫兹;超出50±0.2赫兹,持续时间不得超过30分钟;超出50±0.5赫兹,持续时间不得超过15分钟。独立网用电负荷小于300万千瓦,频率偏差正常不得超过50±0.5 赫兹;超出50±0.5赫兹,持续时间不得超过30分钟;超出50±1赫兹,持续时间不得超过15分钟。 1.3 系统事故造成地区电网独立网运行时,地调及地区电厂负责独立小网调频调压任务,使之能与省电网顺利并列,不得出现因调整不当而引起的高频切机、低频减负荷甚至垮网的现象。 第二节调频厂的确定及频率监视 2.1 电网运行时应指定第一调频厂和第二调频厂。 省电网单机容量在100MW及以上的火电厂、单机容量在

50MW及以上的水电厂、燃汽轮机组以及抽水蓄能机组均可担任系统的第一、二调频厂。正常运行情况下,省调应指定上述其中的电厂担任第一调频厂,机组投入AGC运行的电厂即自动转为第一调频厂,未指定为第一调频厂或未投AGC的上述电厂均为系统的第二调频厂。 选择系统调频厂应遵循以下原则: 1、具有足够的调频容量,可满足系统负荷的最大增、减变量。 2、具有足够的调整速度,可适应系统负荷的最快增、减变化。 3、在系统中所处的位置合理,其与系统间的联络通道具备足够的输送能力。 2.2 省调调度室应装有ACE监视画面和数字式频率显示器及记录式频率记录仪,当频率超出50±0.1赫兹时,应具备告警信号。系统的频率以省调调度室的频率显示为准;系统第一、第二调频厂和频率监视点每月15日白班应与省调核对频率显示装置。 2.3 为有效监视系统频率运行,对各单位装设频率表的要求: 1、在各地调调度室和所有电厂、变电站(集控站)的中控室(或集控室)均要求装有频率显示器;所有500/220千伏变电站应装有数字式频率表。 2、各地调调度室和第一、第二调频厂应装有数字式和记录式频率表,当频率超出50±0.15赫兹时,应具备有告警音响和灯光信号。

电气工程及其自动化毕设之文献综述电子教案

文献综述 学院名称电气工程学院指导教师 职称教授 班级 学号 学生姓名

2016年1月12日

电网规划设计文献综述 摘要:电能是现代社会中最重要、也是最方便的能源。电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特点。电力系统运行要求保证安全可靠地供电、保证良好的电能质量和保证电力系统运行的经济性。科学合理的电力规划设计是电力系统安全、可靠、经济运行的前提,对获取最大的经济效益和社会效益均具有十分重要的意义。在电网规划设计中有涉及到电网电压等级的选择、线路导线的选择、变压器容量和型号的选择、电力系统运行接线方式的选择、电力系统潮流计算等方面。 关键词:电力系统;接线方式;电网规划

在高速发展的现代社会中,电力工业是国民经济的基础,在国民经济中的作用已为人所共知:它不仅全面地影响国民经济其它部门的发展,同时也极大地影响人民的物质和文化生活水平的提高,影响整个社会的进步。改革开放以来,电力工业取得了突飞猛进、举世瞩目的辉煌成就,从1996年起,我国发电机装机容量和年发电均居世界第二位,超过了俄罗斯和日本,仅次于美国,进入世界电力生产和消耗大国行列。发电厂规模和单机容量的大幅度提高,标志着我国的电力工业已经进入一个飞速发展的新时期。 电能是现代社会中最重要、也是最方便的能源。电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特点: 1.电能的生产和消费具有同时性 由于电能的生产和消费是一种能力形态的转换,要求生产与消费同时完成,因此电能难于储存。从这个特点出发,在电力系统运行时就要求发电厂在任何时刻发出的功率,必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损耗之和。 2.电能与国名经济各部门和人民日常生活关系密切 由于电能可以方便地转化为其他形式的能,且易于远距离传送和自动控制,因此得到广泛的应用。供电的突然中断会产生严重的后果。 3.电力系统的过度过程非常短暂

电能质量 电力系统频率允许偏差(GBT15945-1995)

中华人民共和国国家标准 电能质量电力系统频率允许偏差 GB/T159451995 Quality of electric energy supply Permissible deviation of frequency fof power system 国家技术监督局1995-12-21批准1996-08-01实施 1主题内容与适用范围 本标准规定了电力系统频率允许偏差值及其测量仪表的基本要求 本标准适用于正常运行下标称频率为50Hz的电力系统 本标准不适用于电气设备的频率允许偏差 2术语 2.1频率偏差frequency deviation 系统频率的实际值和标称值之差 2.2频率变动frequency variation 频率变化过程中相邻极值频率之差 2.3冲击负荷impact load 生产(或运行)过程中周期性或非周期性地从电网中取用快速变动功率的负荷 3频率偏差允许值 3.1电力系统正常频率偏差允许值为0.2Hz当系统容量较小时偏差值可以放宽到 0.5Hz 3.2用户冲击负荷引起的系统频率变动一般不得超过0.2Hz根据冲击负荷性质和大小以及系统的条件也可适当变动限值但应保证近区电力网发电机组和用户的安全稳定运行以及正常供电 4测量仪表 用于频率偏差指标评定的测量须用具有统计功能的数字式自动记录仪表其绝对误差不大于0.01Hz ______________ 附加说明 本标准由全国电压电流等级和频率标准化技术委员会提出并归口 本标准由电能质量电力系统频率允许偏差国标工作组负责起草 本标准由电力科学研究院机械标准化研究所国家电力调度中心电力部信息所纺织机械研究所牵引电气设备研究所等单位参加起草 本标准主要起草人林海雪俞莘民雷晓蒙向海平曹军梅罗新潮蔡邠

配电自动化综述

暨南大学 本科生课程论文 论文题目:国内外配电网及自动化系统存在的问 题及发展趋势 学院:电气信息学院 学系:电气工程及其自动化 专业: 课程名称:配电网综合自动化技术 学生姓名:蒋博彦 学号:2011053128 指导教师:李伟华 2014年10月25日

国内外配电网及自动化系统存在的问题及发展趋势 蒋博彦 (1.暨南大学、电气信息学院、电气工程及其自动化、珠海,) 摘要:配电自动化是利用电子、计算机、通信、网络等技术的重要配电手段。本文介绍了国内外配电自动化系统的现状、存在问题及发展方向。 关键词:配电自动化;现状;问题;展望 1.配电自动化系统的组成 配电自动化是指利用现代电子计算机、通信及网络技术,将配电网在线数据和离线数据、配电网数据和用户数据、电网结构和地理图形进行信息集成,构成完整的自动化系统,实现配电网及其设备正常运行及事故状态下的监测、保护、控制、用电和配电管理的现代化。配电自动化系统包含以下三个方面: (1)变电站自动化系统:指应用自动控制技术和信息处理与传输技术,通过计算机硬软件系统或自动装置代替人工对变电站进行监控、测量和运行操作的一种自动化系统。 (2)配电管理系统:是指用现代计算机、信息处理及通信等技术,并在GIS平台支持下对配电网的运行进行监视、管理和控制。主要功能有:数据采集和监控(SCADA)、配电网运行管理、用户管理和控制、自动绘图设备管理地理信息系统(AM/FM/GIS)。(3)用户自动化系统:用户自动化即需求侧管理,主要包括负荷管理、用电管理、需方发电管理等。 2.国内外配电自动化现状分析2.1 国内配电自动化发展和现状 我国配电网自动化起步较晚,到现在不过十多年。1998年之后,随着城乡电网建设与改造的大范围开展,在多个省份和直辖市掀起了第一轮配电网自动化技术试点和应用的热潮。此后我国配电网经过多年的建设和改造,供电能力有了明显的提高,目前已基本能够满足我国社会经济发展的需求。然而,长期以来配电网的建设未得到应有的重视, 建设资金短缺, 设备技术性能落后, 事故频繁发生, 严重影响了人民生活和经济建设的发展,由于当时对配电网自动化的认识不足,相关系统和设备的技术不成熟,配电网架基础比较薄弱、一次配电设备存在缺陷、通信手段不完备、缺乏维护资源等原因,配电网的薄弱环节显得越来越突出。一些早期建设的配电自动化试点没有实现预期效益,部分自动化系统遭到闲置或废弃,成为配电网自动化建设的反面教材。[1] 随着电力的发展和电力市场的建立, 配电网实现自动化是一项综合性工程, 最基本条件是应具有较为完善的多路电源配电网点, 具有较好的城市规划及电源路径分布, 有较为可靠的一次、二次设备,这对城市建设规模和经济发展对配电网提出了较高要求。有不少地区的配电网自动化项目通

4测量误差基本知识(精)

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。 图4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差mγ。 15

16 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差s m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m = m = m = m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差s m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a -b ,求h m 。 (2)已知a m =m =±6",β=a -c ,求βm 。 (3)已知a m =b m =m ,S=100(a -b) ,求s m 。 (4)已知D=( ) h S -,s m =±5mm ,h m =±5mm ,求D m 。 (5)如图4-2,已知x a m =±40 mm ,y a m =±30 mm ; S=30.00m ,β=30? 15'10",s m =±5.0mm ,βm =±6"。求P 点坐标的中误差x p m 、y p m 、M (M=m m + )。

电力频率调整及控制

频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。 12.1.2.3电力系统频率特性 电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出: 式中――电力系统有功功率变化量的百分值: ――系统频率变化量百分值; ――为备用容量占系统总有功负荷的百分值。 12.1.2.4一次调频 一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。

综述电力系统自动化技术分析研究

综述电力系统自动化技术分析研究 发表时间:2016-11-04T16:49:01.773Z 来源:《电力设备》2016年第15期作者:朱亦张小华[导读] 随着自动化技术的深入和发展,电力系统自动化技术面临着更严峻的挑战。 (湖北工业大学湖北省武汉市 430000) 摘要:随着自动化技术的深入和发展,电力系统自动化技术面临着更严峻的挑战。要真正意义上保证电力的安全可靠运行,不断的满足人们的需要,单一的电力系统自动化设备已不能满足新时期电力发展的需求。本文论述了电力系统自动化的概念和特点,对电力系统自动化技术发展前景及方向进行了分析和阐述,可供大家参考。 关键词:自动化;电力系统;技术分析; 当前,电力系统承担着经济发展和人民群众生活提供稳定可靠电能的职责。由于电网规模总量逐年扩张,电网结构复杂和电网建设运行环境多变,电网故障发生的频率和严重程度也越来越高,严重的会直接导致整个电力系统不能正常运行。随着自动化技术的高度发展,建立自动化监控系统已逐步成为现实。通过对系统进行实时监测,能够及时发现问题,自动分析原因,并采取应急措施,从而保障整个电网平稳安全运行,具有十分积极的意义。 1. 电力系统自动化的概念 电力系统自动化是通过应用多种能够实施自动检测、决策和控制的装置,通过信号系统和数据信息传输系统对电力系统的各个部分和整体进行远程监测和控制,来保证整个电力系统的安全、稳定、高效运行,提供优质的供电服务。电力系统自动化控制技术的应用主要是保障电力系统各个生产、供电环节的安全、稳定、高效,实现整个系统经济效能的增加以及生产成本的降低。现代科学技术发展最为显著的特征就是自动化技术在各个领域的应用,电力系统关乎着我国人民群众的生产和生活,更应当通过先进的科学技术提高自身的发展水平。 2. 电力系统自动化技术的特点 2.1 强大的电网规模 电力系统自动化技术的发展,不仅提高了现代供电系统的能力,而且还保证了经济建设的健康、可持续发展,为社会经济的发展做出了重大贡献,也为其打下了坚实的经济基础。电力系统自动化技术主要构成有信息技术、网络技术、电子技术以及控制技术等,这也是电力系统的重要组成成分,其复杂性和综合性也使得整体系统得到很好的运行。由于电网规模的扩大化使得电力系统得到很好的管理,消除了现代化信息和自动化技术之间的问题。 2.2 分布区域大远距离供电 目前,由于我国电力系统的不断发展,其分布领域不断扩大,包括一些环境比较差的地区,这些地区都是高山峻岭,很难进行供电电线的施工,因为不仅成本高,还受到环境条件的限制。合理的解决措施是建立合理数量的供电线路,通过柔性供电技术提高供电电量。自动化技术的这一远距离供电特点解决了很多问题,特别是供电和输电方面。不过,带来的困难也导致了需要不断地提高自动化技术。 3. 电力系统自动化技术应用分析 3.1 智能化控制技术 智能化控制技术的发展一样也经历了多个阶段,从简单的函数单输出单输入控制到线性非线性控制及多级协调控制再到智能化控制,从电力系统的工作模式我们能够发现其属于一种动态的系统,而针对这种动态的系统进行智能化控制对于电力系统工程具有非常重要意义,智能化控制技术能够将电力系统的变化参数加以智能化分析进而得出相应的控制策略,有效的对电力系统进行科学操作,而这一系列过程对于电力系统的工作效率起到了积极的作用。 3.2 电力互感器的应用 电力互感器是针对输电线路检测和维护不可缺少的设备之一,主要功能就是通过以一定比例关系使高电压与大电流数值降低到可以用仪表检测的装置,但是由于电压升高的程度越大绝缘就越难,信号动态范围也就小,设备体积和质量都需要相应增大等一系列问题随之而来造成的不便利和不安全后果,而光电式电力互感器频率响应范围宽、测量精度高、抗电磁干扰、低压侧避免高压危险等特点的具备对于传统的电力互感器是一个很好的在电力线路维护和检查工作中的技术更新,进而得到了电力系统自动化的引进和应用,不过从长远技术要求层面还需要在传感光学材料与传感头结构以及电源供电等方面做出进一步的改进和优化,从而能够更好的促进电力系统的高性能,高效益的产出电能,服务于社会的建设环境当中。 3.3 微机实时保护系统 电力系统微机实时保护系统是由高可靠性、高实时性且高拓展性的装置组成的系统,在技术上精密、通信能力强大且具备嵌入式实时操作系统,所以在硬件设施上要求较高,同时对于嵌入式软件的要求也不断的提高,在对电力系统进行保护的过程中能够实现多任务高效优先级管理并且具有良好的可移植性和拓展性,这也是近年来被越来越多的应用到电力系统自动化中的原因,而这也有效的防止了事故发生时瞬间对电力系统造成的破坏,一旦稳定控制措施发生延迟能够通过嵌入式技术及时的在有限时间内做出反应,确保电力系统免遭损失。 4. 电力系统自动化技术共享能力 在电力系统自动化技术的发展过程中,系统模型大部分集中在对地理空间属性的描述,以几何特征为主的模拟地理系统的思想几乎成为一种标准,但在实际应用中,它的控制对象具有复杂的电力物理结构。建立电力系统特有的空间语义分析模型是非常必要的。这种针对语义层次的数据共享,最基本的要求是供求双方必须对同一数据具有相同的认识,只有基于同一种对电力系统知识的抽象认知才能保证这一点,因此在数据共享过程中要有一种电力系统的基本模型,作为不同部门之间数据共享的基础。它包括两个方面:地理实体几何属性的标准定义和表达,包含电力系统服务所覆盖的空间区域几何属性;物理属性数据的标准定义和表达,对于电力系统,它包含物理结构,各组成部件及整体的物理性能、运行方范的信息共享、综合,以及多维、动态的应用分析。

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

电力系统的频率问题

电力系统的频率问题 为什么我国的电源是采用50Hz的,而外国有的国家采用60Hz的电源?我国在制定此标准时是依据什么呢?50Hz和60Hz电源的优点、缺点在哪里?两者对负载的功率有没有影响?另外,机场和飞机上又为什么采用400Hz的电源? 其实50H和60HZ的区别不是很大,没有实质性的问题。不过是发电机的转速略有差别。选择50HZ或60HZ,在一个国家里,总得一致。 应当引起人们关注的倒是,为什么要采用50HZ或60HZ,而不是更高或更低。 在电气系统里,频率是一个很重要的基本要素,并不是随意确定的。 这一个问题看起来简单,实际上是一个比较复杂的问题,涉及的方面比较多,从原理上追朔,应当从麦克斯韦发现了经典电磁理论、赫兹为麦克斯韦的理论添上了至关重要的一笔、法拉第的法拉第电磁感应定律及其世界上第一台电磁感应发电机、英国工程师瓦特金首先制出了电动机,法国人皮克希制成了发电机、西门子发现了发电机的原理,发明了发电机,这是发电机领域的第一例实际应用等说起。 此后人们发现总结出来的定理为,周期性地改变方向的电流叫做交流电,电流发生1 个周期性变化的时间叫做周期,每秒电流发生变化的次数做频率,单位是赫兹(为了纪念赫兹的贡献)。交流电的频率为50(60)赫,电流方向每秒钟发生50(60)个周期性的变化,每秒改变的次数为100(120)次。 电动机是根据通电线圈在磁场中转动的基本原理制成的。如果将电动机线圈两端加两个铜制滑环及分别与滑环接触的两个电刷就成为交流发电机(原理)。发电机是实现将机械能转化为电能的装置,需要原动机拖动。 频率大小的确定与发电机、电动机及变压器等的构造、材料等有关。 50赫的两极发电机的同步转速是3000转/分,而如果频率上升一倍达到100赫,那么同步转速将会是6000转/分。如此高的速度将会给发电机的制造带来很多问题,特别是转子表面的线速度太高,必将大大限制容量的增加。另外,从使用角度看,频率过高,使得电抗增加,电磁损耗大,加剧了无功的数量。譬如以三相电机为例,其电流大大下降,输出功率及转矩也大大下降,实在没有益处。另外,如果采用较低的频率譬如30赫,变压效率低,那么将不利于交流电的变压和传输。 现代电力系统的频率即电力系统中的同步发电机产生的正弦基波电压的频率。频率是整个电力系统统一的运行参数,一个电力系统只有一个频率。我国和世界上大多数欧洲国家电力系统的额定频率为50Hz。美洲地区多数是60Hz。大多数国家规定频率偏差±0.1~0.3Hz之间。在我国,300万kW以上的电力系统频率偏差规定不得超过±0.2Hz;而300万kW以下的小电力系统的频率偏差规定不得超过±0.5Hz。由于大机组的运行对电力系统频率偏差要求比较严格,因此有些国家对电力系统故障运行方式的频率偏差也作了规定,一般规定在±0.5~ ±1Hz之间。超过允许的频率偏差,大机组将跳闸,这不利于系统的安全稳定运行。 在电力系统内,发电机发出的功率与用电设备及送电设备消耗的功率不平衡,将引起电力系统频率变化。当系统负荷超过或低于发电厂的出力时,系统频率就要降低或升高,发电厂出

电气自动化技术专业综述

电气自动化技术专业综述 谭连记 作为一个高起专电气自动化技术专业的学员,因为平时工作与电为伍,已对电气自动化有一些接触,但像这样系统学习相关理论知识是很难得的。因此我倍加珍惜学习的机会,认真听课,从而对电气自动化技术有了更为深入全面的了解。下面就概述一下我学习的电气自动化技术这个专业。 一、我选择的学校——吉林大学 吉林大学于2000年6月12日由原吉林大学、吉林工业大学、白求恩医科大学、长春科技大学、长春邮电学院合并组建而成;2004年8月29日,原中国人民解放军军需大学并入吉林大学。目前,吉林大学不仅已成为我国目前办学规模最大的高等学府,而且是学科门类最齐全的教育部直属重点综合性大学,是首批进入"211工程"的国家重点建设的大学之一,也是"985工程"国家重点建设的大学之一。学校师资力量雄厚,荟萃了一大批学识渊博、治学严谨的国内外知名学者。 二、电气自动化技术专业定义 电气自动化技术专业主要培养掌握电气技术、电力自动化技术、各种电气设备及自动化设备的基本原理和分析方法,能够从事供用电、各类电气设备、电气控制及自动化系统的安装、设计、调试、维护、技术改造、产品开发和技术管理的高级技术应用性专门人才。开设的主要课程有:C语言程序设计、C语言上机操作、毕业实习、大学英语(二)、大学英语(一)、电机与拖动基础、电力电子变流技术、电路电子技术、电路理论基础、电气元件、高等数学(理专)、工厂供电、计算机应用基础、可编程控制器、控制工程基础、数字电子技术、思想道德修养、微机原理及应用、现代远程学习概论。 三、电气自动化的发展历程 电气自动化经历了从无到有电气自动化技术是随着智能控制、信息网络、电子技术、的飞速发展与电子和信息技术紧密结合在一起的一门电气工程应用技术学科直至发展到成熟的过程。20世纪50年代,电机电力等产品的出现催生了电气自动化才有“自动化”一词的说法。而继电器和接触器设定来完成事先安排好的判断和逻辑功能其出现及应用使得机器可以按照人的意志实现的,促使了电气自动化的发展变革。20世纪60年代,现代控制理论开始出现,伴随着微型计算机在各个行业中的不断的推广与在专业上的实际应用,生产的过程最优化的控制与管理也使自动化进入到了一个全新自动化阶段,电气专业的自动化技术飞速地

电力系统调频综述论文

电 力 系 统 频 率 稳 定 论 文 姓名:韩群 指导老师:刘景霞 班级:2012电气2班

摘要: 电力系统频率调整是电力系统中维持有功功率供需平衡的主要措施,其根本目的是保证电力系统的频率稳定。电力系统频率调整的主要方法是调整发电功率和进行负荷管理。一次调频是指当电力系统频率偏离目标频率时,发电机组通过调速系统的自动反应,调整有功出力以维持电力系统频率稳定。二次调频也称为自动发电控制,是指发电机组提供足够的可调整容量及一定的调节速率,在允许的调节偏差下实时跟踪频率,以满足系统频率稳定的要求。三次调频就是协调各发电厂之间的负荷经济分配,从而达到电网的经济、稳定运行。关键词: 电力系统,一次调频,二次调频,三次调频,综述

ABSTRACT Maintain the power system of power system frequency adjustment is active power balance between supply and demand of main measures, its fundamental purpose is to ensure that the frequency of power system stability. Power system the main method is to adjust the power frequency adjustment and load management. Primary frequency control is to point to when power system frequency deviates from the target frequency generator set automatically by the speed control system of reaction, active efforts to maintain stability of power system frequency adjustment. Secondary frequency modulation, also known as the automatic generation control refers to the adjustable generators provide sufficient capacity and a certain adjustment rate, real-time tracking frequency under the allowed to adjust deviation, in order to meet the requirements of system frequency stability. Three frequency modulation is to coordinate the economic load distribution between the various power plants, so as to achieve economic and stable operation of the power grid. Key words: Electric system , A frequency modulation ,The two FM The three FM , Review

测量误差理论的基本知识

测量误差理论的基本知识 1.研究测量误差的目的是什么? 2.系统误差与偶然误差有什么区别?在测量工作中,对这二种误差如何进行处理? 3.偶然误差有哪些特征? 4.我们用什么标准来衡量一组观测结果的精度?中误差与真误差有何区别? 5.什么是极限误差?什么是相对误差? 6.说明下列原因产生的误差的性质和削弱方法 钢尺尺长不准,定线不准,温度变化,尺不抬平、拉力不均匀、读数误差、锤球落地不准、水准测量时气泡居中不准、望远镜的误差、水准仪视准轴与水准管轴不平行、水准尺立得不直、水准仪下沉、尺垫下沉、经纬仪上主要轴线不满足理想关系、经纬仪对中不准、目标偏心、度盘分划误差、照准误差。 7.什么是误差传播定律?试述任意函数应用误差传播定律的步骤。 8.什么是观测量的最或是值? 9.什么是等精度观测和不等精度观测?举例说明。 10.什么是多余观测?多余观测有什么实际意义? 11.用同一把钢尺丈量二直线,一条为1500米,另一条350米,中误差均为±20毫米,问 两丈量之精度是否相同?如果不同,应采取何种标准来衡量其精度? 12.用同一架仪器测两个角度,A=10°20.5′±0.2′,B=81°30′±0.2′哪个角精度高? 为什么? 13.在三角形ABC中,已测出A=30°00′±2′,B=60°00′±3′,求C及其中误差。 14.两个等精度的角度之和的中误差为±10″,问每一个角的中误差为多少? 15.水准测量中已知后视读数为a=1.734,中误差为m a=±0.002米,前视读数b=0.476米, 中误差为m b=±0.003米,试求二点间的高差及其中误差。 16.一段距离分为三段丈量,分别量得S1=42.74米,S2=148.36米,S3=84.75米,它们的中 误差分别为,m1=±2厘米,m2=±5厘米,m3=±4厘米试求该段距离总长及其中误差m s。 17.在比例尺为1:500的地形图上,量得两点的长度为L=23.4毫米,其中误差为m1=±0.2mm, 求该二点的实地距离L及其中误差m L。 18.在斜坡上丈量距离,其斜距为:S=247.50米,中误差m s=±0.5厘米,用测斜器测得 倾斜角a=10°30′,其中误差m a=±3″,求水平距离d及其中误差m d=? 19.对一角度以同精度观测五次,其观测值为:45°29′54″,45°29′55″,45°29′ 55.7″,45°29′55.7″,45°29′55.4″,试列表计算该观测值的最或然值及其中误 差。 20.对某段距离进行了六次同精度观测,观测值如下:346.535m,346.548,346.520,346.546, 346.550,346.573,试列表计算该距离的算术平均值,观测值中误差及算术平均值中误差。 21.一距离观测四次,其平均值的中误差为±10厘米,若想使其精度提高一倍,问还应观测 多少次? 22.什么叫观测值的权?观测值的权与其中误差有什么关系? 23.用尺长为L的钢尺量距,测得某段距离S为四个整尺长,若已知丈量一尺段的中误差为 ±5毫米,问全长之中误差为多少? 24.仍用23题,已知该尺尺长的鉴定误差为±5毫米,问全长S由钢尺尺长鉴定误差引起的 中误差是多少?两题的结论是否相同?为什么?

变电站综合自动化系统的综述

变电站综合自动化系统的综述 张飞1张建超2张天玉3 1.长沙电力职业技术学院电力工程系;湖南,长沙,410131 2.贵州大学,电气工程学院;贵州,贵阳,5500033.尉氏县供电公司;河南,尉氏,475500 摘要:随着科学技术的不断发展,计算机已渗透到了世界每个角落。电力系统也不可避免地进入了微机控制时代,变电站综合自动化系统取代传统的变电站二次系统,已成为当前电力系统发展的趋势。变电站综合自动化系统以其简单可靠、可扩展性强、兼容性好等特点逐步为国内用户所接受,并在一些大型变电站监控项目中获得成功的应用。 关键词:变电站综合自动化系统电力系统电网监控通讯网络 1概述 要提高变电站运行的可靠性及经济性,一个最基本的方法就是要提高变电站运行管理的自动化水平,实现变电站综合自动化,所谓变电站综合自动化,就是广泛采用微机保护和微机远动技术,分别采集变电站的模拟量、脉冲量、开关状态量及一些非电量信号,经过功能的重新组合,按照预定的程序和要求实现变电站监视、测量、协调和控制自动化的集合体和全过程,从而实现数据共享和资源共享,使变电站设计简捷、布局紧凑,使变电站的运行更加安全可靠。 2变电站自动化 变电站是电网参数和各种信息的主要来源和枢纽,是保护、数据采集、控制以及数据共享的对象,因此是实现自动化的重点,变电站自动化SA是指能够不经干预的,在一个或多个变电站内进行数据采集和控制,包括微机保护、微机监控及自动调控等智能电子装置,实现电网运行工况监视、继电保护、综合调控、远动、接口以及信息管理等,是一项集控制技术、计算机应用、数据传输、现代化设备及管理于一身的综合信息管理系统,其目的是提高供电可靠性,改进电能质量,降低运行费用,减轻运行人员的劳动强度。 2.1继电保护 继电保护是保障电力设备安全和电网稳定运行的最重要、最有效的技术手段,随着我国电力系统向大机组、高电压、现代化大电网发展,继电保护技术及应用水平也取得了长足的进步。 2.1.1微机保护 微机保护是以微处理机作为基本的实现手段和方法,具有长记忆特性和强大的数据处理能力,通过快速数字处理实现故障诊断、出口、通讯以及更为复杂的控制功能,功能完善、使用维护方便、智能化程度高、体积小、适应一次系统灵活性大,以超强的技术性能、可靠性为整个电力系统的专家层、决策者、应用面所接收而得到了广泛的应用。 2.1.2网络保护 网络保护是以局域电网为对象的系统保护。各变电站之间通过光纤建立系统联网,使各单元保护之间可以快速传递控制信号,及时获取过程数据和信息,从而做出最优的选择,进一步提高响应的速度和灵敏度。网络保护的关键是快速有效的通讯技术,因而光纤得以广泛的应用。网络化概念也是未来继电保护和安全自动装置的重要特征。 2.1.3预测保护 保证系统安全稳定运行是所有电力工作者追求的永恒主题,如何预测故障,准确地捕捉故障的早期特征,在故障给系统造成冲击以前切除故障对于提高系统稳定性、延长电气设备的使用寿命是非常有意义的。比如ULP机组失磁保护在机组失磁以后,测量阻抗在还没有进入异步运行下,抛阻抗圆(系统失步)以前,根据有功和励磁电压的变化提前确定故障并迅速跳闸,避免由于系统失步引起的系统电压降低和转子发热和震动。预测保护是未来继电保护的发展趋势,也是对电力科技工作者新的挑战。 2.2监测控制 电网监控SCADA/EMS是变电站自动化系统的主要功能之一,早期主要指“四遥”功能,现在SCADA的内容已经涉及到故障检测、网络优化、提高电网运行效率、 降低线损的 32电气工程应用2011.1

电力系统频率变化的影响

电力系统频率偏低偏高有哪些危害 电力系统频率的频率变动会对用户、发电厂、电力系统产生不利的影响。1.对用户的影响:频率的变化将引起电动机转速的变化,从而影响产品质量,雷达、电子计算机等会因频率过低而无法运行;2.对发电厂的影响:频率降低时,风机和泵所能提供的风能和水能将迅速减少,影响锅炉的正常运行;频率降低时,将增加汽轮机叶片所受的应力,引起叶片的共振,减短叶片寿命甚至使其断裂。频率降低时,变压器铁耗和励磁电流都将增加,引起升温,为保护变压器而不得不降低其负荷;3.对电力系统的影响:频率降低时,系统中的无功负荷会增加,进而影响系统,使其电压水平下降。 当供电电路的频率偏高时,1、电动机的转速回高(n=60f/p(1-&) ),当电动机转速增大时,其实际功率成倍增加,其结果电动机很容易过载烧毁;2、中国电气设备是按50赫兹设计的,如果大于其允许的频率数,电气原件容易损坏。当供电电路的频率偏低时,电动机转速会过低,会使有的设备不能正常工作,如水泵可能不出水,风机风量、风压过低。 频率变化对电力用户及电力系统的影响包括哪些 对用户: 1、用户使用的电动机的转速与系统频率有关,频率变化将使电动机的转速变化,从而影响产品的质量。例如,纺织工业都会因为频率的变化出现次品。 2、近代工业,国防和科学技术都已经广泛使用的电子设备受到频率影响较大。 系统本身: 1、低频运行,会对发电机的叶片所受到的应力有影响。甚至引起共振,降低叶片寿命。 2、增大励磁电流,提高温升等。 系统频率的变化主要是引起负荷端异步电动机转速的变化。 如果频率降低的过多,将使电动机停止运转,会引起严重的后果。比如,火电厂的给水泵停止运转,将迫使锅炉停炉。另一方面,如楼上所讲,对于汽轮机在低频运行状态下时,会缩短汽轮机叶片的寿命,严重时会使叶片断裂。(这是因为汽轮机转子一般瘦长,转速较快,可达1500r/s,突然频率过低,会使叶片断裂)。 如果频率过高,则会出现失步等问题。 推荐楼主看《电力系统分析(上)》诸俊伟和《电力系统分析(下)》夏道止 电力系统频率变化的原因

相关文档
最新文档