钙离子通道与心律失常

钙离子通道与心律失常
钙离子通道与心律失常

现代分子毒理学机制研究表明:乌头碱可促进钠离子通道电流(I ),增加内向整流钾电流(I ,)以及L一型钙离子通道电流(Ica-L),抑

制瞬时外向钾电流(It。),明显延长动作电位时程(APD),增加后除

极发生率,引起折返冲动,诱发快速型心律失常, ]。其中L一型

钙离子电流、内向整流钾电流、钠内流可能是心律失常发生中起关

键作用的离子靶点。乌头碱改变心肌细胞膜上一系列离子电流的机

制是影响相关通道基因的表达。如,使钠离子通道基因(SCN 5A)表

达上调,导致心肌细胞膜钠离子通道失活关闭不正常,钠离子内流

增加[241;促进L一型钙离子通道基因(Cavl 2)的mRNA表达,引起L

一型钙离子通道电流密度增加,细胞内钙离子浓度升高【20 ;降低

瞬时外向钾电流基因(Kv43)的mRNA表达,改变It。,从而导致APD平

台期延长,复极异常,引起复极时程的离散和后除极的发生,导致

心律失常_2 。

L一型钙通道属于电压依赖性钙通道,其开放与关闭主要取决于膜电位的变化,

属长时程钙通道。

心室肌细胞膜上的钙通道以L型钙通道为主,生理情况下细胞内钙浓度上升主要

取决于细胞内钙释放,经L型钙通道产生的内向钙电流是内钙释放触发的主要机

制【剐。Ic,-L主要在快速去极化时引起动作电位的传导,参与心肌动作电位

平台期的形成和维持。L一型钙离子通道电流的升高会导致心肌细胞内钙超负荷,而各种细胞内钙增加将会引发心律失常。广泛的相关研究结果显示,L一型钙通

道编码基因的突变会导致包括Brugada综合征在内的多种类型的遗传性心律失常『2 。Sun等发现,由于L一型钙通道编码基因表达上调而引起的钙离子浓度增加,可能是脑缺血所致严重心律失常的可能机制之一[28】。Timothy综合征是

一种由于L一型钙离子通道基因(Cavl 2)的突变所致的多器官异常及心律失常综

合征。Cavl 2基因G406R的突变不仅改变了其电压依赖性失活动力学,而且显著

减缓了通道时间依赖性失活,导致L型钙通道“功能增强”,动作电位平台期内

向电流增加,QT间期延长。在后续研究中发现,L一型钙离子通道阻断剂(尼索

地平)能抑制突变通道显著增强的钙离子内流,因而具有治疗Timothy综合征的

潜力

根据以上充足的研究证据可以推测,粉防己碱通过非特异性抑制钙

离子的跨膜转运,对抗乌头碱引起的细胞内钙离子浓度升高,从而

阻止严重心律失常的发生

______基于知识发现工具Arrowsm ith探求防己与附子配伍减毒机制的研究

临床表现

心律失常的血液动力学改变的临床表现主要取决于心律失常的性质,类型,心功能及

对血液动力学影响的程度,如轻度的窦性心动过缓,窦性心律不齐,偶发的房性期前收缩,一度房室传导阻滞等对血液动力学影响甚小,故无明显的临床表现,较严重的心律失常,

如病窦综合征,快速心房颤动,阵发性室上性心动过速,持续性室性心动过速等,可引起

心悸,胸闷,头晕,低血压,出汗,严重者可出现晕厥,阿-斯综合征,甚至猝死,由于心

律失常的类型不同,临床表现各异,主要有以下几种表现:

1.冠状动脉供血不足的表现

各种心律失常均可引起冠状动脉血流量降低,各种心律失常虽然可以引起冠状动脉血

流降低,但较少引起心肌缺血,然而,对有冠心病的患者,各种心律失常都可以诱发或加

重心肌缺血,主要表现为心绞痛,气短,周围血管衰竭,急性心力衰竭,急性心肌梗死等。

2.脑动脉供血不足的表现

不同的心律失常对脑血流量的影响也不同。脑血管正常者,上述血流动力学的障碍不

致造成严重后果,倘若脑血管发生病变时,则足以导致脑供血不足,其表现为头晕,乏力,视物模糊,暂时性全盲,甚至于失语、瘫痪、抽搐、昏迷等一过性或永久性的脑损害表现。

3.肾动脉供血不足的表现

心律失常发生后,肾血流量也发生不同的减少,临床表现有少尿,蛋白尿,氮质血症等。

4.肠系膜动脉供血不足的表现

快速心律失常时,血流量降低,肠系膜动脉痉挛,可产生胃肠道缺血的临床表现,如

腹胀,腹痛,腹泻,甚至发生出血,溃疡或麻痹。

5.心功能不全的表现

主要为咳嗽,呼吸困难,倦怠,乏力等。

心律失常有多少种类型心律失常在任何年龄段都可能发生。青年人出现的多是心动过速、早搏;而中老年人会出现房颤、室性心动过速等。儿童发病相对较少。心律失常种类很多,那么常见的心律失常有哪些类型呢?通过好朋友心电图机进行实时检查和动态心电信息采集,可以清楚地看到,心律失常的种类包括:

窦性心动过速:指窦性心律,但心率>100次/分,心脏长时间搏动过快。常见于运动、情绪激动、发烧、甲状腺机能亢进以及心力衰竭等情况。某些药物如阿托品和肾上腺素等也可以引起心动过速。

窦性心动过缓:指窦性心律,但心脏搏动过慢,心率<60次/分。可见于运动员和老年人,另外也发生在颅内压增高以及某些器质性心脏病患者身上。

早搏(房性或室性早搏):心脏的搏动提早出现,并且电信号不是由窦房结发出时就称为早搏(期前收缩)。正常人可以出现早搏,往往与精神紧张、消化不良和饮用含咖啡因的饮料等有关。当然,早搏也可以在各种器质性心脏病、电解质紊乱及服用洋地黄类药物等情况下出现。

阵发性室上性心动过速:简称室上速,是一种常见的心律失常。多见于没有器质性心脏病的年轻人,在老年人中女性略多于男性。

阵发性室性心动过速:简称室速,是一种严重的快速心律失常,可发展成心室颤动而导致心脏性猝死。常见于器质性心脏病,也可以见于严重的电解质紊乱、药物中毒和心脏手术过程中,极少数发生在无器质性心脏病的患者身上。

房扑和房颤:老年患者中常见的心律失常,经常伴有窦房结功能减退的表现。也常见于器质性心脏病患者,例如心力衰竭、风湿性心脏病、心肌病等患者身上。

室扑和室颤:非常严重的心律失常,多是严重的器质性心脏病到了晚期的表现。

心律失常不是一种独立的疾病,不同病人有不同的病因,因此治疗方法不同。治疗前要根据详细的病史、体检及实验室检查结果进行综合评估。

钙离子在调控细胞凋亡和细胞迁移中的作用综述

钙离子在调控细胞凋亡和细胞迁移中的作 用综述 中国农业大学植生071 薛永铭0702040118 摘要钙离子对生命活动具有重要作用。本文集中讨论钙离子在细胞凋亡与迁移的调控中所扮演的重要角色。亚细胞区室内钙离子分布的微妙变化可以有效地正调控或负调控细胞凋亡,这是钙离子参与四条信号通路来调控细胞凋亡的基础。程和平教授研究组最近发现钙闪烁在细胞定向迁移中的作用,对细胞迁移的研究有重要作用。 关键词钙离子信号通路细胞凋亡Caspase(半胱天冬酶)细胞迁移钙闪烁 一、钙离子对生命活动具有重要作用。 钙离子对多项生命活动具有重要作用。在动物生理的教科书中对其主要生理功能进行了总结: 1.钙离子是凝血因子,参与凝血过程; 2.参与肌肉(包括骨骼肌、平滑肌)收缩过程(内质网内钙库的释放); 3.参与神经递质合成与释放、激素合成与分泌; 4.是骨骼构成的重要物质。 这些重要生理功能已经有了几十年的研究基础,然而近些年的研究却揭示了钙离子在细胞凋亡与迁移的调控中所扮演的重要角色,使人们得以钙离子的生理功能,所以我认为集中笔墨将这两个方面进行介绍也是很有意义的。 二、钙离子参与四条主要的凋亡信号通路。 长期研究表明,亚细胞区室内钙离子分布的微妙变化可以有效地正调控或负调控细胞凋亡,因此钙离子扮演着细胞生存的捍卫者或是无情的死刑执行者的双重角色。近年来,研究者发现并总结出了引起哺乳动物细胞凋亡的四条信号通路:外部

通路(死亡受体通路)、内部通路(线粒体通路)、依赖Caspase-2的通路、不依赖于Caspase的通路(GrA介导通路)。四条通路图示见图1。 图1 引发哺乳动物细胞凋亡的四条信号通路。(引自Sten Orrenius et al., 2003)1.钙离子与死亡受体通路 死亡受体(DR)通路是目前研究最多最清楚的凋亡诱导机制。死亡受体包括Fas、TRAILR2、TRAILR1等,都属于肿瘤坏死因子受体超家族。以Fas为例,Fas 触发的凋亡机制是通过升高钙离子浓度来实现的。钙结合蛋白对内质网腔内钙离子变化非常敏感,与Fas结合后使钙离子内流,启动细胞凋亡,激活Caspase-8。在I 型细胞中,Caspase-8激活Caspase-3,而Caspase-3是细胞凋亡的直接执行者之一;在II型细胞中,Caspase-8剪切Bid蛋白,而后依赖线粒体通路诱导凋亡。 2.钙离子与线粒体通路 线粒体是胞内重要的钙库,内质网与线粒体之间的钙离子交流对细胞命运有深刻地影响。在一些刺激作用下,内质网将其储存的钙离子释放,然后线粒体摄取钙离子,引起钙离子超载,导致线粒体的损伤。线粒体的损伤会导致细胞色素c的释放,引发凋亡体(apoptosome)的形成,apoptosome激活Caspase-9,Caspase-9又激活了细胞凋亡的直接执行者Caspase-3,诱导了细胞凋亡。线粒体通透孔的开放使

基础与临床心律失常B1

基础与临床心律失常 一、单选题 1、约60%的窦房结动脉源于: A.左主干; B.左冠状动脉; C.右冠状动脉; D.左回旋支; E.冠状静脉 答案:C 2、房室结的血供90%来源于: A.左主干; B.左冠状动脉; C.右冠状动脉; D.左回旋支; E.冠状静脉 答案:C 3、下列叙述哪一项是错误的: A,希氏束起源于房室结; B.长约15 mm; C.通过中心纤维体骑跨在室间隔顶部; D.通常行走于室间隔膜部的右侧; E.往下分为左右束支 答案:D 4、以下哪种心律失常时听诊心律不规则:c a.房扑4:1传导 b.房颤伴III度房室传导阻滞 c.莫氏I型房室传导阻滞 d. 莫氏II型房室传导阻滞2:1传导 5、.以下哪种疾病不引起上肢静脉压升高:d a.右心衰竭 b.上腔静脉综合征 c.缩窄性心包炎 d.肝硬化 6、.I度房室传导阻滞患者心尖部听诊可能发现:b a.第一心音亢进 b.第一心音降低

c.第二心音亢进 d.第二心音降低 7、下列各项中容易引起晕厥(或阿-斯综合征)的是:c a.完全性右束支传导阻滞 b. 完全性左束支传导阻滞 c.完全性房室传导阻滞阻滞 d.室上性心动过速 8、以下哪种心律失常时听诊心律不规则:d a. 室扑4:1传导 b.房颤伴III度房室传导阻滞 c.室上速 d.II度(文氏型)房室传导阻滞 9、关于房颤的心室率控制以下那项是正确的: A.常选用心律平控制心室率; B.静息时控制在60-80次/分, 中等运动量90-115次/分; C.无必要选用动态心电图来评估室率控制; D.抗凝治疗; E. 无必要选用6分钟步行试验来评估室率控制 答案:B 10、以下除外哪一项均需华法令抗凝: A.TIA; B.卒中史; C.人工心脏瓣膜; D.高血压; E.糖尿病 答案: D 11、如果心动过速时一个或多个室性期前刺激提前希氏束激动60-80ms以上而不改变心房激动时间,支持诊断: A.室速;B.AVRT;C. AVNRT;D.房速;E.窦速 答案:D 12、女性, 36岁, 发作性心悸3小时就诊。查体:心率220次/分,节律规整。按压右侧颈动脉窦数秒钟, 心率突然降为76次/分, 患者自觉症状缓解。该患者最可能的诊断为: A. 阵发性房性心动过速; B. 阵发性室性心动过速; C.阵发性室上性心动过速; D.阵发性房颤;E窦速 答案:C 13、对阵发性室上速伴心功能不全者以下哪项选择是正确的: A.心律平;B维拉帕米;C.地尔流卓;D.西地兰;E.美多心安

钙离子通道阻滞剂对心肌缺血的保护

钙离子通道阻滞剂对心肌缺血的保护 摘要:钙离子通道阻滞剂选择性地作用于L-型钙通道,通过非竞争性地阻滞电压敏感的L-型钙通道,使Ca2+经细胞膜上的慢通道进入细胞内,即减少Ca2+内流,抑制Ca2+通过心肌,降低心肌细胞内的游离Ca2+浓度,而使心肌的兴奋收缩发生脱偶联,呈现负性肌力作用,因此可降低心肌耗氧量。心肌缺血时,心肌细胞发生能量障碍,细胞内钙积聚,引起细胞凋亡或死亡。钙离子通道阻滞剂能减轻钙超载,从而对缺血的心肌细胞产生保护作用。 关键词:L型钙通道;钙离子通道阻滞剂;心肌缺血;作用 Calcium Channel Blockers On Myocardial Ischemia Protection SHEN Yan (Chengdu Medical College,Chengdu610083,China) ABSTRACT: Selective calcium channel blockers act on the L-type calcium channels, non-competitive manner by blocking voltage-sensitive L-type calcium channel, so that by the plasma membrane Ca2 + slow channel into the cell, a reduction of Ca2 + influx, inhibition of Ca2 + through the myocardium, reducing myocardial free intracellular Ca2 + concentration, leaving the excitement of myocardial contraction uncoupling occurs, a negative inotropic effect, thus reducing myocardial oxygen consumption. Myocardial ischemia, myocardial cell energy barrier, the accumulation of intracellular calcium, induce apoptosis or death. Calcium channel blockers can reduce calcium overload, which the myocardial cells in ischemic protection. KEY WORDS:L-type calcium channel; calcium channel blockers; myocardial ischemia;effects 心血管疾病现已成为世界范围内的一个“现代流行病”,其发病率和死亡率逐年升高的趋势日益明显。随着现代医学的的发展,心血管疾病的防治、诊断和治疗的等方面都取得了一定的进展,但由于心血管疾病发病率高,治愈率低,并发症多,预后欠佳,一般治疗以降血压、降血脂、扩冠改善心肌缺血缺氧、应用能量合剂以营养心肌为主等途径,疗效都不尽如人意,提高心血管疾病的防治水平势在必行[1]。 心肌缺血,是指心脏的血液灌注减少,导致心脏的供氧减少,心肌能量代谢不正常,不能支持心脏正常工作的一种病理状态。心肌缺血对心脏和全身都可能带来许多不利影响。氧是心肌细胞活动必不可少的物质,而氧是通过血液输送给细胞的。心脏没有“氧仓库”,完全依赖心肌血供,所以一旦缺血,立刻会引起缺氧。缺氧的直接后果是心肌细胞有氧代谢减弱,产能减小,使心脏活动时必需的能量供应不足,引起心绞痛、心律失常、心功能下降。同时,代谢的废物也不能被有效及时地清除,易产生不利影响。缺血、缺氧、缺能量,最终会影响心脏的收缩功能。若有20%~25%的心肌停止收缩,通常会出现左室功能衰竭;若有40%以上的心肌不能收缩,就会有重度心泵功能衰竭。如果这种情况突然发生,就会出现非常危险的心源性休克[2]。 钙离子通道阻滞剂以抑制心肌收缩力减少耗氧,对心肌细胞缺血具有一定的保护作用。 作为一种拮抗剂,钙离子通道阻滞剂是指作用于L-型钙通道,抑制C a2+经L-型钙通道进入细胞内的药物。钙拮抗剂的发现和应用是70年代后期心脏血管疾病治疗中的重大进展。钙拮抗剂是一组展示源性化合物,通过非竞争性地阻滞电压敏感的L型钙通道,使Ca2+经细胞膜上的慢通道进入细胞内,即减少Ca2+内流,抑制Ca2+通过心肌和平滑肌膜的药物[3]。现已广泛用于治疗高血压,冠心病心绞痛,心律失常及肥厚性心肌病。 Ca2+参与机体众多的生理生化反应,是维持生命活动的重要阳离子,但细胞胞浆内Ca2+

植物钾的吸收与调节(综述)

河北科技师范学院 本科毕业论文文献综述植物钾的吸收与调节 院(系、部)名称:生命科技学院 专业名称:农业资源与环境 学生姓名:高丹 学生学号:0114070105 指导教师:刘微 2010年 5 月 25 日 河北科技师范学院教务处制

摘要 钾是植物生长发育所必需的矿质元素之一。钾吸收调控在生理学及分子生物学方面已取得了很多研究成果,综述了近年来钾素的吸收、影响因素及其调控三个方面的研究进展。 关键词:钾;吸收;影响因素;调节 钾是植物生长发育所必须的矿质营养元素之一,钾离子广泛分布于植物各组织器官中,是植物体内含量最丰富的一价阳离子。钾元素在植物生长过程中起着非常重要的作用,它参与植物生长发育中许多重要的生理生化过程。钾在植物体内无有机化合物,主要以离子形态和可溶性盐存在,或者吸附在原生质表面上。植物体内钾离子浓度往往比其它离子高,而且远远高于外界环境中的有效钾浓度[1]。全世界130 亿公顷土壤中,受到养分胁迫的占22.5%,仅有10.1%是无胁迫或轻度胁迫的土壤,其中在养分胁迫中约有40%的土壤缺钾[2]。中国1/3 左右耕地缺钾或严重缺钾,在热带和亚热带地区土壤缺钾现象尤为严重[3]。而钾作为品质元素,对于提高作物产量、改善作物品质起着非常重要的作用。近几年来,钾肥价格飙升,从而使土壤缺钾成为制约中国农业生产的严重问题之一。 1 K+的生理功能 K+是植物细胞中含量最丰富的阳离子之一,对生物体具有重要的生理功能。土壤中增施钾肥能显著影响树体的生长,增加植物组织中K+ 含量,对生长的影响系数为0. 709 ,对树体整体影响系数为0. 56[4]。K+ 能促进细胞内酶的活性。细胞内有50 多种酶或完全依赖于K+ ,或受K+ 的激活,如丙酮酸激酶、谷胺合成酶、62磷酸果糖激酶等都能被K+ 激活[5]。K+ 对酶的激活同其他一价阳离子一样都是通过诱导酶构象的改变,使酶得以活化,从而提高催化反应的速率,在某些情况下K+ 能增加酶对底物的亲和力,K+ 对膜结合A TP酶也有激活作用,K+ 可能参与tRNA 与核糖体结合过程中的几个步骤,参与蛋白质的合成[6]。K+ 在细胞内外不同浓度的分布是形成细胞跨膜电势的一个重要原因。作为植物细胞中最丰富的阳离子,K+ 是平衡负电荷的主要阳离子因而对阴离子(如NO-3 、苹果酸根等)的长距离运输也十分重要[7]。K+ 能调节植物体的许多生理功能,如增强植物光合作用,增强植株体内物质合成和转运,提高能量代谢等。在非盐生植物中,K+ 在细胞的渗透调节中起着重要作用,如气孔保卫细胞中的K+ 与相伴随的阴离子浓度变化是引起气孔运动的主要原因[8]。 酚类物质与植物病害的关系密切,近年来国内外的研究十分活跃。酚类物质是植物重要的次生代谢物质,参与许多生理过程如氧化还原反应、木质化形成、刺激反应和对毒素活性的反应等[9]。酚类物质中的肉桂酸、香豆素、咖啡酸、阿魏酸、绿原酸等单元酚都

心肌细胞钙离子与心力衰竭

心肌细胞钙离子与心力衰竭 吴军舟,叶绽蕾,潘雪阳,曹群 摘要: Ca2 +是参与心脏兴奋-收缩耦联的重要环节,Ca2 +的正常调节是心脏正常工作的基础。心肌细胞游离的Ca2+ 浓度的调节包括L型钙通道,Ryanodine受体和钙泵,心力衰竭发生时,心肌细胞中Ca2+ 的调节机制发生障碍。针对Ca2+ 调节机制的治疗也在治疗心力衰竭中有广泛的应用。本文分析Ca2 +在心衰中的扮演的角色,寻找临床治疗心衰的方法。 关键词: L型钙通道,Ryanodine受体,心力衰竭 正文: 1.心肌细胞内游离的Ca2 +调节 兴奋-收缩耦联是心脏力学活动的基本机制, 在这个过程中, Ca2 +起关键作用。心肌细胞游离的Ca2+ 浓度的调节主要有以下3个途径: 1)L型钙通道: 钙通道在心肌细胞膜上有两种,根据其不同电流特性分为L型和T 型。与T型钙通道相比,L型钙通道具有大电导、高电压激活、长时间开 放,能和多种拮抗剂作用的特点。L型电压依赖性钙通道(L—VDCC) 存在于大多数可兴奋细胞膜上,是异四聚体多肽复合体,包含α1,β,α2/S 亚基,在某些组织中还有γ亚基,允许去极化介导的Ca2 +内流人胞。辅助 亚基β、α2/δ均与αl亚基以非共价方式紧密结合,调节其生物特性以及使 仅αl亚基锚定/镶嵌在细胞膜[15]。L型钙通道电流主要在快速去极化时引 起动作电位的传播,参与心肌动作电位平台期的形成和维持。每一次心 肌搏动都需要Ca2 + 经L型钙通道进人胞浆内,然后触发肌浆网释放大量

的Ca2 +,这个过程被Fabiato称为钙诱发的―以钙释钙‖(calcium induced calcium release,CICR),具体机制见下。 2)Ryanodine受体 RyR(Ryanodine receptor)是一种钙离子释放通道,由于和植物碱-Ryanodine呈高亲和力的结合,并受其调节而得名。根据不同的组织分 布和药理学作用,RyR可以分为三类:RyR1、RyR2、RyR3。在心肌细 胞中钙释放通道的主要类型是RyR2,RyR主要参与了心肌的兴奋收缩耦 连,心脏起搏和心率失常的过程,CICR(calcium-induced Ca2 + release,CICR)是心肌中基础钙离子释放(钙火花)的主要方式[18]。RyRs位于 肌质网终池并与由质膜内陷形成的T管上的二氢吡啶受体(DHPR)由 直接或间接的联系。RyRs的三维结构已经确定,三维重组图像显示RyR 由两部分组成:一个较大的四重对称的棱柱状胞内复合体,为29×29× 12nm和一个较小的跨膜复合体为7nm [17]。心肌的动作电位时,即T- 管上的L型DHPR在去极化作用下开放引起胞外少量钙内流,会激活SR 上的RyR2开放从而使SR内大量钙释放入胞将引起心肌收缩,即―以钙 释钙‖(calcium-induced Ca2 + release,CICR)[16]。 3)钙泵,包括细胞膜钙泵(亦称Ca2 + -A TP酶),肌质网钙泵(sarcoendoplasmic reticulum calcium-ATPase2,SERCA2) 和Na+-Ca2 +交换 体(Na+-Ca2 + exchanger, NCX).Ca2 + -ATP酶在有Ca2 +和Mg2+的条件下每 水解一分子ATP可将细胞质内一个Ca2 +单向运出细胞。而SERCA2每 水解1分子ATP可转运2分子Ca2 +离开胞质。[1,2,3] 细胞膜去极化时Ca2 +内流,位于横小管处肌膜的L型钙通道被激活,Ca2 +内流激活通过―以钙释钙‖(CICR)的方式触发肌浆网上RyR2 释放更多的Ca2 +,使胞浆Ca2 +的浓度从0.1–0.2 mM 上升到2–10 mM。[4] L型钙通道与邻近RyR2 通道偶联作为一个功能体被称作为―钙火花‖(Ca2+ spark)。钙火花形态学包括钙火花峰值、空间尺度和存在时间而其动力学包括钙火花的上升相和衰减相。[5,6]细胞内Ca2 +浓度由10-7mol/L增至10-5mol/L左右时, 两个Ca2 +与肌钙蛋白C结合, 使其与肌纤蛋白的结合解除, 肌球蛋白头部与肌纤蛋白之间发生横桥结合;

心律失常

心律失常 心脏病变时,心内神经递质系统,尤其是肾上腺素能受体通路有不同 水准的损害。心力衰竭时受体功能异常是致心律失常以及心功能损害 的重要中介因素。受体通过调节各种离子通道(Na+、Ca2+、K+、Cl-通道)改变细胞内外离子浓度,影响细胞电活动,易致传导性改变或产生 后除极而诱发各种心律失常。利用遗传性猝死狗模型证实了室性心律 失常发生的机制为浦肯野纤维早期后除极诱发的触发活动[1]。 现就当前涉及心律失常与受体、心律失常遗传基础及传导系统相关研 究作一概述。 一、β肾上腺素能受体 1.β肾上腺素能受体(β受体)在传导系统的分布窦房结、心房内、 房室结、希氏束和心室内传导系统均有β1、β2受体分布。窦房结内 β1、β2受体均高于周围心房肌,房室结内β2受体最高。希氏束 β1受体最低,希氏束、房室间隔β2受体最低。另外传导系统各部位β1、β2受体密度不一致。窦房结与心房内均以β1受体为主,但窦 房结中β2受体为心房的2.5倍,与窦房结特殊的生理功能相一致[2]。希氏束内β2受体比例最高,占(72±6)%,房室结为(51±3)%,房室间隔均为(36±1)%。心室肌与冠状动脉相比,其β受体与G蛋白 耦联更牢固[3],可能与心室肌以β1肾上腺素能受体为主而冠状动 脉以β2受体为主的亚型分布差异相关。 关于年龄对344只Fisher大鼠β受体影响的研究发现,随年龄增长,房室结β受体密度下降,但受体亲合力及亚型比率不变;而在左右心室,β受体的密度和亚型比率均无改变[4]。心力衰竭患者有β1受体下调,这种现象在心力衰竭早期就出现,且与心力衰竭的严重水准 呈正相关;β2受体数目不变但功能下降,可能与抑制性G蛋白(G-proteininhibit)功能增强相关。β1、β2受体数目及比例在扩张型心肌病(DCM)、缺血性心肌病(ICM)心脏传导系统中差别不明显[5]。在

非离子通道阻滞剂的抗心律失常作用

非离子通道阻滞剂的抗心律失常作用 传统的抗心律失常药主要依赖于阻断Na+、K+、ca2+离子通道,包括I类、Ⅲ类和Ⅳ类抗心律失常药。由于多数治疗剂量的离子通道阻滞剂在患有器质性心脏病的患者中同时具有致心律失常的副作用,临床使用受到限制。近年来研究发现,心脏的机械牵张、炎症、氧化应激,心房肌细胞代谢,细胞外基质的重构和纤维化等也参与了心律失常的发生过程,已成为心律失常治疗的新靶点。非离子通道阻滞剂将成为心律失常治疗的重要药物,主要包括β受体阻滞剂、血管紧张素转换酶抑制剂/血管紧张素受体拮抗剂、他汀类药物、多聚不饱和脂肪酸等。由于这些药物的抗心律失常作用基于对参与心肌细胞电学和结构重构的受体和细胞信号转导途径的干预,它们不直接阻滞离子通道,无致心律失常的副作用,且对心律失常具有早期预防作用,近年来成为研究的新动向,又称之为“心律失常的上游治疗”。 一、β受体阻滞剂 β受体阻滞剂虽为Ⅱ类抗心律失常药,本身不直接阻断离子通道,却是惟一被大型临床试验证实能够降低器质性心脏病患者猝死的药物,能降低心肌梗死后患者30%的猝死风险,早期应用可降低慢性心力衰竭(心衰)患者30%的全因病死率。 二、血管紧张素转换酶抑制剂(angiotensin

convertingenzyme inhibitors,ACEIs)/血管紧张素受体拮抗剂(angiotensin receptor blocker,ARBs) 肾素.血管紧张素.醛固酮系统的持续激活能够导致心脏重构,也是心律失常发生的重要原因,尤其是其中间产物血管紧张素Ⅱ具有很强的致心律失常作用。首先,心房肌细胞的血管紧张素Ⅱ受体多于心室肌细胞,血管紧张素Ⅱ增加心房压力,导致心房牵张,使心房不应期缩短和心房内传导时间延长,从而使房性快速型心律失常的发生率增加。其次,血管紧张素Ⅱ显著增加心房和心室肌细胞的钙超载,在缺血时容易诱发再灌注心律失常。此外,血管紧张素Ⅱ促进心肌纤维增生,降低胶原酶的活性,使心肌的顺应性下降,这些改变均为折返性心律失常的发生提供了条件。而血管紧张素Ⅱ来源于血管紧张素转换酶途径和血管紧张素受体途径。因此,应用ACEIs和ARBs阻断血管紧张素Ⅱ的生成已成为心律失常治疗的新靶点,ACEIs和ARBs已经在心律失常尤其是房颤的治疗中逐渐受到重视。 三、他汀类药物 炎症反应是房性心律失常产生和维持的重要因素。25%一40%房颤的发生与心房炎症有关,尤其是术后房颤;而房性快速型心律失常的维持也常常与心房炎症瘢痕形成有关。近年来,他汀类药物即羟甲戊二酰辅酶A(HMG—CoA)还原酶抑制剂降脂之外的抗心律失常效应在临床试验中得到了证

离子通道研究进展

离子通道研究进展 陆亚宇(江苏教育学院生物系) 指导老师:戴谷(江苏教育学院生物系) 摘要:随着对离子通道研究的逐步深入, 各种研究方法都暴露出一定的局限性. 目前, 对于离子通道的研究工作进入了一个新阶段,即对不同方法的综合应用阶段,这不仅有助于人们在分子水平上认识离子通道的结构和功能的关系,也为不同领域的科学家提供了更多的合作机会.首先介绍了离子通道理论及实验研究方法, 并分析了各种研究方法综合应用的必要性,展望了这一领域的发展前景及其所面临的挑战性问题.并介绍最新的全自动膜片钳技术及其最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。全文对全自动膜片钳仪器的原理和技术细节作简单介绍。并简单介绍最新的关于K+通道在烟草中的发现,并对利用现代生物技术手段提高烟叶含钾量进行了展望。 关键字:离子通道; 实验方法; 全自动膜片钳;钾离子通道 前言: 细胞是通过细胞膜与外界隔离的,在细胞膜上 有很多种离子通道(如右图),细胞通过这些 通道与外界进行离子交换。离子通道在许多细 胞活动中都起关键作用,它是生物电活动的基 础,在细胞内和细胞间信号传递中起着重要作 用。随着基因组测序工作的完成,更多的离子 通道基因被鉴定出来,离子通道基因约占 1 . 5% ,至少有400个基因编码离子通道。相应的 由于离子通道功能改变所引起的中枢及外周疾 病也越来越受到重视。 离子通道的实验研究最初主要来源于生理学实 验。1949~1952年, Hodgkin等发展的“电压钳 技术” 为离子通透性的研究提供技术条件。60 年代中期,一些特异性通道抑制剂的发现为离 子通道的研究提供有力武器。1976年Neher和 Sakmann发展的膜片钳技术直接记录离子单通 道电流,为从分子水平上研究离子通道提供直 接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系。 通道结构和功能的研究日益成为电生理学、分子生物学、生物化学、物理学等多学科交叉的热点问题.对离子通道进行研究,传统的实验方法是电压钳技术、膜片钳技术等电生理学研究方法[; 传统的理论方法主要包括PNP模型和布朗动力学模型, 伴随计算机技术的迅猛发展和X 射线晶体衍射图谱技术在离子通道研究中的应用, 以及Mackinnon 等用X 射线晶体衍射技术成功解析出多个高分辨率离子通道三维空间结构,使得人们得以使用分子动力学模拟和量子化学计算等模拟在分子水平认识离子通道结构和功能的关系;随着分子生物学快速发展,又出现了定点突变技术、人工膜离子通道重建技术等实验技术手段本文中,笔者将

离子通道病

离子通道病 定义:离子通道结构的缺陷所引起的疾病.又称离子通道缺陷性疾病。 与信号传导相关的离子通道获得性或遗传性的结构和功能改变,均可能导致响应的信号传导异常,引起某种疾病或参与疾病的发病过程。如;肌肉型nAch受体自身免疫性损害-----重症肌无力;CI-通道CIC1基因缺陷-----先天性肌强直:Ryarodine受体缺陷------恶性高热易感性。 细胞膜上电压调控性钠、钙、钾和氯离子通道功能改变与先天性和后天性疾病发生之间的关系,对于离子通道基因缺陷、功能改变与某些疾病关系的研究,将可更新在离子通道生理学、病理学和分子遗传学等方面的知识,有助于开辟离子通道病治疗新途径。 90年代以来发现的主要离子通道病: 第一节钠通道病 钠通道基因突变所引起的心律失常,其原因可分为:基于通道活动的失活异常(不完全失活);基于通道激活异常(Ina降低);基于细胞膜上通道的数量减少(合成、运输及表达障碍)。钠通道分子结构上的有关部门位点发生突变时,就会严重影响钠通道的正常活动,而出现致命性心律失常。 所有钠通道基因突变所引起的疾病主要与α-亚单位的基因改变有关。在心肌细胞,位于染色体3p21-24上的SCN5A基因与钠通道(hH1)的组成有关。该基因突变是造成人类第3型长Q-T综合症(LQT3)的根本原因。先天性长Q-T综合症是一种罕见且致死的心脏电复极化过程异常延长性心律失常,心电图上QT间期延长,出现室性心律失常、晕厥和瘁死的一种综合症。与正常结构相比,在由突变SCN5A形成的钠通道α亚单位上,位于Ⅲ和Ⅳ结构域之间的4和5号片段有脯氨酸、赖氨酸和谷氨酰胺缺失现象。破坏了通到连接攀与通道的相互作用,使部分通道变为非失活的形式,通道失活的延迟导致持续的Na+内流,延长心肌复极时间,导致QT间期延长。 LQT与一些基因的突变或缺失有关,这些基因分别命名为LQT1---LQT4。 LQT1,LQT2是主要的心脏钾通道病。

钙离子通道与心律失常

现代分子毒理学机制研究表明:乌头碱可促进钠离子通道电流(I ),增加内向整流钾电流(I ,)以及L一型钙离子通道电流(Ica-L),抑 制瞬时外向钾电流(It。),明显延长动作电位时程(APD),增加后除 极发生率,引起折返冲动,诱发快速型心律失常, ]。其中L一型 钙离子电流、内向整流钾电流、钠内流可能是心律失常发生中起关 键作用的离子靶点。乌头碱改变心肌细胞膜上一系列离子电流的机 制是影响相关通道基因的表达。如,使钠离子通道基因(SCN 5A)表 达上调,导致心肌细胞膜钠离子通道失活关闭不正常,钠离子内流 增加[241;促进L一型钙离子通道基因(Cavl 2)的mRNA表达,引起L 一型钙离子通道电流密度增加,细胞内钙离子浓度升高【20 ;降低 瞬时外向钾电流基因(Kv43)的mRNA表达,改变It。,从而导致APD平 台期延长,复极异常,引起复极时程的离散和后除极的发生,导致 心律失常_2 。 L一型钙通道属于电压依赖性钙通道,其开放与关闭主要取决于膜电位的变化, 属长时程钙通道。 心室肌细胞膜上的钙通道以L型钙通道为主,生理情况下细胞内钙浓度上升主要 取决于细胞内钙释放,经L型钙通道产生的内向钙电流是内钙释放触发的主要机 制【剐。Ic,-L主要在快速去极化时引起动作电位的传导,参与心肌动作电位 平台期的形成和维持。L一型钙离子通道电流的升高会导致心肌细胞内钙超负荷,而各种细胞内钙增加将会引发心律失常。广泛的相关研究结果显示,L一型钙通 道编码基因的突变会导致包括Brugada综合征在内的多种类型的遗传性心律失常『2 。Sun等发现,由于L一型钙通道编码基因表达上调而引起的钙离子浓度增加,可能是脑缺血所致严重心律失常的可能机制之一[28】。Timothy综合征是 一种由于L一型钙离子通道基因(Cavl 2)的突变所致的多器官异常及心律失常综 合征。Cavl 2基因G406R的突变不仅改变了其电压依赖性失活动力学,而且显著 减缓了通道时间依赖性失活,导致L型钙通道“功能增强”,动作电位平台期内 向电流增加,QT间期延长。在后续研究中发现,L一型钙离子通道阻断剂(尼索 地平)能抑制突变通道显著增强的钙离子内流,因而具有治疗Timothy综合征的 潜力 根据以上充足的研究证据可以推测,粉防己碱通过非特异性抑制钙 离子的跨膜转运,对抗乌头碱引起的细胞内钙离子浓度升高,从而 阻止严重心律失常的发生 ______基于知识发现工具Arrowsm ith探求防己与附子配伍减毒机制的研究

hERG K+通道电流和药理学特性(Molecular Devices)

应用文献 IonFlux system 应用之一: hERG K +通道电流和药理学特性 简介 HERG (human ether-a go-go-related gene) K + 通道在心脏中高表达,是心肌动作电位三期快速复极化电流(IK r )的主要组成部分(Curran ‘95; Sanguinetti ‘95)。hERG 突变引起的功能缺失常伴随一些遗传性长QT 综合症(LQTS) 并且会增加发生严重的室性心律失常, 扭转性实行心动过速 (Tanaka ‘97; Moss ‘02)的风险。HERG 钾离子通道被作用于心脏或非作用于心脏的药物抑制,都被证实有非常大的可能性出现获得性药物诱导的长QT 综合症(LQTS),甚至导致猝死(V andenberg, Walker & Campbell ‘01)。实际上,hERG 钾离子通道被抑制引起的副作用是近年来药物撤市的主要原因,因而药物作用于外源性表达于哺乳动物细胞的hERG 通道的体外效应评价已被 国际药品注册协调会议(International Conference on Harmonization )推荐作为临床前安全性评价工作的一部分(ICHS7B Expert Working Group, ‘02)。 hERG 钾离子通道药物效应评价的金标准方法是手动膜片钳记录。然而,这种低通量、高成本的方法在大量的安全性筛选实验中非常受限制。近年来,全自动膜片钳技术发展越来越成熟,可以获得高通量的、可与手动膜片钳记录结果相媲美的数据。IonFlux? 系统结合了读板机的便捷和传统膜片钳技术的优秀性能。本文主要利用IonFlux 系统记录了在哺乳细胞中表达的hERG 电流以及一些阳性抑制剂对hERG 阻断效应的药理学特性分析。 材料和方法 细胞 实验中使用G418筛选的稳定表达hERG 通道的CHO 细胞(Millipore PrecisION? hERG-CHO Recombinant Cell Line, Cat# CYL3038)。细胞培养在含10%胎牛血清的Glutamax DMEM/F12 培养基 (Gibco, Cat# 11320) ,加有1% 青霉素-链霉素以及500 μg/mL G418。实验前至少提前24小时将细胞转移至30℃培养箱中,或传代后一直放置在30℃培养箱中。细胞密度不能超过90%。收集细胞时,使用Detachin (Genlantis, San Diego, CA, Cat# T100100)消化细胞,冲洗并轻柔吹打,最后细胞悬浮在细胞外液中,浓度为每毫升2-5百万个细胞。 溶液和化合物 细胞外液成分(ECS )含有(mM ):NaCl 145, KCl 4, MgCl 2 1, CaCl 2 2, HEPES 10, 葡萄糖 10,用NaOH 调pH 至7.4 。细胞内液成分(ICS )含有(mM ):KCl 120, HEPES 10, Na 2ATP 4, EGTA 10, CaCl 2 5.374, MgCl 2 1.75,用KOH 调pH 至7.2。 hERG 抑制剂购自Sigma 。化合物第一步全部溶于DMSO 中,制成高浓度的母液(10-50 mM ),然后按照浓度梯度和最终外液中的终浓度的倍数关系进行下一步的稀释,因而最终相应的DMSO 浓度为(0.1- 0.3%)。DMSO 溶液(0.1- 0.3%)作为阴性对照的记录始终开始于抑制剂作用之前, 且规定不能对电流幅度的影响超过10%。 Figure 1. IonFlux 高通量全自动膜片钳系统,采用“读板机”式模式,简化了工作流程、增加了实验通量。系统配有16通道和64通道两种型号,每天可以记录获取10,000 个数据点。

钙离子对心脏节律性影响

钙离子对心脏节律性的影响 实验原理:蛙类,属于两栖纲,无尾目,品种甚多,是脊椎动物由水生向陆生过渡的中间类型。蛙类虽然较为低等,但在生理学实验中应用非常广泛,其循环系统、神经系统以及肌肉均为生理学常用的实验材料。诸如离体心脏灌流、下肢血管灌流、微循环的观察、心电图、脊髓休克、脊髓反射、谢切诺夫抑制、反射弧的分析实验以及坐骨神经-缝匠肌、腹直肌等均为生理学的重要实验的标本。 心脏的正常节律性活动必须在适宜的理化环境下才能维持,,一旦适宜的理化环境被干扰或破坏,心脏活动就会受到影响。心脏自动节律性是指心肌细胞能在没有外来刺激情况下具有自动发生节律性兴奋的能力或特性。因心脏具有自动产生节律性收缩的特性,即自动节律性,故在心脏离体后,如用人工灌流方法,可保证其新陈代谢的顺利进行,而心脏仍能有节律地自动收缩和舒张,并可维持较长的时间。离体心脏活动所需的条件应与动物内环境的理化性质保持基本相近,因此改变灌流液的理化因素,则可引起心脏活动的变化。故可以采用离体心脏灌流的方法来研究心脏活动的规律、特点及影响因素。 细胞外Ca2+浓度发生变化时,细胞与Ca2+内流与Na+内流相关的生物电活动都将受到影响。当细胞外Ca2+浓度在一定范围内升高,细胞外Ca2+内流速度增加,引起窦房结P细胞4期自动去极化速度加快,导致P细胞自律性增强,心肌收缩增强增快,心跳加速,即心率加快;当细胞外Ca2+浓度较高时,使得肌浆中的Ca2+浓度不断升高,钙离子与肌钙蛋白结合数量不断增加,甚至达到只结合不解离的程度,于是,心脏会停止在收缩状态,心肌出现钙僵直。 用理化特性近似于蟾蜍血浆的任试液灌流离体的蟾蜍心脏,在一定时间内可保持其节律性收缩和舒张。改变灌流液的组成成分,心脏跳动的频率和幅度会随之发生改变。 实验目的:○1观察不同浓度的Ca2+对离体蟾蜍心脏节律性活动的影响; ○2学习离体蛙心灌流的方法,了解离体器官的研究方法。 实验材料: 1. 动物:蟾蜍8只。 2. 试剂和药品:任氏液,含Ca2+的溶液 3. 装置和器材:蛙类手术器械一套。生物信号采集系统,张力换能器,铁支架,双凹夹,试管夹,蛙心插管,蛙心夹,滴管,细线。 实验步骤和观察项目: 一、动物分组:1个观察组 二、溶液配制方法:以标准任氏液中Ca2+离子浓度为"1",分别配制:不含Ca2+的而其他离子与标准任氏液相同的任氏液,1/8倍,1/4 倍,1/2 倍,1倍,2倍,4倍,8倍Ca2+离子浓度的任氏液(以上配制溶液均保持标准任氏液其它离子浓度不变)。 三、离体蛙心与套管方法: (1)、离体蛙心的制备 1、取蟾蜍一只,用探针到会脑和脊髓,将其仰卧固定在蛙板上。用镊子夹起皮肤,然后将胸部剑突软骨下方的皮肤剪出一个“V”字形切口,暴露出剑突。用镊子夹住剑突下端,在肌肉层上剪出“V”形切口。再用粗剪刀沿正中线剪开胸骨,并把左右两侧胸骨完全剪掉,眼科剪仔细剪开心包膜,暴露心脏。 2、仔细识别心房、心室、动脉圆锥、主动脉、静脉窦、前后腔静脉等。 3、结扎血管在右主动脉下穿一根线并结扎,再在左右主动脉下穿一根线备用。用玻璃分针将心尖向上翻至背面,以备用线将前后腔静脉一起结扎(注意勿结扎住静脉窦)。将心脏

离子通道与癫痫

离子通道与癫痫 发稿时间:2010-3-14 摘要:离子通道在调解神经元的兴奋性方面有十分重要的作用。离子通道与癫痫关系的研究日益受到重视。本文在这里着重阐述了几种目前研究较多的离子通道与癫痫的关系、离子通道基因突变与癫痫方面的研究。随着对离子通道与癫痫关系的研究,开发出许多专门针对离子通道的药物,在这里也简要介绍了这些药物的研究进展。离子通道是所有真核生物细胞维持正常生理功能必须的一大类跨膜蛋白,是大脑思维、心脏跳动以及肌肉收缩等细胞电兴奋产生和传导的基础。对于兴奋的细胞,离子通道负责其膜电位的静息和兴奋。近年来随着分子生物学和膜电钳电生理技术的发展,许多编码离子通道蛋白的基因己被克隆、表达和定性。过去几年来的研究也不断证实和发现离子通道的遗传缺陷和许多神经系统遗传性疾病和遗传易感性疾病之间有着密切的关系。癫痫是其中的疾病之一,癫痫的特征是中枢神经元兴奋性升高,其中最主要的特征是一些中枢神经元会作爆发式放电。近年来研究较多的有钠、钾、钙、氯、氢等离子通道。其与癫痫的关系现分别讨论如下。 1.钾离子通道良性新生儿家族性惊厥(Benign Familial)是一种常染色体显性遗传病,与KCNQ2和KCNQ3通道基因突变有关。KCNQ2和KCNQ3钾离子通道分别由位于染色体20q13?3的EBN1和位于8q24的EBN2表达[1]。通过对家系的研究表明,KCNQ2上的基因缺陷包括两个错义突变,两个框移突变,一个剪切位点突变。这些突变有的在碳氮末端,有的在膜孔域。而KCNQ3上的基因缺陷仅有一个在膜孔域第177位点上由甘氨酸取代缬氨酸的错义突变。这些突变会影响钾离子通道的功能,导致膜复极化时程变长,神经兴奋性增强。另外,有研究表明,KCNQ2和KCNQ3通道亚基可形成异四聚体共同参与M电流的形成[2]。M电流是一种慢激活/失活的钾电流,它在决定电活性阈值及突触传入的反应中起重要的作用。KCNQ2或KCNQ3的基因突变导致M通道的功能下降,钾离子流减少或消失,受累神经元因此可兴奋性增强,引起癫痫。KCNA1基因编码电压门控Kv1?1通道的α亚单位,它位于染色体12P13上。其突变可导致发作性共济失调Ⅰ(EAⅠ)。EAⅠ为一种遗传性小脑及周围神经电压门控性钾离子通道病。有数据表明:EAⅠ的患者患癫痫的比例高出正常人10倍[3]。说明Kv1?1为癫痫的侯选基因之一。其致病机制可能为突变亚单位对钾离子通道有负性作用,延迟了神经元的复极化,因此易化了动作电位的产生和传导,降低了癫痫的发作阈值。GIRK2突变与癫痫发作有关。在GIRK2亚单位膜孔域上的突变导致蛋白质分子构型改变,使通道失去了对钾离子的选择性,也失去了对G 蛋白βγ二聚体的敏感性,这种突变通道还可导致wv小鼠脑颗粒细胞的死亡。死亡原因为失去GIRK2介导的钾离子电流而不是非选择性的其他正电流的表达。KCNAB2基因定位在1p36上,它编码电压门控钾离子通道β亚单位蛋白Kvβ2。它与1p36缺失综合征中的癫痫表型有关。1p36缺失综合征主要表现为智力障碍并发癫痫发作、听力丧失、发育迟缓、口唇裂等。Kvβ亚单位在钾离子通道早期的生物合成、稳定及Kv1α亚单位的表达中起一定的作用。Kvβ亚单位由至少三个基因表达KC-NAB1,KCNAB2,KCNAB3。在哺乳动物的大脑中,KC-NAB2表达的Kvβ2占主导地位。所以Kvβ2表达水平的下降会减少膜的功能性钾离子通道,进而减少钾离子流,这可能会增加动作电位的时程,导致钙离子内流增多,神经递质释放增加,进一步导致神经元的过度兴奋,癫痫发作的阈值降低。[4]2钠通道和癫痫1997年,Sheaffer等发现了一个遗传性癫痫家族。这个家族的5代人共60个体中有23人患有癫痫。表现为伴有高热惊厥的癫痫综合征(general-ized epilepsywith febrile seizures plus)。Mulley等研究发现此家族的染色体19上的基因突变导致了癫痫,并且认为这个突变的基因是电压依赖性钠通道β1辅基的基因SCN1B。哺乳动物脑组织钠通道含有α和β1辅基。β1辅基是一种膜蛋白,有一个小的胞内域、一个穿膜结构和一个大的胞外域,可以调节通道开关的速率。突变导致了辅基上的一个氨基酸发生改变,使钠通道的开关速率变慢[5]。体外实验发现,人类

离子通道与疾病

摘要 细胞离子通道的结构和功能正常是维持生命过程的基础,其基因变异和功能障碍与许多疾病的发生和发展有关.离子通道的主要类型有钾、钠、钙、氯和非选择性阳离子通道,各型又分若干亚型.离子通道的主要功能是:提高细胞内钙浓度,触发生理效应;决定细胞的兴奋性、不应性和传导性;调节血管平滑肌的舒缩活动;参与突触传递;维持细胞的正常体积.离子通道的主要研究方法为膜片钳技术、分子生物学技术、荧光探针钙图像分析技术.离子通道病是指离子通道的结构或功能异常所引起的疾病.疾病中的离子通道改变是指由于某一疾病或药物引起某一种或几种离子通道的数目、功能甚至结构变化,导致机体发生或纠正某些病理改变.从离子通道与疾病的关系角度,加强分子生物学、生物物理学、遗传学、药理学等多学科交叉深入研究,对于深入探讨某些疾病的病理生理机制、早期诊断及发现特异性治疗药物或措施等均具有十分重要的理论和实际意义. 0 引言 离子通道(ion channel)是细胞膜上的一类特殊亲水性蛋白质微孔道,是神经、肌肉细胞电活动的物质基础.随着分子生物学、膜片钳技术的发展,人们对离子通道的分子结构及特性有了更加深入的认识,并发现离子通道的功能、结构异常与许多疾病的发生和发展有关[1].近年来,对于离子通道与疾病关系的研究取得了重大进展,不仅阐明了离子通道的分子结构突变可导致某种疾病,而且还明确了某些疾病可影响某种离子通道功能甚至结构.本文论述离子通道的主要类型、功能、研究方法及其与疾病的关系. 1 离子通道的主要类型 离子通道的开放和关闭,称为门控(gating).根据门控机制的不同,将离子通道分为三大类:(1)电压门控性(voltage gated),又称电压依赖性(voltage dependent)或电压敏感性(voltage sensitive)离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如K+、Na+、Ca2+、Cl-通道4种主要类型,各型又分若干亚型.(2)配体门控性(ligand gated),又称化学门控性(chemical gated)离子通道:由递质与通道蛋白质受体分子上的结合位点结合而开启,以递质受体命名,如乙酰胆碱受体通道、谷氨酸受体通道、门冬氨酸受体通道等.非选择性阳离子通道(non-selective cation channels)系由配体作用于相应受体而开放,同时允许Na+、Ca2+ 或K+ 通过,属于该类.(3)机械门控性(mechanogated),又称机械敏感性(mechanosensitive)离子通道:是一类感受细胞膜表面应力变化,实现胞外机械信号向胞内转导的通道,根据通透性分为离子选择性和非离子选择性通道,根据功能作用分为张力激活型和张力失活型离子通道.此外,还有细胞器离子通道,如广泛分布于哺乳动物细胞线粒体外膜上的电压依赖性阴离子通道(voltage dependent anion channel,VDAC),位于细胞器肌质网(sarcoplasmic reticulum,SR)或内质网(endoplasmic reticulum,ER)膜上的Ryanodine受体通道、IP3受体通道. 2 离子通道的主要功能 离子通道的主要功能有:(1)提高细胞内钙浓度,从而触发肌肉收缩、细胞兴奋、腺体分泌、Ca2+依赖性离子通道开放和关闭、蛋白激酶的激活和基因表达的调节等一系列生理效应;(2)在神经、肌肉等兴奋性细胞,Na+ 和Ca2+通道主要调控去极化,K+主要调控复极化和维持静息电位,从而决定细胞的兴奋性、不应性和传导性;(3)调节血管平滑肌舒缩活动,其中有K+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(4)参与突触传递,其中有K+、Na+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(5)维持细胞正常体积,在高渗环境中,离子通道和转运系统激活使Na+、Cl-、有机溶液和水分进入细胞内而调节细胞体积增大;在低渗环境中,Na+、Cl-、有机溶液和水分流出细胞而调节细胞体积减少. 3 离子通道的主要研究方法 研究离子通道功能的最直接方法是用膜片钳技术直接测定通过离子通道的电流或测量细胞膜电位的变化.膜片钳技术是利用一个玻璃微吸管电极完成膜片或全细胞电位的监测、钳制和膜电流的记录,通过观测膜电流的变化来分析通道个体或群体的分子活动、探讨离子通道特性.分子生物学技术为离子通道的分子结构分析、基因克隆、功能表达研究提供了有力工具,对于编码离子通道亚单位的基因结构可采用基因定位克隆确定其在染色体上的定位,用逆转录-聚合酶链反应、Northern杂交等明确其在器官组织中的分布,用Western杂交检测基因表达产物等.荧光探针钙图像分析技术为检测细胞内游离钙离子浓度提供了有效

相关文档
最新文档