高中物理模型--常见弹簧类问题分析(1)

高中物理模型--常见弹簧类问题分析(1)
高中物理模型--常见弹簧类问题分析(1)

常见弹簧类问题分析

高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义

进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(

2

1kx 22-

2

1kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =

2

1kx 2,

高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.

下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题

1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质

弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )

A.m 1g/k 1

B.m 2g/k 2

C.m 1g/k 2

D.m 2g/k 2

此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧

形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g

/k 2.

此题若求m l 移动的距离又当如何求解?

参考答案:C

2.S 1和S 2表示劲度系数分别为k 1,和k 2两根轻质弹簧,k 1>k 2;A 和B 表示质量分别为m A 和m B 的两个小物块,m A >m B ,将弹簧与物块按图示方式悬挂起来.现要求两根弹

簧的总长度最大则应使( ). A.S 1在上,A 在上 B.S 1在上,B 在上 C.S 2在上,A 在上 D.S 2在上,B 在上

参考答案:D

3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小

弹簧)分别为多少?

(参考答案k 1=100N/m k 2=200N/m)

4.(2001年上海高考)如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.现将L 2线剪断,求剪断瞬时物体的加速度.

(1)下面是某同学对该题的一种解法:

解 设L 1线上拉力为T l ,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡

T l cos θ=mg ,T l sin θ=T 2,T 2=mgtan θ,

剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.

清对该解法作出评价并说明理由.

解答:错.因为L

2被剪断的瞬间,L

1

上的张力大小发生了变化.此瞬间

T

2

=mgcosθ, a=gsinθ

(2)若将图中的细线L

l

改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.

解答:对,因为L

2被剪断的瞬间,弹簧L

1

的长度未及发生变化,T

1

大小和方向都

不变.

二、与动力学相关的弹簧问题

5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,

下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当

剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不

考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )

A.M>m

B.M=m

C.M

D.不能确定

参考答案:B

6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向

下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射

过程中(重物与弹簧脱离之前)重物的运动情况是( )

参考

答案:C

A.一直加速运动 B.匀加速运动

C.先加速运动后减速运动 D.先减速运动后加速运动

[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力

力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.

7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小

球压缩弹簧的过程中,以下说法中正确的是()参考答案:C

A.小球加速度方向始终向上

B.小球加速度方向始终向下

C.小球加速度方向先向下后向上

D.小球加速度方向先向上后向下

(试分析小球在最低点的加速度与重力加速度的大小关系)

8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()

A.物体从A到B速度越来越大,从B到C

速度越来越小

B.物体从A到B速度越来越小,从B到C

加速度不变

C.物体从A到B先加速后减速,从B一直减速运动

D.物体在B点受到的合外力为零

参考答案:C

9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。物体向右运动至C点而静止,AC距离为L。第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总

A.s=L

B.s>L

C.s

D.条件不足,无法判断

参考答案:AC

(建议从能量的角度、物块运动的情况考虑)

10. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2

的加速度竖直向上做匀加速运动(g =10 m/s 2

).

(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过

程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对 木块做的功.

分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.

解:

当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有

kx =(m A +m B )g

x =(m A +m B )g /k ①

对A 施加F 力,分析A 、B 受力如图

对A F +N -m A g =m A a ② 对B kx ′-N -m B g =m B a ′ ③

可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,

即F m =m A (g +a )=4.41 N

又当N =0时,A 、B 开始分离,由③式知, 此时,弹簧压缩量kx ′=m B (a +g )

x m a g k

AB 共同速度 v 2=2a (x -x ′) ⑤

由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理

W F +E P -(m A +m B )g (x -x ′)=2

1

(m A +m B )v 2

联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2

J

三、与能量相关的弹簧问题

11.(全国.1997)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.

若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.

分析:本题的解题关键是要求对物理过程做出仔细分析,且在每一过程中运用动量守恒定律,机械能守恒定律解决实际问题,本题的难点是对弹性势能的理解,并不要求写出弹性势能的具体表达式,可用Ep 表示,但要求理解弹性势能的大小与伸长有关,弹簧伸长为零时,弹性势能为零,弹簧的伸长不变时,弹性势能不变.答案:0

21

x

12.如图所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v 0.

(1)求弹簧所释放的势能ΔE .

(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?

(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?

(1)3

1mv 02 (2)

12

1m (v -6v 0)2 (3)4v 0

13..某宇航员在太空站内做丁如下实验:选取两个质量分别为m A =0.1kg 、m B =0.20kg 的小球A 、B 和一

根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.10m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动.从弹簧与小球B 刚刚分离开始计时,经时间t=3.0s 两球之间的距离增加了s=2.7m ,求弹簧被锁定时的弹性势能E 0?

取A 、B 为系统,由动量守恒得:

( m A +m B )v 0=m A v A +m B v ;VA t+VB t=s

又A 、B 和弹簧构成系统,又动量守恒

解得:J

E

p

0275.0=

14.如下图所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A 连接在一起,下端固定在地面上.盒子内装一个光滑小球,盒子内腔为正方体,一直径略小于此正方体边长的金属圆球B 恰好能放在盒内,已知弹簧的劲度系数为k=400N /m ,A 和B 的质量均为2kg 将A 向上提高,使弹簧从自由长度伸长10cm 后,从静止释放,不计阻力,A 和B

一起做竖直方向的简谐振动,g 取10m/s 2已知弹簧处在弹性限度内,对于同一弹簧,其弹性势能只决定于其形变的大小.试求:

(1)盒子A 的振幅;

(2)盒子A 运动到最高点时,A 对B 的作用力方向; (3)小球B 的最大速度

2

2202

12121B

B B A B A P v m v m V m m E +=++)

15.如图所示,一弹簧振子.物块质量为m ,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v 1,当弹簧再次回到原长时物块速度为v 2,求这两次为原长运动过程中弹簧的最大弹性势能.

16.如图,水平弹簧一端固定,另一端系一质量为m 的小球,弹簧的劲度系数为k ,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O 点,开始时小球位于O 点右方的A 点,O 与A 之间的距离为l 0,从静止释放小球。

1.为使小球能通过O 点,而且只能通过O 点一次,试问μ值应在什么范围? 2.在上述条件下,小球在O 点左方的停住点B 点与O 点的最大距离l 1是多少?

分析 1、小球开始时在A 点静止,初始动能为零;弹簧拉长l o ,具有初始弹性势能k l 02/2释放后,小球在弹性力作用下向左运动,克服摩擦力作

功,总机械能减小.为使小球能通过O 点,要求初始弹性势能应大于克服摩擦力作的功μmg l 0,于是可得出μ值的上限.当小球越过O 点向左运动,又从左方最远点B 往回(即向右)运动时,为使小球不再越过O 点,要求初始弹性势能k l 02/2小于克服摩擦力作的功μmg (l 0+2l 1),其中l 1是B 点与O 点的距离,于是可得出μ值的下限 即满足1的范围

mg

kl mg

kl 2400<

<μ .

2.设B 点为小球向左运动的最远点,且小球在B 点能够停住,则小球克服力作的功应等于弹性势能的减少.此外,小球在B 点所受静摩擦力必须小于最大静摩擦力,由此可得出停住点B 点与O 点之间的最大距离. 3

01l l ≤

17.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑

过距离L

1

时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为μ,运动过程中弹

簧最大形变量为L

2,重力加速度为g。求A从P点出发时的初速度v

四、振动类问题

18.如图所示,在光滑的水平面上有一弹簧振子,弹簧的劲度系数为k,开始时,振子被拉到平衡位置O的右侧某处,此时拉力为F,然后轻轻释放振子,振子从初速度为零的状态开始向左运动,经过时间t后到达平衡位置O处,此时振子的速度为v,则在这过程中,振子的平均速度为( )

A. v/2

B. F/(2k t)

C. v

D. F/(k t)

19.在光滑水平面上有一弹簧振子,弹簧的劲度系数为k,振子质量为M,振动的量大速

度为v

.如图所示,当振子在最大位移为A的时刻把质量为m的物体轻放在其上,则(1)要0

保持物体和振子一起振动,二者间动摩擦因数至少多大?(2)

一起振动时,二者经过平衡位置的速度多大?二者的振幅又

是多大?(已知弹簧弹形势能E

=kx2 ,x为弹簧相对原长伸长

P

量)

五、应用型问题

20..惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速

度计,加速度计的构造原理示意图如下图所示。沿导弹长度方向安装的固定光滑杆上套一质

量为m的滑块,滑块两侧分别与劲度系数为K的弹簧相连,弹簧处于自然长度,滑块位于中

间,指针指示0刻度,试说明该装置是怎样测出物体的加速度的?

[分析] 当加速度计固定在待测物体上,具有一定

的加速度时,例如向右的加速度a,滑块将会相对于滑杆

向左滑动一定的距离x而相对静止,也具有相同的加速度

a,由牛顿第二定律可知:a∝F而F∝x,所以a∝x。因

此在标尺相应地标出加速度的大小,而0点两侧就表示了加速度的方向,这样它就可以测出

物体的加速度了。

21.“加速度计”作为测定运动物体加速度的仪器,已被广泛地应用于飞机,潜艇、航天器等装置的制导系统中,如图所示是“应变式加速度计”的原理图,支架A、B固定在待测系统上,滑块穿在A、B间的水平光滑杆上,并用轻弹簧固定于支架A上,随着系统沿水平方向做变速运动,滑块相对于支架发生位移,滑块下增的滑动臂可在滑动变阻器上相应地自由滑动,并通过电路转换为电信号从1,2两接线柱输出.

巳知:滑块质量为m,弹簧劲度系数为k,电源电动势为

E,内阻为r、滑动变阻器的电阻随长度均匀变化,其总电

阻R=4r,有效总长度L,当待测系统静止时,1、2两接线

柱输出的电压U

=0.4 E,取A到B的方向为正方向,

(1)确定“加速度计”的测量范围.

(2)设在1、2两接线柱间接入内阻很大的电压表,其读数为u,导出加速度的计算式。

(3)试在1、2两接线柱间接入内阻不计的电流表,其读数为I,导出加速度的计算式。

解:(1)当待测系统静上时,1、2接线柱输出的电压 u

0=E·R

12

/(R+r)

由已知条件U

0=0.4E可推知,R

12

=2r,此时滑片P位于变阻器中点,待测系统沿水

平方向做变速运动分为加速运动和减速运动两种情况,弹簧最大压缩与最大伸长时刻,P点只能滑至变阻器的最左端和最右端,故有:

a 1=kL/2m, a

2

=-kL/2m

所以“加速度计”的测量范围为 [-k·L/2m,·L/2m],

(2)当1、2两接线柱接电压表时,设P由中点向左偏移x,则与电压表并联部分

的电阻 R

1

=(L/2-x)·4r/L

由闭合电路欧姆定律得: I=E/(R+r)

故电压表的读数为:U=I·R

1

根据牛顿第二定律得: k·x=m·a

建立以上四式得: a=kL/2m - 5kLU/(4·E·m),

(3)当1、2两接线柱接电流表时,滑线变阻器接在1,2间的电阻被短路.设P由中点向左偏x,变阻器接入电路的电阻为:

R

2

=(L/2+x)·4r/L

根据牛顿第二定律得: k·x=m·a

联立上述三式得: a=k·L(E -3I·r)/(4I·m·r)

2010-2011学年高中物理弹簧模型问题复习探究

弹簧是高中物理中的一种常见的物理模型,几乎每年高考对这种模型有所涉及和作为压轴题加以考查。它涉及的物理问题较广,有:平衡类问题、运动的合成与分解、圆周运动、简谐运动、做功、冲量、动量和能量、带电粒子在复合场中的运动以及临界和突变等问题。为了将本问题有进一步了解和深入,现归纳整理如下,使学生在2011年高考中不为求解这类考题而以愁。

一、 物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生

向内或向外的弹力。 二、 模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。 三、 弹簧物理问题:

1. 弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。

2. 弹簧模型应用牛顿第二定律的解题技巧问题:

(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加

速度,从而分析物体运动规律。而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受

到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。

(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程

中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。 3. 弹簧双振子问题:

它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。本模型它涉及到力和运动、动量和能量等问题。本问题对过程分析尤为重要。

四.实例探究:

1.弹簧称水平放置、牵连物体弹簧示数确定

【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。今对物块1、2分别

施以相反的水平力1F 、2F ,且12F F ,则:

A . 弹簧秤示数不可能为1F

B . 若撤去1F ,则物体1的加速度一定减小

C . 若撤去2F ,弹簧称的示数一定增大

D . 若撤去1F ,弹簧称的示数一定减小 【解析】对物块1、2进行整体分析:1212

F F a m m -=

+,方向向左;对物块1进行分析:

设弹簧弹力为F ,11F F m a -=

解得:2112

12

m F m F F m m +=

+12F F 1F F ∴ ,故

A 对,无论是撤去1F 或2F ,F 均变小故D 对C 错,撤去1F ,可能合外力变大,故

B 错,即正确答案为A 、D 【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。若是平衡时弹簧产生的弹力和外力大小相等。主要看能使弹簧发生形变的力就能分析出弹簧的弹力。

2.绳子与弹簧瞬间力的变化、确定物体加速度

【例2】四个质量均为m 的小球,分别用三根绳子和一根轻弹簧相连,处于平衡状态,如图所示。现突然迅速剪断1A 、1B ,让小球下落。在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用1a 、2a 、3a 、4a 表示,则:

( )

A .10a =,22a g =,30a =,42a g =

B 。1a g =,2a g =,32a g =,40a =

C .10a =,22a g =,3a g =,4a g =

D 。1a g =,2a g =,3a g =,4a g =

【解析】首先分析出剪断1A ,1球受到向上的拉力消失,绳2A 的弹力可能发生突变,那么究竟2A 的弹力如何变化呢?我们可用假设法:设2A 绳仍然有张力,则有1a g ,

2a g ,故1、2两球则要靠近,导致绳2A 松驰,这与假设的前提矛盾。故剪断1A 的

瞬间,2A 绳张力突变为0,所以12a a g ==,此时绳2A 处于原长但未绷紧状态,球1、2整体做自由落体运动;剪断1B 的瞬间,由于2B 是弹簧,其弹力不能瞬间突变,故其对3、4的拉力不变,仍为m g ,易知32a g =,40a =,故选择B 答案。

【点评】本题属于弹簧模型突变问题讨论。要抓住弹簧的弹力不能突变,还要会分析轻绳的弹力如何变化,因绳的力会突变,从而分析本题的答案。

【思考探究题】如图所示,A 、B 两物体的质量分别为m 和2m 中间用轻质弹簧相连,A 、B 两物体与水平面间的动摩擦因数均为μ,在水平推力F 作用下,A 、B 两物体F

一起以加速度a 向右做匀加速直线运动。当突然撤去推力的瞬间,A 、B 两物体的加速度大小分别为

( ) A .2a ;a

B 。(2)a g μ+;a g μ+

C .23a g μ+;a

D 。a ;23a g μ+ 【解析】C 。当A 撤去F 的瞬间受到的合力为F 与原相反,A F a m

=

,而原来为

33F m g

a m

μ-=

,所以有23A a a g μ=+,B 的合力不变即加速度不变,为a ,故选C

答案。

3.弹簧系统放置在斜面上的运动状态分析

【例3】如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为A m 、B m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态。现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 发生的位移d 。已知重力加速度为g 。

【解析】令1x 表示未知F 时弹簧的压缩量,由胡克定律和牛顿定律可知:

1A m gsim kx θ= ①

令2x 表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知:2B kx m gsim θ=

② 2A A F m gsim kx m a θ--=

由②③式可得:()sin A B A

F m m g a m θ

-+=

由题意

12d x x =+

m

M

a

由①②⑤式可得 ()sin A B m m g d k

θ

+=

【点评】本例是弹簧模型在运动和力上的应用,求解时要抓住两个关键:“物块B 刚要离开C ”的条件和弹簧由压缩状态变为伸长状态,其形变量与物块A 的位移d 的关系。

【例4】如图,一倾角为θ的斜面固定在水平地面上,一质量为m 有小球与弹簧测力计相连在一木板的端点处,且将整个装置置于斜面上,设木板与斜面的动摩擦因数为μ,现将木板以一定的初速度0v 释放,不熟与木板之间的摩擦不计,则 ( )

A .如果0μ=,则测力计示数也为零

B .如果tan μθ ,则测力计示数大于sin mg θ

C .如果tan μθ=,则测力计示数等于sin mg θ

D .无论μ取何值,测力计示数都不能确定

【解析】本例是将弹簧模型迁移到斜面上,而且设置了木板与斜面之间的动摩擦因数不同来判断测力计的示数的变化。依题意可知,当0μ=时,球与木板处于完全失重状态,测力计示数为零;当tan μθ 时,球与木板的加速度为sin cos g g θμθ-,隔离分析小球就可知道B 答案正确;同理可分析C 答案正确,从而选择A 、B 、C 答案。

【点评】本例是动力学在弹簧模型中的应用,求解的关键是分析整体的加速度,然后分析小球的受力来确定测力计示数的大小。

4.弹簧中的临界问题状态分析

【例5】如图所示,轻弹簧上端固定,下端连接一质量为m 的重物,先由托盘托住m ,使弹簧比自然长度缩短L ,然后由静止开始以加速度a 匀加速向下运动。已知a g ,弹簧劲度系数为k ,求经过多少时间托盘M 将与m 分开? 【解析】当托盘与重物分离的瞬间,托盘与重物虽接触但无相互作用力,此时重物只受到重力和弹簧的作用力,在这两个力的作用下,当重物的加速度也为然后由牛顿

a 时,重物与托盘恰好分离。由于a g ,故此时弹簧必为伸长状态,第二定律和运动学公式求解:

根据牛顿第二定律得:mg kx ma -=

① 由①

得:()x m g a k

-=

由运动学公式有:2

12L x at +=

② 联立①②式有:

()

2

12

kL m g a at k

+-=

③ 解得:x =

【点评】本题属于牛顿运动定律中的临界状态问题。求解本类题型的关键是找出临界条件,同时还要能从宏观上把握其运动过程,分析出分离瞬间弹簧的状态。我们还可这样探索:若将此题条件改为a g ,情况又如何呢?

5.弹簧模型在力学中的综合应用

【例6】如图所示,坡度顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为2m 的挡板B 相连,弹簧处于原长时,B 恰位于滑道的末湍O 点。A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与

水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求

(1) 物块A 在与挡板B 碰撞前的瞬间速度v

的大小;

(2) 弹簧最大压缩量为d 时的弹簧势能P

E (设弹簧处于原长时弹性势能为零)。

【解析】(1)由机械能守恒定律得:2

1112m gh m v =

v =

(2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有:()112m v m m v '=+③

A 、

B 克服摩擦力所做的功:()12W m m gd μ=+ ④

由能量守恒定律,有:

()()2121212

p m m v E m m gd μ'+=++

解得:()2

1

1212

p m E gh m m g m m μ=

-++d

【点评】本例是在以上几题的基础上加以引深,从平衡到匀变速运动,又由弹簧模型引入到碰撞模型,逐层又叠加,要会识别物理模型,恰当地选择物理规律求解。

【例7】有一倾角为θ的斜面,其底端固定一档板M ,另有三个木块A 、B 和C ,它们的质量分别为A B m m m ==,3C m m =,它们与斜面间

的动摩擦因数都相同。其中木块A 放于斜面上并通过一轻弹簧与档板M 相连,如图所示,开始时,木块A 静止于P 处,弹簧处于原长状态,木块B 在Q 点以初速度0v 向下运动,P 、Q 间的距离为L 。已知

木块B 在下滑的过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点。若木块A 仍静止放

在P 点,木块C 从Q 03

向下运动,经历同样过程,最后木块C 停

在斜面的R 点。求: (1)A 、B 一起压缩弹簧过程中,弹簧具有的最大弹性势能;

(2)A 、B 间的距离L '

【解析】(1)木块B 下滑做匀速直线运动,有:sin cos mg mg θμθ= ①

B 与A 碰撞前后总动量守恒有:012mv mv =

设AB 两木块向下压缩弹簧的最大的长度为S ,弹簧具有的最大弹性势能为P E ,压缩过程对AB 由能量守恒定律得:2

11

22sin 2cos 2P m v m gS m gS E θμθ+=+

联立①②③解得:2

014

P E m v =

(2)木块C 与A 碰撞过程,由动量守恒定律得:01343

m m v '=

碰后AC 的总动能为:2

2

101142

4

k E m v m v ''==

由③式可知AC 压缩弹簧具有的最大弹性势能和AB 压缩弹簧具有的最大弹性势能相

等,两次的压缩量也相等。设AB 被弹回到P 点时的速度为2v ,从开始压缩到回到P 点有: 2

2

12112cos 222

2

m g S m v m v μθ??=

?-

?

两木块在P 点处分开后,木块B 上滑到Q 点的过程:()2

21sin cos 2

m g m g L m v θμθ+=

设AC 回到P 点时的速度为2

v ',同理有:2

2

12

114cos 2442

2

m g S m v m v μθ''??=?-

? ⑨

()2

2

13sin 3cos 32

m g m g L m v θμθ''+=

联立⑦⑧⑨⑩得:2

32sin v L L g θ

'=-

【点评】本例在上例的基础上又进了一步,它是从受力分析开始,要从过程和状态分析该题,并选准物理规律:动量守恒、动能定理等,还要会用已知字母表达求解结果。

【反思演练题】1。质量不计的弹簧下端固定一小球。现手持弹簧上端使小球随手在竖直方向上以同样大小的加速度a (a g )分别向上、向下做匀加速直线运动。若忽略空气阻力,

弹簧的伸长分别为1x 、2x ;若空气阻力不能忽略且大小恒定,弹簧的伸长分别为1x '、 2x '则有:A 。x x x x ''+=+ B 。x x x x ''++

C .1212x x x x ''++

D 。12

12x x x x ''+=+ 【答案】D 。忽略空气阻力,小球向上运动时,由牛顿第二定律有1kx m g

a m

-=

,解得:

1()

m g a x k

+=

,同理可得向下运动时2()

m g a x k

-=

;当空气阻力不能忽略时,设空气阻

力为f ,根据牛顿第二定律有:1kx m g f

a m

'--=

解得:1()m g a f

x k

++'=

,同理向下运

动时2

()m g a f

x k

--'=由以上四式可得12

12x x x x ''+=+=2m g k

故D 答案正确。

2.如图所示,质量分别为1m 和2m 的两物块放在水平地面

上,与水平地面间的动摩擦因数都是μ(0)μ≠,用轻质弹簧将两物块连接在一起。当用水平力F 作用在1m 上时,两物块均以加速度a 做匀加速运动,此时弹簧伸长量为x 。若用水平力F '作用在1m 上时,两物块均以加速度2a a '=做

匀加速运动,此时,弹簧伸长量为x ',则下列关系式正确的是:( )

A .2F F '=

B 。2x x '=

C 。2F F '

D 。2x x '

3.一个竖立着的轻弹簧,支撑着倒立的汽缸的活塞使汽缸悬空静止,如图所示,假设活塞

与汽缸壁之间无摩擦且不漏气,若大气压强增大,汽缸与活塞均有良好绝缘性能。下列说法中正确的是: A .则弹簧的长度增长,缸底离地面的高度减小,缸内气体内能减少 B .则弹簧的长度不变,缸底离地面的高度减小,缸内气体内能增加 C .则弹簧的长度不变,缸底离地面的高度增大,缸内气体温度降低

D .则弹簧的长度减小,缸底离地面的高度增大,缸内气体温度升高

4.如图所示,静止在水平面上的三角架质量为M ,它用两质量不计的弹簧连接着质量为m 的小球,小球上下振动,当三角架对水平面的压力为m g 时,小球加速度的方向与大小分别是

( )

A .向上,/Mg m

B 。向下,

/Mg m

C .向下,g

D 。向下,

()/M m g m +

5.有一弹簧原长为L ,两端固定绝缘小球,球上带同种电荷,电荷量都是Q ,由于静电斥力使弹簧伸长了L ?,如图所示,如果两球的电荷量均减为原来的一半,那么弹簧比原长伸长了 ( )

A .

4

L ? B 。小于

4

L ? C 。大于

4

L ? D 。

2

L ?

6.如图所示,两物体A 、B 用轻质弹簧相连,静止在光滑水平面上,现同时对A 、B 两物体施加等大反向的水平力1F 、2F ,使A 、B 同时由静止开始运动,在运动过程中,对A 、B 两物体及弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )

A .机械能始终守恒,动量始终守恒

B .机械能不断增加,动量不断增加

C .当弹簧伸长到最长时,系统的机械能最大

D .当弹簧弹力的大小与1F 、2F 的大小相等时,系统总动能最大

7.如图所示,一端固定在地面上的竖直轻弹簧,在它的正上方高

H 处有一个小球自由落下,落到轻弹簧上,将弹簧压缩。如果分别从1H 和2H (12H H )高处释放小球,小球落到弹簧上将弹簧压缩的过程中获得的最大动能分别为1

k E 和2

k E ,在具有最大动

能时刻的重力势能分别为1

p E 和2

p E ,比较1

k E 、2

k E 和1

p E 、2

p

E 的大小正确的是

( ) A .1

2

k k E E ,1

2

p p E E =

B

12k k E E ,12p p E E

C .1

2

k k E E ,1

2

p p E E =

D 。

12k k E E ,12p p E E

8.如图所示,固定在水平面上的竖直轻弹簧上端与质量为M 的物块A 相连,静止时物块A 位于P 处,另有一质量为m 的物块B ,从A 的正上方Q 处自由下落,与A 发生碰撞立即具有相同的速度,然后A 、B 一起向下运动,将弹簧继续压缩后,物块A 、B 被反弹,下面有关的几个结论正确的是

( )

A .A 、

B 反弹过程中,在P 处物块B 与A 分离 B .A 、B 反弹过程中,在P 处物块A 具有最大动能

C .B 可能回到Q 处

D .A 、B 从最低点向上运动到P 处的过程中,速度先增大后减小 9.(2006年江苏卷)如图所示,物体A 置于物体B 上,一轻质

弹簧一端固定,另一端与B 相连,在弹性限度范围内,A 和B 一起在光滑水平面上做往复运动(不计空气阻力),并保持相对静止,则下列说法正确的是

( ) A .A 和B 均做简谐运动 B .作用在A 上的静摩擦力大小与弹簧的形变量成正比 C .B 对A 的静摩擦力对A 做功,而A 对B 的静摩擦力对B 不做功

D .B 对A 的静摩擦力始终对A 做正功,而A 对B 的静摩擦力始终对B 做负功

10.(2006年高考北京卷)木块A 、B 分别重50N 和60N ,

它们与水平地面之间的动摩擦因数均为0。25。夹在A 、B 之间的轻弹簧被压缩了2cm ,弹簧的劲度系数为400/N m 。系统置于水平地面上静止不动。现用F=1N 的水平拉力作用在木块B 上,如图所示。力F 作用后 ( )

A .木块A 所受摩擦力的大小是12.5N

B .木块A 所受摩擦力的大小是11.5N

C .木块B 所受摩擦力大小是9N

D .木块B 所受摩擦力大小是7N

11.如图所示,光滑水平面上,质量为2m 的小球B 连接着轻质弹簧,处于静止状态;质量为m 的小球A 以速度0v 向右匀速运动,接着逐渐压缩弹簧并使B 运动,过一段时间后,A 与弹簧分离。设小球A 、B 与弹簧相互作用过程中无机械

能损失,弹簧始终处于弹性限度以内。 (1)求当弹簧被压缩到最短时,弹簧的弹性势能E ; (2)若开始时在小球B 的右侧某位置固定一块挡板(图中未画出),在小球A 与弹簧分离前使小球B 与挡板发生正碰,并在碰后立刻将挡板撤走。设小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反。设此后弹簧弹性势能的最大值为m E ,求m E 可能值的范围。

参考答案:2。.D3。B4。B5。C6。C 、D7。C8。D9。A 、B10。C11。(1)E=2

012

m v =

(2)

2

2

1020112

27

m m E m v E m v =

=

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

高中物理复习教案专题复习2—弹簧类问题分析

弹簧类系列问题 [P3.] 复习精要 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视. (一)弹簧类问题的分类 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k?△x来求解。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4、弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [P5.] (二)弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:

高中物理中的弹簧问题归类(教师版)

有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12 F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12 F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M = ,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为: x x F x T ma M F L M L == = 【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 图 3-7-2 图 3-7-1 高中物理中的弹簧问题归类

高级高中物理弹簧弹力问题归类总结归纳

弹簧问题归类 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12 F F a m -= ,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端 的受力是由外壳内侧提供的.【答案】12 F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M =,取弹簧左部 任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L == =【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为0 30的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为 23 g ,方向竖直向下 C.大小为23g ,方向垂直于木板向下 D. 大小为23 g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有 cos N mg F θ =.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ= == 【答案】 C. 四、弹簧长度的变化问题 设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +. 图 图 图 图 3-7-1 图 3-7-3

弹簧类问题

常见弹簧类问题分析 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数 分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现 缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g /k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2. 此题若求m l移动的距离又当如何求解? 参考答案:C 2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上 参考答案:D 3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别 为多少? (参考答案k1=100N/m k2=200N/m) 4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

弹簧类问题分析方法专题

弹簧类问题分析方法专题

弹簧类问题分析方法专题 江西省广丰中学周小勇 高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,

也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12 ),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 弹簧类问题多为综合性问题,涉及的知识面 广,要求的能力较高,是高考的难点之一. 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本专题此类问题作一归类分析。 案例探究 一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹 簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

弹簧类问题的几种模型及其处理办法

精心整理 弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形2 3 ,高考不 1 例1.m2此过程中,m 分析:, 分别是 弹簧k1、k2 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。 答案:m2上升的高度为,增加的重力势能为,m1上升的高度为 ,增加的重力势能为 。

点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。注意缓慢上提,说明整个系统处于动态平衡过程。 例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是 A.7N,0??????B.4N,2N?????C.1N,6N???????D.0,6N 分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。所以,此问题要分两种情况进行分析。 (1)若弹簧处于压缩状态,则通过对A、B受力分析可得:, (2, 答案: 点评: 2 例3. 分析: (2 弹力和剪断 ,方向水平向右。 点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。 突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。所以,对于细线、弹簧类问题,当外界情况发生变化时(如撤力、变力、剪断),要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键。 3.碰撞型弹簧问题

高中物理常见连接体问题总结

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水 平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用 铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点 用细绳GF拉住一个质量也为10 kg的物体.g 取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG 之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为 零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向. (三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确 的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方

向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小? 6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg, 吊板的质量为10 kg,绳及定滑轮的质量,滑 轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加 速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 N B.a=1 m/s2,FN=330 N C.a=3 m/s2,FN=110 N D.a=3 m/s2,FN=50 N 7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是() A.向下,m Mg B.向上,g C.向下,g D.向下,m g m M) ( (六)综合 8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()

二轮专题复习-----弹簧类综合问题训练

二轮专题复习:弹簧类综合问题训练 一、考点分析 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力、胡克定律、物体的平衡、牛顿定律的应用及能的转化与守恒。从近几年高考题,可以看出弹簧类综合问题是高考的热点和重点。 二、与弹簧有关的综合问题基本知识概述 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。及轻弹簧的弹力不能突变,其弹力与瞬间前相同。 2、弹簧与平衡问题 这类题涉及到的知识是胡克定律,一般用F=kx同时结合物体的平衡条件知识求解。3、弹簧与非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。需综合分析物体的位置变化与弹簧的长度、形变量有怎样的关系。 4、弹簧与能量的综合问题 在弹力做功的过程中弹力是个变力,并与能量的转化与守恒相联系,分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 三、处理弹簧问题的一般思路与方法 1、弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应. 在题目中一般应从弹簧的形变分析入手,先确定弹簧原来的长位置,现在的长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3、在求弹簧的弹力做功时,往往结合动能定理和功能关系以及能量转化和守恒定律求解。典型示例迁移 1、弹簧弹力瞬时问题 例1、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三 者静置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑, 当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是 a A=____ ,a B=____ 解析;由题意可设A、B、C的质量分别为m、2m、3m 以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平 衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0 以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力F cB=3mg 以木块B为研究对象,木块B受到重力、弹力和F cB三力平衡,抽出木块C的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB瞬时变为0,故木块C的瞬时合外力为竖直向下的3mg。瞬时加速度为1.5g 变式训练1、如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

高中物理弹簧专题

高中物理弹簧专题 在我们的日常生活中,弹簧形态各异,处处都在为我们服务。常见的弹簧是螺旋形的,叫螺旋弹簧。做力学实验用的弹簧秤、扩胸器的弹簧等都是螺旋弹簧。螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧秤的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。有的弹簧制成片形的或板形的,叫簧片或板簧。在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。它们在弯曲时会产生恢复原来形状的倾向,弯曲得越厉害,这种倾向越强。有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流计、电压计)内,机械钟表中都安装了这种弹簧。这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。 形形色色的弹簧在不同场合下发挥着不同的功能: 1. 测量功能 我们知道,在弹性限度内,弹簧的伸长(或压缩)跟外力成正比。利用弹簧这一性质可制成弹簧秤。 2. 紧压功能 观察各种电器开关会发现,开关的两个触头中,必然有一个触头装有弹簧,以保证两个触头紧密接触,使导通良好。如果接触不良,接触处的电阻变大,电流通过时产生的热量变大,严重的还会使接触处的金属熔化。卡口灯头的两个金属柱都装有弹簧也是为了接触良好;至于螺口灯头的中心金属片以及所有插座的接插金属片都是簧片,其功能都是使双方紧密接触,以保证导通良好。在盒式磁带中,有一块用磷青铜制成的簧片,利用它弯曲形变时产生的弹力使磁头与磁带密切接触。在钉书机中有一个长螺旋弹簧它的作用一方面是顶紧钉书钉,另一方面是当最前面的钉被推出后,可以将后面的钉送到最前面以备钉书时推出,这样,

牛顿第二定律的应用弹簧类问题

牛顿第二定律的应用——弹簧类问题 例1.如图所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小 为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值 可能是( ) A.7N,0 B.4N,2N C.1N,6N D.0,6N 例2.如图所示,质量相同的A、B两球用细线悬挂于天花板上且静止不动.两球 间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间B球加速度为__ __;A球加速度为____ ____. 例3.两个质量均为m的物体A、B叠放在一个直立的轻弹簧上,弹簧的劲度系数为K。今 用一个竖直向下的力压物块A,使弹簧又缩短了△L(仍在弹性限度内),当突然撤去压力 时,求A对B的压力是多大? 例4.图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向 上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在 0.2s以后F是恒力,g=10m/s2,则F的最小值是F的最大值是。 练习题1.如图所示,小球质量为m,被3根质量不计的相同弹簧a、b、c固定在O 点,c竖直放置,a、b、c之间的夹角均为120°.小球平衡时,弹簧a、b、 c的弹力大小之比为3:3:1.设重力加速度为g,当单独剪断c瞬间,小球 的加速度大小及方向可能为() A.g/2,竖直向下 B.g/2,竖直向上 C.g/4,竖直向下 D.g/4,竖直向上

2.如上图所示,物体A、B间用轻质弹簧相连,已知m A=2 m,m B =m,且物体与地面间的滑动摩擦力大小均为其重力的k倍,在水平外力作用下,A和B一起沿水平面向右匀速运动。当撤去外力的瞬间,物体A、B的加速度分别为a A= , a = 。(以向右方向为正方向) B 3.如右图所示,一物块在光滑的水平面上受一恒力F的作用而运动,其正前方固定一个足够长的轻质弹簧,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法中正确的是( ) A.物块接触弹簧后即做减速运动 B.物块接触弹簧后先加速后减速 C.当弹簧处于最大压缩量时,物块的加速度不为零 D.当弹簧的弹力等于恒力F时,物块静止 E.当物块的速度为零时,它受到的合力不为零 4.如右图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力大小 恒定,则( ) A.物体从A到O先加速后减速 B.物体从A到O加速,从O到B减速C.物体在A、O间某点时所受合力为零 D.物体运动到O点时所受合力为零 5.如图所示,质量分别为m A=10kg和m B=5kg的两个物体A和B靠在一 起放在光滑的水平面上,现给A、B一定的初速度,当弹簧对物体A有方 向向左、大小为12N的推力时,A对B的作用力大小为 ( )

高中物理弹簧类问题专题

弹簧类问题专题 1、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态 C.有可能N 处于不伸不缩状态而M 处于拉伸状态 D.有可能N 处于拉伸状态而M 处于不伸不缩状态 2、图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d ,则( ) A .若M = m ,则d = d0 B .若M >m ,则d >d0 C .若M <m ,则d <d0 D .d = d0,与M 、m 无关 3、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( ) A 、加速度为0,作用力为mg 。 B 、加速度为m F 2,作用力为2F mg + C 、加速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mg F + 4、如图所示,一根轻弹簧上端固定,下端挂一质量为m1的箱子,箱中有一质量为m2的物体.当箱静止时,弹簧伸长了L1,向下拉箱使弹簧再伸长了L2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( ) A.g m L L 212)1(+ B..g m m L L ))(1(2112++ C.g m L L 212 D.g m m L L )(2112+ 5、如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为L 、劲度系

高中物理弹簧类问题专题练习(经典总结附详细答案)

For personal use only in study and research; not for commercial use 高中物理弹簧类问题专题练习 1?图中a 、b 为两带正电的小球,带电量都是 q ,质量分别为 M 弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为 于两 小球,场强的方向由a 指向 A .若 M = m ,贝U d = d o C .若 M v m ,贝U d v d o 也相同的小球P ,从直线ab 上的N 点由静止释放,在小球 程中() A. 小球P 的速度是先增大后减小 B. 小球P 和弹簧的机械能守恒,且 P 速度最大时 所受弹力与库仑力的合力最大 C. 小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D. 小球P 合力的冲量为零 5、如图所示,A 、B 两木块叠放在竖直轻弹簧上, 如图所示,已知木块A 、B 质量分别为o.42 kg 和o.4o kg ,弹簧的劲度系数 k=1oo N/m ,若在木块A 上作用一个竖直向上的力 F ,使A 由静止开始以o.5 m/s 2的加速度竖直向上做匀加速运动( g=1o m/s 2). (1) 使木块A 竖直做匀加速运动的过程中,力 F 的最大值; (2) 若木块由静止开始做匀加速运动,直到 A 、B 分离的过 程中,弹簧的弹性势能减少了 0.248 J ,求这一过程F 对 木块做的功. 6、如图,质量为 m i 的物体A 经一轻质弹簧与下方地面上的质量为 m 2的 物体B 相连,弹簧的劲度系数为 k , A 、B 都处于静止状态。一条不可伸 长的轻绳 绕过轻滑轮,一端连物体 A ,另一端连一轻挂钩。开始时各段绳 2.如图a 所示,水平面上质量相等的两木块 A 、B 用一轻弹簧相连接,M 整个系统处于平衡状 态.现用一竖直向上的力 F 拉动木块A ,使木块A 向上做匀加速直线运动, 如图b 所示.研究从力F 刚作用在木块 A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块 A 的起始位 置为坐标原点,则下 列图象中可以表示力 F 和木块A 的位移x 之间关系的是( ) A b --- a F m i 和m 2的两物块相连接, ■现使"m 1瞬时获得水平向右的速度 3 为时间零点,两物块的[速度随时间变化的规律女 A .在t 3时刻两物块达到共同速度 %m/s 3.如图甲所 并且 此刻 O ,一轻弹簧的两端分别与质量为 在光滑的水平面 m/s ,以 所示,从图象信息可得/ 且弹簧都是处于压缩状态 B . 从A t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C C .两物体的质量之比为 m i : m 2 = 1 : 2 D .在t 2时刻两物体的动量之比为 P 1 : P 2 =1 : 2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧 与斜面平行,带电小球 Q (可 TT* 视为质点)固定在光滑绝缘 面上的M 点,且在通过弹簧中心的直线 ab 上o 现把与Q 大 x 和m ;用一绝缘弹簧联结, d o 。现把一匀强电场作用 弹簧的长度为d o ( b,在两小球的加速度相等的时刻, B .若 M >m ,贝U d >d o D . d = d o ,与 M 、m 无关 P 与弹簧接触到速度变为零的过

相关文档
最新文档