超长结构温度应力计算探讨精

超长结构温度应力计算探讨精
超长结构温度应力计算探讨精

超长结构温度应力计算探讨

一、温度作用的特点:

温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾等,诱因多样性使温度作用有别于其它(荷载作用。

二、温度作用的规范规定:

2.1什么时候需要进行温度作用计算

根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。材料确定的情况下,长度越长,温度作用越大。

在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;

如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强

度等级为C30计算的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。

表1: 常用材料的线膨胀系数αT

材料线膨胀系数αT(×10-6/℃

轻骨料混凝土7

普通混凝土10

砌体6~10

钢,锻铁,铸铁12

不锈钢16

铝,铝合金24

实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。现行规范根据不同的结构形式给出该长度(温度区段长度经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。

表2: 钢筋混凝土结构伸缩缝最大间距(m

结构类型室内或土中露天

排架结构装配式100 70

框架结构装配式75 50 现浇式55 35

剪力墙结构装配式65 40 现浇式45 30

挡土墙、地下室墙壁等类结构装配式40 30 现浇式30 20

建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

《台州市住宅工程质量通病防治导则》(台建规[2011]202号

5.1.3 房屋伸缩缝设置间距应控制在规范规定范围之内,当框架结构房屋长度为40m~55m中部未设伸缩缝及后浇带时,应加强纵向配筋构造措施;当房屋长度

55m~80m中部未设缝时应设置后浇带并加强纵向配筋构造措施;房屋长度80m以上时应设缝,未设缝时应进行温度应力计算,并按计算结果采取可靠的防裂措施。

2.2温度作用计算的依据

以前规范对温度作用的计算方法没有明确的规定,可在实际工程尤其是超长的大跨空间结构商业综合体、超长地下室等的应用越来越广泛,温度工况和分项系数等的取值也是仁者见仁、智者见智。为适应这一发展需要,现行国家规范《建筑结构荷载规范》(GB50009-2012增加了温度作用计算的相关内容,为温度作用的计算提供依据,其要点总结如下:

由于统计上的不确定性和时间变化,温度作用一般都有一个区间概念,如结构合拢温度是一个区间,结构使用过程中温度也是一个区间。结构温度作用计算需要考虑两种工况:最大升温工况和最大降温工况,最大升温工况是最高平均温度与最低初始温度的差值,最大降温工况是最低平均温度与最低初始温度的差值。

2.2.1结构最高平均温度和最低平均温度的确定

结构最高平均温度和最低平均温度分别由最高、最低基本气温确定。“对暴露于环境气温下的室外结构,结构最高平均温度和最低平均温度一般可分别取基本气温最高值和最低值”,对温度变化敏感的

金属结构(如钢结构,还要考虑昼夜气温变化对基本气温进行适当放大;对室内结构,结构最高平均温度和最低平均温度可依据室内和室外的环境温度按热工学的原理确定,当仅考虑单层结构材料且室内外环境温度类似时,可近似地取室内外环境温度的平均值。

2.2.2结构合拢温度的确定

结构设计时一般要明确结构合拢温度,也就是最高和最低初始温度,一般和施工时间有很大关系,但设计不可能等到施工那一天才进行温度作用计算,因此需要预定一个合拢温度区间。这个温度区间应尽量对施工时温度有合理预见,使施工单位有实施可能性,即应考虑施工的可行性和工期的不可预见性。区间不能太小,否则施工没法保证。温度区间也不能太大,否则温度作用预估过大。在没有确切资料的情况下,规范给出了合拢温度区间的量化取值建议,即在最高、最低的基本气温区间内按3:4:3的比例划分,中间40%的区间值即为合拢温度区间。

混凝土结构的合拢温度一般可取后浇带封闭时的月平均气温,钢结构的合拢温度一般可取合拢的日平均温度,但当合拢时有日照时,应考虑日照的影响。实际施工时的合拢温度的核定可取结构合拢当日的日平均气温。

2.2.3温度作用的分项系数和组合值系数

规范给出了温度作用分项系数和组合值系数建议值,即分项系数按可变荷载取1.4,组合值系数取0.6。

三、温度作用计算软件应用

1.计算条件:

本工程采用PMSAP(2010 版分析温度荷载对裙房屋面梁、板、柱的影响。

计算模型:导入PMCAD模型

计算温差:±5℃

以下为温度荷载的输入参数:

2.计算结果及分析:

1.楼板计算结果:

1 无塔楼约束区域板面温度应力为1.2MPa左右,采用附加拉通钢筋抵抗温度应力作用。取1m板带计算如下:

As=As,=153mm2,为板底板面所需附加拉通钢筋。

2 有塔楼约束区域板面温度应力为1.8MPa左右,采用附加拉通钢筋抵抗温度应力作用。取1m板带计算如下:

As=As,=280mm2,为板底板面所需附加拉通钢筋。温度应力局部区域有变化,采用上述同样方法换算成普通钢筋。 2.梁计算结果由于屋面梁需考虑裂缝,经比较,均为裂缝计算结果控制配筋。温度作用使多跨度梁产生较大轴力,一般无塔楼约束区域中间梁轴力达 700kN 左右,有塔楼约束区域中部梁轴力达800kN 左右,洞口附近和剪力墙角处应力集中,最大的梁轴力达 1400kN。通过换算中间跨采用N4Φ 20 的腰筋,局部轴力较大处腰筋计算确定。 3.柱计算结果柱PMSAP 计算配筋与 SATWE 相比,主要是塔楼周边的柱子纵筋增大,无塔楼约束

区域与 SATWE 计算结果相同。四、温度作用计算工程实例:星光耀广场 A 地块6#楼温度应力计算书:

本项目 6#商业楼位于台州市路桥区路北街道,地块东至银座北街,南至腾达路,西至会展东路,北至双水路。为 1 栋 5 层商业楼,结构总高度 25.4 米,南北长约 188m,东西宽约 104m,为双向均超长的框架结构。本工程分析主要考虑主体合拢后(即后浇带封闭后的情况,由于平面较长,温度应力影响较大,为避免单方面“抗” 的方式造成浪费,在屋面结构中部设置双梁诱导缝,以释放部分温度应力。封闭前各部分面积在规范规定不设缝范围内,此时温差引起的应力较小,可以忽略不计;当后浇带封闭后,整个区域作为一个整体进行剩余的收缩变形和抵抗季节温差作用。根据台州当地气象环境,一般选取 30 年一遇月平均最高气温和月平均最低气温。初始温度选取后浇带合拢时室外空气温度为准。收缩当量温差考虑为永久收缩和合拢时收缩差值温度等效值。季节温差和当量温差相加为混凝土最终温差。根据气象局及《建筑结构荷载规范》(GB50009-2012提供的资料,初定台州地区的月平均最高气温为 36℃,月平均最低温度-2℃,混凝土收缩当量温差 15℃(专家意见:考虑后浇带等措施后折减系数采用 0.4),后浇带合拢温度约为 10℃,计算取为 10℃。在软件计算中,温度取值为:降温为-18℃(-2-10-15X0.4=--18℃),升温为 8℃(36-10-15=11℃)。根据《建筑结构荷载规范》 (GB50009-2012 要求,温度效应分项系数取值为 1.4,组合值系数为

0.6。同时考虑到徐变对内力的影响,取徐变折减系数为 0.3。

五、一些常见误区及认识: 5.1 混凝土结构伸缩缝间距增加的措施目前的建筑(尤其是公共建筑)体量均较大,超长情况较多,如何合理设置伸缩缝间距是结构工程师经常要面对的问题。工程实践表明,采取有效的综合措施,伸缩缝间距可以适当增大。这些措施主要包括:采用后浇带、控制缝等施工措施,加强浇筑后的养护;采用补偿收缩混凝土、设置膨胀加强带;采用专门的预加应力或增配构造钢筋的措施等。需要注意的是:后浇带仅能减少施工阶段温度变化和混凝土收缩的影响,不能减少使用阶段温度变化的温度应力,合理设置后浇带并有可靠经验时可适当加大伸缩缝的间距,单一般不可用后浇带替代伸缩缝。 5.2 特殊结

构的温度作用对于大型结构来说,温度场仅是一个相对均匀的场,不可把所有构件一概而论都取同样的温度作用。比如,室外构件可以认为承受大气环境温度场,而室内构件则不同,它承受的温度变化幅度一般要较室外构件小;室内构件,有采暖和无采暖时的温度变化幅度不同,屋顶天窗处可以受到阳光直射的钢构件和阳光无法照射的构件也不同;即便是阳光直射的构件,其迎光面和背光面有时也会形成梯度较大的温差。因此,对于此类工程应该根据经验把不同区域的构件区别对待,必要时也可借助 CFD 数值模拟方法进行温度场分析,以指导设计时温度作用的取值。

5.3 考虑施工阶段的暴晒时的温度作用施工周期较长的大跨度钢结构,由于屋面维护没有安装,考虑到太阳暴晒的影响,施工阶段的温度极大值有可能超过使用阶段的最高值。这时,结构的最高平均温度应予以适当增大,具体的增大数值严格地讲和结构朝向和表面材料的颜色均有关系,规范给出的建议是根据表面颜色和朝向增加 2~15℃,也有一些专家认为增加 20℃为宜。需要指出的是,进行构件验算时,考虑施工阶段暴晒的温度作用可仅与自重进行组合,而不必与活荷载、风荷载和地震作用同时组合,否则可能会带来不必要的浪费。结构使用阶段的温度作用应正常组合。

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

钢结构焊接残余应力及变形控制分析

钢结构焊接残余应力及变形控制分析 发表时间:2019-04-28T11:48:28.327Z 来源:《基层建设》2019年第6期作者:商杰1 罗小强2 牛保平3 [导读] 摘要:随着我国社会经济的快速发展,焊接技术得到了有效的创新与改革,逐渐发展为集冶金、材料、结构、电子机械等多门科学为一体的综合性工程工艺类学科,在工艺制造加工、建筑建设施工、设备安装等众多领域得到广泛应用,特别是我公司的石油钻井设备,基本都是钢结构焊接件。 宝鸡石油机械有限责任公司陕西宝鸡 721000 摘要:随着我国社会经济的快速发展,焊接技术得到了有效的创新与改革,逐渐发展为集冶金、材料、结构、电子机械等多门科学为一体的综合性工程工艺类学科,在工艺制造加工、建筑建设施工、设备安装等众多领域得到广泛应用,特别是我公司的石油钻井设备,基本都是钢结构焊接件。而焊接质量的好坏在焊接应力与焊接变形上有着显著体现。对此,加强焊接应力与焊接变形的研究,实现焊接应力与焊接变形的科学管控,是焊接产品质量的保证。 关键词:钢结构;焊接;残余应力;变形控制 1 焊接残余应力和变形的原因分析 焊接过程中产生变形问题是会极大程度影响钢材施工整体质量,焊接工艺对钢材施工影响是双方面的,在提升钢结构生产质量同时,对钢材结构产生一定影响。焊接变形无法避免,需要施工人员以合理手段对其进行控制。在焊接过程中由于出现不规则加热和在不均匀冷却情况下,使其内部分子结构发生变化。在钢材刚性约束下,外界力的作用以及组织变化,使其结构产生收缩,从而导致其出现变形情况。 1)焊接应力的产生是导致焊接变形最主要的原因。焊接工件的大小程度,复杂情况会产生大小数量不等的复杂焊缝。在处理焊缝的过程中,就有难以预测的复杂应力产生,从而导致焊接变形。变形度越大那么工件的外观和质量就会受影响。甚至可能会报废,或发生安全事故,造成经济损失。 2)受焊接材料的影响。焊接材料的质量好坏对焊接变形会产生影响。材料基本都是金属,金属本身有特殊的热物理性。焊接材料的热传导系数越大,温度梯度较小,这样焊接变形的几率也就越小。焊接是向母材料焊口加热,让其产生高温,使焊材与母材料完全融合。如果在加热过程中,受热不均匀,都会导致焊接变形。 3)焊接结构的设计。焊接结构因素是焊接变形的最大原因。焊接结构设计非常复杂,工件自身是拘束体,它随焊接而慢慢变化,所以工作的难度比较大。焊接会出现许多数量、接头形式不一样的焊缝。如果钢结构件的结构复杂,焊接变形就更难控制。在焊接产品中一部分结构件设计繁琐,且技术含量要求比较高,因此对焊接的各环节的要求都很严格。假设焊接结构设计不合理,其中随便哪一个地方出现问题,都会出现焊接变形的情况。 4)没有制定合理的焊接工艺。不合理的焊接工艺会影响产品的质量和生产效率。焊接工艺也考验操作者的技能水平,所以对焊工的要求也必须要高。焊接时所需要的工艺参数、工件的固定、焊接的前后顺序,怎么选择合理的焊接设备,等各方面都是焊接工艺对焊接变不变形的重要影响部分。这就需要丰富的理论知识和实践经验的焊工或专业的工艺部门来制定合理的焊接工艺。 2 控制对策 2.1 焊接应力的控制措施与策略 控制焊接应力的方法有很多,较为常用的方法主要有以下几种:(1)采用振动时效法消除焊接残余应力,实现焊接应力的有效控制。即应用偏心轮与变速电动机构成激振器根据钢结构外形特征以及产生应力的实际情况,在应力产生部分给予适当的振动,从而使钢结构产生循环应力,实现构建内部残余应力的有效消除,提升构建结构的稳定性。(2)利用间断焊接法进行焊缝应力的有效控制。例如,在对钢结构进行焊接的过程中,对焊缝进行短时间多次数焊接,让构建始终处于低温状态,从而降低热源对钢结构性能的影响,实现焊接应力的有效控制。该方法的缺点在于所需焊接工期相对较长,但焊接应力控制效果相对较好。(3)对焊缝尺寸进行科学设计,合理安排焊缝焊接顺序。即,在焊接过程中,应根据实际情况与要求适当的减小焊缝尺寸、焊缝坡口角度,从而降低焊缝横截面积对焊缝应力与焊缝变形存在的影响。同时,在焊缝设计过程中,避免焊缝应力集中现象的产生,可尽量采用双面焊接坡口的形式进行焊接实践操作。此外,在焊接过程中应遵循“先焊中间,后焊周边,分段焊接”的原则,进行实践操作。例如,在钢板拼接时,应该先对相互错开的短焊缝进行有效焊接,在进行长焊缝的焊接。在焊接长焊缝时,应从中间向两端进行依次分段焊接。(4)在焊接过程中应适当减小焊缝焊接的拘束度,并对复杂焊接工艺进行分解施工。一般情况下,给予焊接构件的约束力越大,在焊接过程中构件所产生的焊接应力也就越大。对此,在焊接过程中,需根据钢结构实际情况,适当的降低焊缝处的约束力。例如,在对长构件进行焊接时,应避免在组装过程中进行焊缝焊接,同时进行板条拼接时需严格依据拼接工艺要求进行实践操作,并在焊缝焊接过程中,避免不能自行收缩问题的产生。在多大型构件进行焊接时,应根据实际情况对构建进行科学分解焊接,用以提升焊接简便性与准确性。 2.2 焊接变形的控制措施与策略 焊接变形对于焊接的外观和尺寸都有着较大影响,常见的焊接件变形有初始偏心、扭转以及弯曲等,给钢结构在使用过程中带来变形、扭曲以及弯曲的现象,减少了钢结构的承载能力和整体强度。为了减小焊接变形,应采取以下措施:(1)应从焊接设计阶段入手,根据构建结构形态、焊接要求等进行焊接施工科学设计。在此过程中应对不同焊接类型及其表现形式、特点具有准确的认知,从而选择随适宜的焊接形式进行焊接,科学控制焊缝尺寸,做到焊缝数量最少、尺寸最小、构件结构稳定性影响最低。(2)科学选择焊缝位置,在焊接过程中可根据焊缝坡口形态,选择相适宜的焊接方法,将焊缝位置控制在构件截面对称位置或者是构件或截面中性轴位置,避免焊缝位置出现在高应力区域范围内。此外,根据焊接需求科学选择焊接方法,尽量选用快速焊接法或者是热源较为集中的焊接法进行操作。(3)选择合理的焊接工艺,合理的焊接工艺可以大大减小焊接变形的发生,从而进一步提高焊缝的焊接质量,提升钢结构的强度。一是选择膨胀率大的焊缝先焊接,而后是焊膨胀率小的焊缝;二是选择合适的焊接顺序及方向。如果是在钢结构对称的情况下,应使用对称焊接的方法。三是使用反变形方法提高焊接质量。在进行焊接前留出同焊接变形相反的预变形量,可以有效地避免大变形量的发生。四是要保证受力较大的焊缝在受热后具有一些伸缩量,必须选择受力大的焊缝先焊接,然后焊接受力小的焊缝。五是使用高温回火的方法减少变形,也被称作高温退火。六是在焊接前进行预热。具体方法是把焊接件的局部进行加热(温度应保持在100~300℃之间),另外还要让焊接件在焊接后保持这个温度以相应的时间,这样做可以大大减少因温度变化太大而引起的焊接裂纹。

超长建筑结构温度应力分析

超长建筑结构温度应力分析 夏云峰 (上海中交水运设计研究有限公司, 上海 200092) 摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。通过比较得出超长建筑在各种温度作用下的最不利工况。可为超长建筑结构考虑温度作用进行设计和施工提供参考。 关键词:建筑 超长建筑物 温度荷载 温度应力 St udy on t he Te mperature Stress of Super-Lengt h Buil di ng X ia Yunfeng (Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092) Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord- i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le- m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns. K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress 建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝,以及由这两种变形共同引起的温度收缩裂缝,则是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现。对超长结构的温度变形与温度应力,若在结构设计中处理不当,将使结构产生裂损,严重影响建筑结构的正常使用。我国的建筑结构设计规范中不考虑温度作用[1],只做构造处理。因此,温度应力是超长建筑结构设计中的重要研究课题之一。1 超长高层建筑结构温度问题有限元建模研究 结合工程实例,分析建筑结构各个阶段温度作用的特点,完善温度作用和温差取值的计算原则,并选出在工程设计中起控制作用的温差取值,方便设计采用。根据实际情况建立超长建筑结构的有限元分析模型,采用有限元分析程序ANSYS 有限元计算程序,进行结构整体分析。 郑州第二长途电信枢纽工程主体为超长高层建筑结构。主楼地下1层,地上主体19层。19层之上局部突起2层。柱网9.6 12m,主体结构东西长134m。由于功能要求建筑中间不设缝,南 10 港口科技 港口建设

钢结构

第一章轻钢厂房 1、轻钢门式刚架钢结构有哪些特点? (1)质量轻,(2)工业化程度高,施工周期短,(3)综合经济效益高,(4)柱网布置比较灵活 2、试简述轻型门式钢结构的设计步骤? 1、荷载及荷载组合:永久荷载、可变荷载、荷载组合效应 2、刚架的内力和侧移计算 3、刚架柱和梁的设计试述轻型门式刚架钢结构的结构形式:1)梁柱板件宽厚比限值和腹板屈曲后强度利用2)刚架梁、柱构件考虑屈曲后强度的截面强度计算3)梁腹板加筋肋的配置4)变截面柱在刚架平面的整体稳定计算5)变截面在刚架平面内的计算长度6)变截面柱在刚架平面外的整体稳定计算7)斜梁和隅撑的设计8)节点的设计 3、试述轻型门式刚架钢结构的结构形式 1)单跨刚架2)双跨刚架3)多跨刚架4)带挑檐刚架5)带毗屋刚架6)单坡刚架7)纵向带夹层刚架8)端跨带夹层刚架 5、在什么情况下门式刚架钢结构梁柱采用变截面? 门式刚架梁、柱多采用变截面杆以节省材料。 6、轻型门式刚架钢结构哪些位置需要设置支撑? (1)在每个温度区段或分期建设对的区段中,应分别设置成能独立构成空间稳定结构的支撑体系 (2)在设置柱间支撑的开间,应同时设置屋盖横向支撑,以构成几何不变体系 (3)端部支撑宜设在温度区段端部的第一或的第二个开间。柱间支撑的间距应根据房屋纵向受力情况及安装条件确定,一般取30~45m;有吊车时不宜大于60m (4)当房屋高度较大时,柱间支撑应分层设置;当房屋高度大于60m时,内柱列宜适当设置支撑 7、轻型门式刚架钢结构内力如何计算?应选择哪些截面作为控制截面进行计算? 1)变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算,计算时,将变截面的梁、柱构件分为若干段,每段的几何特征当作常量。如可采用楔形单元,采用变截面单元时不少于8段,楔形变截面单元则不少于4段。 2)控制截面的位置一般在柱底,柱顶、柱牛腿连接处及梁端、梁跨中等截面。 9、隅撑的作用是什么? 实腹式刚架梁的两端为负弯矩区,下翼缘在该处受压,为了保证梁的稳定,常有必要在受压翼缘两侧布置隅撑(墙处刚架仅布置在一侧)作为斜梁的侧向支撑。 10、檩条与墙梁在设计方面有哪些相同点和不同点? 檩条设计:檩条的截面形式,檩条的荷载和荷载组合。 檩条的内力分析:檩条的截面选择(强度计算,整体稳定计算,变形计算,构造要求);墙梁设计:墙梁的截面形式,墙梁计算。 11、柱间支撑的布置和作用是什么? 布置:在吊车梁以上的部分称为上层支撑,吊车梁一下的部分称为下层支撑。 作用:1)组成坚强的纵向构架,保证单层T房钢结构的纵向刚度。2)承受单层T房钢结构端部山墙的风荷载,吊车纵向水平荷载及温度应力等,在地震区尚应承受纵向地震作用并将这些力和作用传至基础。3)可作为框架结构柱在框架平面外的支点,减少柱在框架平面外的计算长度。 12、楼盖结构的作用是什么? 1、把楼盖上的竖向荷载传给竖向结构构件; 2、把水平力传给竖向结构或分配给竖向结构构件

超长结构温度应力分析与控制措施

超长结构温度应力分析与控制措施 摘要:随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大 型化、舒适化发展,大量超长、超宽的大型公共建筑随之涌现。由于季节变化的 影响,超长结构的温度应力问题会导致混凝土楼板产生裂缝,严重影响建筑的使 用功能和结构安全,因此温度作用在设计中必须予以考虑。本文以某钢筋混凝土 框架-剪力墙结构为例,对超长结构的温度应力问题采用有限元分析程序MidasGen进行了计算分析并给出了控制措施。 关键词:超长结构;温度应力;后浇带;有限元分析 1、前言 超长结构,由于季节变化等因素的影响,会让超长结构的混凝土发生变形, 当混凝土的变形受到墙体等构件的约束,楼板内便会产生较大的温度应力,当温 度应力高出混凝土的抗拉强度时,就会导致混凝土楼板会产生裂缝,通常情况下,若在结构中采用低收缩混凝土材料、设置后浇带以及采用预应力钢筋等措施时, 温度应力及收缩应力对结构的影响一般可以忽略。但超长混凝土结构中,如若不 进行合理的温度效应控制,柱、墙等竖向构件将产生显著的温度内力,影响结构 的承载能力;楼板则很有可能开裂并形成有害的贯通裂缝,对建筑防水和结构的 耐久性很不利,影响建筑的正常使用,因此,如何降低温度应力的影响是超长结 构设计的关键问题。 2、工程概况 某五星级酒店主楼部分采用钢筋混凝土框架-剪力墙结构,楼盖采用现浇钢 筋混凝土梁板体系,底部裙楼为两层宴会大厅,并设有斜圆柱形主出入口。框架 柱截面尺寸600mmx600mm~900mmx1200mm,墙截面尺寸200~500mm。 现行GB50010-2010《混凝土结构设计规范》中对房屋建筑工程结构伸缩缝 的最大间距做如下规定:对于现浇式结构,普通砖混结构50m,框架结构55m, 剪力墙结构45m,框架-剪力墙结构根据框架和剪力墙的具体布置情况取45~55m 之间,通常可取50m。该酒店结构不设缝轴线尺寸为167.2m,超过了规范要求。 3、温度工况 (1)温度荷载。假设该建筑从当年7月开始地上部分施工,第1~3层施工分 别需要一个月,从4层开始每层半个月,至次年二月半完工。按照该假定施加的 温度荷载始终为降温作用,为最不利工况。 (2)有限元模型。针对温度应力建立四组模型(M0、M1、M2、M3),均考虑施 工模拟和收缩徐变的作用;其中,部分模型考虑了地下室顶板的转动弹性嵌固, 弹簧刚度计算按照柱所连接的梁柱刚度进行计算,为近似值。模型的具体设计参 数见表1所示。 结构二层的后浇带设置如图1所示,其余各层M0、M1、M2后浇带设置均同;M3与 M2相比,仅在结构第二层增设后浇带c,其余部位后浇带设置均同M0~M2模型。温度有 限元模型为保证结构成立,将一跨内的所有次梁和板均设置为后浇带。 4、温度应力分析 本工程采用有限元分析程序MidasGen对本模型进行温度应力计算分析,分别探讨温度应力对框剪结构中的柱、剪力墙、梁板等主要构件的影响,并给出控制措施及建议。 (1)柱内力。通过对比框架柱主要集中区域的温度应力,其中:①主楼最外侧柱(区域1);

温度应力对超长混凝土结构的影响

温度应力对超长混凝土结构的影响 温度应力对超长混凝土结构的影响 摘要:近十几年来,随着我国经济的快速发展,人民对建筑的外观及使用功能更高的要求,在建筑过程中,出现了越来越多的平面超长的结构,而根据国家结构的相关规范,平面尺寸超过55m即需要设置伸缩缝,如果严格按照规范要求对所有超长建筑设置伸缩缝,将会在很长程度上影响建筑美观及功能使用。而不设置伸缩缝,在温度效应的作用下,产生较大的温度收缩裂缝,从而影响建筑的使用年限。因此从实际角度出发,需要我们结构工程师在结构设计上,解决不设伸缩缝而带来的减少建筑使用年限问题,进而满足超长建筑的功能使用需求。 关键字:钢筋混凝土,超长建筑,温度应力,相应措施 中图分类号:TU37 文献标识码: A 为了满足建筑功能的需要,越来越多的超长结构应运而生,不能设置伸缩缝就成为结构工程师的需要面对的重要问题:既要满足建筑的使用功能要求,又要保证结构使用及耐久性。根据温度应力理论及相关资料,对温度应力作用进行初步的分析,并结合工程实践经验做出几点相应的措施。 温度裂缝的特点: 混凝土在搅拌时产生水化反应,在水化反应的过程中,混凝土发生干缩,混凝土自身具有热胀冷缩的性质,当把混凝土浇筑入模版中时,因受到模版及钢筋的约束,会在混凝土内部产生收缩裂缝或者温度裂缝。在通常的超长建筑中,多见的是收缩应力与温度应力共同作用而产生的温度裂缝。其特点是早期收缩快,6个月即可完成全部收缩量的90%,在一年以后趋于稳定,变形极小。收缩的主要部位是底层和顶层。结构的梁板以及外露的挑檐,女儿墙等构件。 产生温度作用分析: 建筑工程的温差应包括竖向温差和水平温差效应,而对于高度不

钢结构设计课后习题答案

1.1、屋盖结构主要组成部分是哪些?它们的作用是什么? A、屋架:支撑于柱或托架,承受屋面板或檩条传来的荷载;b、天窗:屋架跨度较大时,为了采光和通风的需要;C、支撑系统:用于增强屋架的侧向刚度,传递水平荷载和保证屋盖体系的整体稳定。 1.2、屋盖结构中有哪些支撑系统?支撑的作用是什么? (1)a、上弦横向水平支撑b、下弦横向水平支撑c、上弦纵向水平支撑d、下弦纵向水平支撑e、垂直支撑f、系杆 (2)a、保证结构的空间整体性b、为弦杆提供适当的侧向支撑点c、承担并传递水平荷载d、保证结构安装时的稳定与方 1.3、如何区分刚性系杆和柔性系杆?哪些位置需要设置刚性系杆? 答:(1)刚性系杆:能承受压力,柔性系杆:只能承受拉力(2)上弦平面内檩条和大型屋面板可起到刚性系杆作用,因而可在屋架的屋脊和支座节点处设置系杆,当屋架横向支撑设置在第二柱间时所有系杆均为刚性系杆。 1.4实腹式和格构式檩条各适用于哪种情况?其优缺点是什么? 答:(1)实腹式檩条常用于跨度为3~6m的情况,构造简单,制造及安装方便(2)桁架式檩条用于跨度较大(>6m)的情况,分为三种形式:A、平面桁架式檩条,受力明确,用料省,但侧向刚度较差,必须设置拉条;B、T形桁架式檩条,整体性差,应沿跨度全长设置钢箍;C、空间桁架式檩条,刚度好,承载力大,不必设置拉条,安装方便,但是构造复杂,适用跨度和荷载较大的情况 1.5为什么檩条要布置拉条? 答:为了给檩条提供侧向支撑,减小檩条沿屋面坡度方向的跨度,除了侧向刚度较大的空间桁架式和T形桁架式檩条外,在实腹式檩条和平面桁架式檩条之间设置拉条。 1.6三角形、梯形、平行弦桁架各适用于哪些屋盖体系? 答:(1)三角形屋架:屋面坡度较大的有檩屋盖结构或中小跨度的轻型屋面结构(2)梯形屋架:用于屋面坡度较小的屋盖结构、工业厂房屋盖结构最常用形式(3)矩形屋架:用于托架或支撑体系中(4)曲拱屋架:用于有特殊要求的房屋中 1.7屋架的腹杆有哪些体系?各有什么特征? 答:(1)三角形腹杆:单斜杆式,长杆受拉,短杆受压,经济;人字式,腹杆数少,节点少,构造简单;芬克式,腹杆受力合理,可分开运输。(2)梯形屋架:人字式,减少上弦节间短,有利于提高上弦承载力,避免上弦局部受弯,受拉下弦节间长,可减少节点,便于制造;再分式,减少上弦节间长度(3)矩形屋架:人字式,腹杆数少,节点简单K形,桁架高度高时可减少竖杆长度交叉式,常用于承受反复荷载的桁架中,又是斜杆可用柔性杆。 1.8如何选择屋架构件截面? 答:选择屋架杆件截面时,应注意选用肢宽而壁薄的角钢;屋架弦杆一般采用等截面,但对于跨度>24m且弦杆内力相差较大的屋架,可在适当节间处改变截面,改变一次为宜。 对轴心受拉杆件由强度要求计算所需的面积,同时应满足长细比要求。对轴心受压杆件和压弯构件要计算强度、整体稳定、局部稳定和长细比。根据构件受力按钢结构基本原理中介绍的方法选择截面。 a普通钢屋架的杆件一般采用等肢或不等肢角钢组成的T形截面或十字形截面b对于屋架上弦杆,宜采用两个不等肢角钢短肢相并而成的T形截面形式;当有节间荷载作用时,宜采用不等肢角钢长肢相并T形截面 c对于受拉下弦杆,可采用两个等肢角钢或不等肢角钢短肢相并组成的T形截面 d对于屋架的支座斜杆及竖杆,可采用两个不等肢角钢长肢相并而成的T形截面 e屋架中其他腹杆,宜采用两个等肢角钢组成的T形截面 f与竖向支撑相连的竖腹杆宜采用两个等肢角钢组成的十字形截面 1.9如何确定屋架节点的节点板厚度?一个桁架的所有节点板厚度是否相同? 答:桁架节点板的厚度可根据腹杆(梯形屋架)或弦杆(三角形屋架)的最大内力按表1-1取用,节点板的最小厚度为6mm。在同一榀屋架中,除支座处节点板比其他节点板厚2mm外,全屋架所有节点板的厚度应相同。1.10、垫板的作用是什么? 答:支座节点的传力路线是:屋架杆件的内力通过连接焊缝传给节点板,然后由节点板和加劲肋把力传给支座底板,最后传给柱子。 1.12为什么在屋架拼接节点要增加拼接角钢? 答:为了减轻节点板负担和保证整个屋架平面外的刚度。 1.13用钢管做桁架时,参数β的含义是什么?β的大小对节点承载力有何影响? 答:β是支管外径与主管外径之比。β越大节点承载力越高 1.14搭接支管的节点承载力如何随搭接率变化? 答:根据Ov的大小,分为三种情况。25%《Ov<50%,增大;50%《Ov<80%,80%《Ov<100%,分别为一定值。详情见书。 1.15保证网架结构几何不变的必要条件是什么?充分条件是什么? 答:(1)网架为一空间铰接杆系统结构,保证网架结构几何不变的必要条件是:W=3J-m-r≤0 式中,J——网架的节点数;M——网架的杆件数;R ——支座约束链杆数。当W>0时,网架结构为几何可变体系;当W=0时,网架无多余杆件,如杆件布置合理,为静定结构;当W<0时网架有多余杆件,如杆件布置合理,为超静定结构。 (2)网架结构几何不变的充分条件可通过结构的刚度矩阵进行判断,出现下列条件之一者,该网架结构为几何可变体系。 1)引入边界条件后,总刚度矩阵【K】中对角线上出现零元素,则与之对应的节点为几何可变; 2)引入边界条件后,总刚度矩阵行列式【K】=0,该矩阵奇异,结构为几何可变体系; 1.16、双层网架的主要形式有哪些? 答:双层网架的常用形式有以下几种:平面桁架系网架(两向正交正放网架,两向正交斜放网架,三向网架);四角锥体系网架(正向四角锥网架,抽空四角锥网架,星形四角锥网架);三角锥体系网架;网架结构的支撑;网架高度及网格尺寸。 1.17网架结构的支撑形式主要有哪些? 答:(1)在网架四周全部或部分边界节点设置支座,是常用的支撑方式,称为周边支撑(2)。将整个网架支撑在多个支撑住上,称为点支撑。(3)平面尺寸大很大的建筑物,除在网架周边设置支撑外,可在内部增设中间支撑,以减小网架杆件内力挠度(即周边支撑与支点支撑结合)。 1.18网架结构的高度和网格尺寸各与哪些因素有关? 答:网架结构的高度主要与屋面荷载、跨度和支撑条件有关。荷载和跨度越大,网架的高度越大;平面接近正方形时高度可取得小一些;狭长矩形平面网架的单向作用明显,高度可取得大一些;圆形平面网架高度可取得小一些;点支撑网架比周边支撑网架高度大一些。 网架的网格尺寸与网架高度和屋面材料有关。1.19网架结构的节点有哪些形式?设计时要进行哪些计算? 答:(1)焊接空心球节点:空心球外径D的确定,空心球径等于或大于300mm,且杆件内力较大,需要提高承载力时,球内可加环肋,空心球径直径为120-900mm时受压受拉承载力验算,空心球的壁厚验算(2)螺栓球节点:钢球直径计算(球内螺栓不相碰的最小直径,满足套筒接触面要求的直径,角度小于30度,保证杆件不相碰的最小直径),高强度螺栓的性能等级的选用,套筒外形尺寸验算,锥头和封板。(3)焊接钢板节点:节点板厚度(4)焊接钢管节点,(5)杆件直接汇交节点 1.20网架结构的支座形式有哪些?各有什么特点? 答:(1)平板压力和拉力支座:转动的位移受很大约束,在底板可开设椭圆形孔洞,方便安装,只适用于较小跨度网架(2)单面弧形压力支座和拉力支座:单方向转动未受约束,限制平移,适用于中小跨度网架(3)双面弧形压力支座:在支座和底板间设有弧形块,上下面都是柱面,支座可转动但不能平移。(4)球铰压力支座,其支座可任意方向转动但不能平移,适用于大跨度网架。(5)板式橡胶支座:通过橡胶垫的压缩和剪切变形,支座既可以转动也可以平移,助于单行支座,适用于大中跨度网架。 1.21为什么单层网壳的节点应做成刚接的?一般采用什么形式? 答:(1)以便传递各杆传来的集中力和弯矩(2)a板节点b焊接空心球节点c螺栓球节点d嵌入式毂式节点e叠合式节点f卡盘螺栓节点 2.1单层厂房是由那些结构或构件组成的?这些组成部件的作用是什么? 结构组成:a横向框架由柱和它所支承的屋架或屋盖横梁组成,是单层钢结构厂房的主要承重体系,承受结构的自重、风、雪荷载和吊车的竖向与横向荷载,并把这些荷载传递到基础。b屋盖结构承担屋盖荷载的结构体系,包括横向框架的横梁、托架、中间屋架、天窗架、檩条等。c支撑体系包括屋盖部分的支撑和柱间支撑等,它一方面与柱、吊车梁等组成单层钢结构厂房的纵向框架,承担纵向水平荷载;另一方面又把主要承重体系由个别的平面结构连成空间的整体结构,从而保证了单层厂房钢结构所必需的刚度和稳定。d吊车梁和制动梁(或制动桁架)主要承受吊车竖向及水平荷载,并将这些荷载传到横向框架和纵向框架上。e墙架承受墙体的自重和风荷载。 2.2布置柱网时应考虑哪些因素? A、满足生产工艺流程的要求,包括预期的扩建和工艺设备更新的需求。 B、满足结构上的要求,在保证厂房具有必需的刚度和强度的同时,尽量减少屋架跨度和柱距的类别。 2.3为什么要设置温度缝?横向和纵向温度缝如何处置? (1)为避免结构中产生过大的温度应力,在厂房的纵向或横向的尺度较大时,一般要求在平面布置中设置温度伸缩缝。 (2)a、设置双缝,即在缝的两旁布置两个无任何纵向构件联系的横向框架b、采用单柱温度伸缩缝,即在纵向构件支座处设置滑动支座(节约钢材)c、当厂房宽度较大时,也应该按规范规定布置纵向温度伸缩缝 2.4横向框架有哪些类型?如何确定横向框架的主要尺寸? (1)a、刚接框架b、铰接框架(2)根据所采用吊车的工作要求设计 2.5厂房柱有哪些类型?各在什么情况下使用? A、等截面柱,b、格构式柱,c、分离式柱 使用范围:A、在吊车的吨位很小时可采用等截面或变截面实腹式柱。B、实腹式柱的构造简单,加工制作费用低,常在厂房高度不超过10m切吊车额定其重量不超过20t时采用。C、一般采用梯形柱,阶梯形柱下段截面较大时通常采用格构式,而上段可采用实腹式,亦可采用格构式。D、分离式柱适宜于有位置不高的大吨位吊车和有扩建计划的结构。 2.6厂房有哪些支撑?各有什么作用? (1)柱间支撑,用于将厂房纵向柱列传来的力良好地传到基础上。上层柱间支撑和下层柱间支撑。下层柱间支撑是为了减少纵向温度应力的影响; 垂直支撑,用于传递屋架纵向垂直方向的力。(2)水平支撑,分上弦、下弦。用于屋架上下弦水平方向的力。(3)联系梁,用于传递纵向的柱根、柱端、屋架端的水平力。 2.7试述柱间支撑的布置、构造和计算特点。 (1)布置:下层柱间支撑一般宜布置在温度区段的中部;上层柱间支撑除了要在下层支撑布置的柱间设置外,还应当在每个温度区段的两端设置。每列柱顶端均要布置刚性系杆。(2)构造特点:常见的下层柱间支撑是交叉型的,与柱子的夹角控制在35~55度,下层柱间支撑常见形式采用交叉形,人字形或K字形,柱距较大时可取V形或八字形。(3)计算特点:①上层柱间支撑承受端部墙传来的风力,下层柱间支撑除承受短墙传来的风力外,还承受起重机的纵向水平荷载。②在同一温度区段的同一柱列设有两道或两道以上的柱间支撑时,则全部纵向水平荷载由该柱列所有支撑共同承受。③当在柱的两个肢的平面内成对设置时,在起重机肢的平面内设置的下层支撑,除承受起重机纵向水平荷载外,还承受与屋盖肢下层支撑按轴线距离分配传来的风力。④靠墙的外墙肢平面内设置的下层支撑,只承受端墙传来的风力与起重机肢下层支撑按轴线距离分配受力。 2.8试述吊车梁的类型及其应用范围。 (1)吊车梁按结构体系可分为实腹式、下撑式和桁架式。按支承情况分为简支和连续。 (2)实腹简支吊车梁应用最广,当跨度及荷载较小时,可采用型钢梁,否则采用焊接梁,连续梁比简支梁用料经济,但由于它受柱的不均匀沉降影响较明显,一般很少应用;下撑式吊车梁和桁架式吊车梁用钢量较少,但制造费工、高度较大;桁架式吊车梁用钢省,但制作费工,连接节点在动力荷载作用下一产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。 2.9吊车梁受哪些荷载?须计算哪些应力? (1)承受由起重机产生的三个方向的荷载:竖向荷载(起重机系统和起重物的自重以及起重机梁系统的自重)、横向水平荷载(小车刹车时的惯性力)和纵向水平荷载(吊车纵向刹车时的惯性力)。(2)需计算这些内力:a、起重机最大轮压b、起重机横向水平力 2.10吊车梁的水平荷载靠什么承受? 吊车梁的横向水平荷载是在小车刹车时的惯性力。横向水平荷载应等分与桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车可不考虑水平荷载。 2.11吊车梁的疲劳与那些因素有关? 应力集中、重中轻的工作制等级、行车荷载、吊车的行车速度、钢梁的塑性和韧性。 2.12刚架有什么特点?主要使用范围是什么? (1)特点:结构质量轻;柱网布置灵活,不受屋板面,墙板尺寸的限制;刚架可采用变截面,截面与弯矩成正比;刚架的腹板可利用屈服后强度,允许部分腹板屈曲,按有效宽度设计;综合经济效益高 (2)适用范围:展览厅,轻型厂房,仓库,大型超市,娱乐体育设施。车站候车室和码头建筑等。

钢结构 ( 第2次 )

第2次作业 一、单项选择题(本大题共60分,共 20 小题,每小题 3 分) 1. 在焊接施工过程中,应该采取措施尽量减小残余应力和残余变形的发生,下列哪一项措施是错误的?(D ) D. 加强板边约束,阻止被焊接板件变形的发生 2. 验算工字型截面梁的折算应力公式σ2+3τ2≤β1f,则σ1τ应为(D ) D. 验算截面中验算点的正应力和剪应力 3. 应力集中越严重,钢材也就变得越脆,这是因为(B ) B. 应力集中产生同号应力场,使塑性变形受到限制 4. 梁的受压翼缘侧向支承点的间距和截面尺寸都不改变,跨内的最大弯矩相等,且不存在局部稳定问题,承受以下哪种荷载时梁的临界弯矩为最高( D ) D. 纯弯矩 5. 普通轴心受压构件的承载力经常决定于(C )。 C. 弯曲屈曲 6. 两端铰接轴心受压柱发生弹性失稳时,其它条件相同,轴力分布图如下所示,则各压杆的临界力的关系是( B ) B.N k4>N k2>N k3>N k1 7. 如图所示,钢屋架上弦杆两节间在 A 、 B 点平面外有侧向支撑,两节间的轴向压力分别为 N 和 2N ,当计算 AB 杆平面外稳定时,其计算长度应为(B ) B. 0.875(l1+l2) 8. 跨中无侧向支承的组合梁,当验算整体稳定不足时,应该采用(C ) C. 加大受压翼缘板的宽度 9. 压弯构件工字形截面腹板的局部稳定与腹板边缘的应力梯度有关,腹板稳定承载力最大时的α0值是( D ) D. 2.0 10. 规范规定侧焊缝的设计长度lwmax在动荷载作用时为40hf,在静荷载作用时为60hf,这主要考虑到(B ) B. 焊缝沿长度应力分布过于不均匀 11. 某屋面棱条跨度6M,中间设置一道拉条作为侧向支承点,作用于懔条的弯矩设计值Mx=45.0KN m,My=0.9KN M,懔条采用I22a,Wx=309.0cm3,Wy=40.9 cm3, Q235-BF(三号钢)它的整体稳定性应力是( C ) C. 181.2MP 12. 均布荷载和集中荷载作用下的简支梁(其他条件均相同),关于其整体稳定屈曲系数k,下列叙述正确的是( D ) D. 集中荷载作用在梁的下翼缘时k值最高 13. 钢材的塑性性能受很多因素的影响,下列结论中正确的是( C) C. 加载速度越快,钢材表现出的塑性越差 14. 弯矩绕强轴作用的工字形偏心受压柱,影响其腹板局部稳定性的因素是(B ) B. 应力分布系数α0和弯矩作用平面内长细比λ 15. 焊接组合工字形轴心受压柱的翼缘与腹板的焊缝承受(B ) B. 同时承受压力和压杆屈曲时的剪力 16. 梁的最小高度是由(C )控制的。 C. 刚度 17. 在工业厂房排架结构中使用梯形钢屋架时,关于刚性系杆和柔性系杆的设置叙述正确的是(A ) A. 在屋架上弦平面内,屋脊处应该设置刚性系杆,两端应该设置柔性系杆 18. 某双轴对称截面的压弯构件承受如图所示不同工况的弯矩作用,图中所示的弯矩大小均相等,仅考虑弯矩作用平面内稳定性时,其轴向受压承载力最大的情况为(B ) B. b 19. 如图所示的各种情况,除了荷载作用形式不同之外,其它各种条件均相同,试问哪种弯矩分布模式对工字梁的整体稳定更为不利 ? (C ) C. c 20. 当缀条采用单角钢时,按轴心压杆验算其承载能力,但必须将设计强度按规范规定乘以折减系数,原因是(D )。 D. 单角钢缀条实际为偏心受压构件 二、判断题(本大题共40分,共 20 小题,每小题 2 分) 1. 焊接残余应力在正常条件下影响结构的强度承载力。( X) 2. 氧是钢中的有害杂质,它的作用和硫类似,使钢冷脆。( X) 3. 疲劳容许应力幅与钢种有关。(X )

超长结构温度应力计算探讨

超长结构温度应力计算探讨 一、温度作用的特点: 温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。 二、温度作用的规范规定: 2.1什么时候需要进行温度作用计算 根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。材料确定的情况下,长度越长,温度作用越大。 在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm; 如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强

度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。 T 实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。 表2: 钢筋混凝土结构伸缩缝最大间距(m) 建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

钢结构设计简答题

《建筑钢结构设计》复习 第九章 单层厂房钢结构 1、重、中型工业厂房支撑系统有哪些?各有什么作用? 答:⑴柱间支撑分为上柱(层)支撑和下柱(层)支撑(★吊车梁和辅助桁架作为撑杆是柱间支撑的组成部分,承担并传递单层厂房钢结构纵向水平力)。 柱间支撑作用:①组成坚强的纵向构架,保证单层厂房钢结构的纵向刚度 ②承受单层厂房钢结构端部山墙的风荷载、吊车纵向水平荷载及温度应力等,在地震区尚应承受纵向地震作用,并将这些力和作用传至基础 ③可作为框架柱在框架平面外的支点,减少柱在框架平面外的计算长度 ⑵屋盖支撑由上弦横向水平支撑、下弦横向水平支撑、下弦纵向水平支撑、垂直支撑、系杆组成 屋盖支撑作用:①保证屋盖形成空间几何不变结构体系,增大其空间刚度 ②承受屋盖各种纵向、横向水平荷载(如风荷载、吊车制动力、地震力等),并将其传至屋架支座 ③为上、下弦杆提供侧向支撑点,减小弦杆在屋架平面外的计算长度,提高其侧向刚度和稳定性 ④保证屋盖结构安装时的便利和稳定 2、檩条有哪些结构型式,是什么受力构件,需要验算哪些项目?(P317-319) 答:结构形式:实腹式和桁架式:檩条通常是双向弯曲构件,需要验算强度、整体稳定、刚度。 3、设置檩条拉条有何作用?如何设置檩条拉条 答:作用:为了减小檩条沿屋面方向的弯曲变形,减小My 以及增加抗扭刚度,设置檩条拉条以减小该方向的檩条跨度(课件) 如何设置:当檩条的跨度4~6 m 时,宜设置一道拉条;当檩条的跨度为6m 以上时,应布置两道拉条。屋架两坡面的脊檩须在拉条连接处相互联系,或设斜拉条和撑杆。Z 形薄壁型钢檩条还须在檐口处设斜拉条和撑杆。当檐口处有圈梁或承重天沟时,可只设直拉条并与其连接。 4、 压型钢板根据波高的不同,有哪些型式,分别可应用于哪些方面?(P323) 答:高波板:波高>75mm ,适用于作屋面板 中波板:波高50~75mm ,适用于作楼面板及中小跨度的屋面板 低波板:波高<50mm ,适用于作墙面板 5、普通钢桁架按其外形可分为哪些形式?(P326),梯形屋架有哪些腹杆体系?(P327) 答:普通桁架按其外形可分为三角形、梯形及平行弦三种。 梯形桁架的腹杆体系有人字式、再分式。 8、 屋架中,汇交于节点的拉杆数越多,拉杆的线刚度和所受的拉力越大时,则产生的约束作用越大,压杆在节点处的嵌固程度越大,压杆的计算长度越小,根据这个原则桁架杆件计算长度如何确定? 答:⑴桁架平面内:弦杆、支座斜杆、支座竖杆---杆端所连拉杆少,本身刚度大,则0x l l =; 其他中间腹杆:上弦节点所连拉杆少,近似铰接或者下弦节点处、下弦受拉且刚度大,则00.8x l l = ; ⑵桁架平面外:对于腹杆发生屋架外的变形,节点板抗弯刚度很小,相当于板铰,取01y l l =; 1l 范围内,杆件内力改变时,则 2011 (0.750.25 )y N l l N =+ ⑶斜平面:腹杆计算长度 00.9y l l = 9、 由双角钢组成T 形或十字形截面的的杆件,为保证两个角钢共同工作,在两角钢间每隔一定距离加设填板以使两个角钢有足够的连系,填板间距有何要求?(P335-336) 答:填板间距:对压杆4d l i ≤,对拉杆80d l i ≤;在T 形截面中,i 为一个角钢对平行于填板的自身形心

相关文档
最新文档