收缩及温度应力分析计算预应力

收缩及温度应力分析计算预应力
收缩及温度应力分析计算预应力

预应力防止收缩及温度应力计算分析

一、混凝土收缩应力

收缩是混凝土在不受力情况下,因体积变化而产生的变形。收缩大体由两种情况引起:干燥失水和炭化作用。与收缩有关的影响因素很多,其中包括:(1)水泥的品种质量及用量,水泥用量越多,收缩就越大;矿渣水泥较普通硅酸盐水泥收缩值大。(2)骨料的物理性质和最大粒径,骨料颗粒弹性模量越高,收缩值越小;增大骨料尺寸可以降低混凝土收缩量。(3)用水量,水灰比越大,收缩就越大。(4)养护条件,高温下湿养时,混凝土收缩可降低30%左右;使用环境的温度越高,收缩也愈大。(5)体积与表面积之比,体表比越大,收缩值越大。收缩应力是单向发展,其变形绝大多数情况下不可逆的。

混凝土的收缩是一种随时间而增长的变形,结硬初期发展较快,二周可完成全部收缩的1/4,一个月约可完成1/2,两个月完成60-80%,以后增长缓慢,一般两年后趋于稳定,最终收缩应变εsh约为(2-5)×10-4。

本工程中假设混凝土最终收缩应变εsh=4×10-4。在本工程的地上主体结构中,都应预留上下贯通的后浇带,后浇带之间最大间距最好在50m 以内。在后浇带未浇筑之前,超长板可视一种能接近于自由变形的构件,后浇带两个月以后浇灌,考虑竖向结构(柱与墙)的约束影响,可认为收缩应变中已完成60%的自由变形,即ε1=60%εsh=2.4×10-4,残余应变ε

=40%εsh=1.6×10-4才在结构中产生拉应力。

2

收缩残余应变是缓慢发展的,在其发展过程中混凝土拉应力逐渐变

大。以C30(Ec=3.0×104N/mm2)混凝土为例,当板完全处于约束情况下残余应变引起的混凝土名义拉应力σt=ε2×Ec=4.8N/mm2。但是对于混凝土这种弹塑性材料而言,它的另一个特性就是徐变;徐变总是利用变形使构件中所受的力朝着数值变小的方向发展,有利于结构的内力重分布;在解决收缩应力这一问题时,决不能忽视这一有利因素。在混凝土应力不大的线性徐变情况下,徐变系数φ(徐变变形与弹性变形之比,即φ=εcr/εel)取值=2-4。徐变的这种影响也可等效于混凝土弹性模量的折减,令φ=3,即εcr=3εel,折减后弹性模量Ecz=Ecεel /(εcr+εel)=0.75N/mm2,则残余应变引起的混凝土实际拉应力σt2=ε2×Ecz=1.2N/mm2。对南北方向由于距离相对较短可以认为约束较弱,能存在一定的自由变形取σ

=0.8N/mm2。

t2

二、混凝土温度应力

同绝大多数的材料一样,混凝土也具有热胀冷缩的特性,其线膨胀系数可采用αc=1×10-5。与收缩应力的单向性不同的,温度应力是随温度的变化循环往复的,既有拉应力,也有压应力。混凝土的抗压能力大大超过其抗拉能力,因此工程中应考虑的是温度下降引起的拉应力。

大面积平板采用预应力技术克服温差应力尚无规范可循,综合多种因素的影响,在设计时对温差变化的选择、温度基点的确定以及各部位边界约束的刚性比较,都是确定预压应力大小的重要因素;同时,针对结构平面特点,在施工中如何从构造上更好的发挥预应力技术优势,也是决定预

压应力能否建立的重要因素。

预应力产生的预压应力可约束混凝土温度拉应力,众多工程实践证明在超长板中应用预应力技术是抵抗温度变形及裂缝的有效措施之一。

大面积混凝土结构,受温度变化影响较大,温度降低时,水平结构混凝土受冷收缩,受到边界条件的约束而产生拉应力。混凝土的温度应力是一种约束力,当结构具有自由端时,虽然温度变化可产生温度应力而平面位移,但自由变形使温度应力消失;相反地,如平面结构复杂,平面内的内筒剪力墙,外圈的墙、柱及其他位置的大型柱子,都成为平面位移的约束条件。

楼板产生拉应力的大小,取决于温度变化的绝对值,也取决于边界约束体与楼板的刚度比。

楼板内充分考虑在边界约束影响下的楼板平面刚度大小,越是薄弱处预应力配筋量越大。

(1)温度拉应力计算:

楼板受温度变化影响产生拉应力的大小取决于温度变化的绝对值。

假设计算温度基点定为10 0C, 最大年温差变化设为?T=20 0C

预应力张拉后浇注后浇带,楼板内因温度荷载产生的平均拉应力:

①考虑周边刚性约束

只考虑年温差变化的影响,混凝土抗压模量Eb折减50%,热膨胀系数为105/c0

ε=ò*ΔT=105/c0*20 c0=2*10-4

σε

*E2*10-4*0.5*3.*104=3.0Mpa

==

②板边无约束

σ=0

③考虑梁板、柱子等的约束,假设柱1000*1000

σ=70%*3*10-4*0.5*3*104=2.1 Mpa

南北方向同收缩应力一样,由于距离相对较短可以认为约束较弱,但与收缩相比,其应力折减程度要小。取折减系数为0.8,南北方向温度应力σ=0.8×2.1=1.68N/mm2。

综合前面的分析,东西方向板中由收缩和温度引起的拉应力约为:σ=1.2+2.1=3.3N/mm2;

南北方向板中拉应力约为:

σ=0.8+1.68=2.48N/mm2;

(2)预应力荷载产生的压应力

采用1860钢绞线σcon=0.7fptk。单端张拉长度以损失不大于30%为原则;

预应力筋为温度构造筋,筋形主要为直线预应力筋,为充分发挥预应力曲线配筋的优势,沿楼板受力方向兼起结构受力作用;预应力筋筋型分为板中直线、板底直线和曲线三种布筋形式。

设计时,预应力应连续布置,参照结构受力及柱网形式双向配置

预应力筋。

梁板结构,梁板共同受温度变化的影响,因此应考虑梁板共同受温度拉力,故须将梁端面折算为板厚。

假设计算楼板折算厚度为220mm ;混凝土强度C30;

单束预应力筋有效力为1860*0.7*0.7*140mm 2=127.6KN

单束预应力筋在板中的平均压应力为:MPa 58.01000*22010*6.1273

==σ(压

应力)

(3)施加预应力

C30混凝土抗拉强度ftk=2MPa,混凝土拉应力限制系数αct=0.7 预应力数量:东西方向板中

3.358.00.2*7.03.3=-=n 束,取3.5束 南北方向板中9.158.00.2*7.048.2=-=

n 束,取2束 预应力筋在板中的平均压应力为:

东西方向 MPa 03.21000

*2205.3*10*6.1273==σ(压应力) 南北方向 MPa 16.11000

*2202*10*6.1273==σ(压应力)

(4)预应力筋配置:

以上预应力配筋是以理想状况计算得出的,考虑结构实际情况,如支撑、约束、部位及洞口等因素,实际配筋应作出相应调整。一般情况下,结构中间配筋要大一些,结构两边配筋可小一些。若结构中有大洞口,则

应在洞口周围加强配筋。

(5)预应力施工特点

在大面积楼板内,存在着后浇带、结构错层、洞口、以及各施工面的交接,并保证施工进度,特制定如下措施:

①计算温度基点假定为10 0C,因此张拉时间须严格控制在10 0C以下。

②为避免预应力损失过大,预应力筋长度的确定应以预应力损失不大于30%为原则。

③根据后浇带位置确定预应力筋是否断开。

④板下支撑拆除可在预应力张拉前进行,但张拉前仍需保留部分支撑。

⑤预应力张拉端结点除板端内置穴模式、后浇带外露式外,还有板面预留张拉槽,用于板上张拉,为保证足够的锚下承压面混凝土的压力、劈拉力,附加5 12的开口箍筋。

⑥在设计中,应考虑楼板变形对柱产生的影响,尤其是边柱。

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

某工程的温度应力计算

某工程的温度应力计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (+++++++++++)/12 =。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

桩身应力测试分析报告

精心整理第一章工程概况

根据**院提供的岩土工程勘察报告,该场地工程地质条件如下:

三、检测桩位示意图 四、钢筋应力计在桩身埋设位置示意图 钢筋应力计在各试桩中位置示意图

二、测试设备及钢筋测力计的埋设 1、每桩钢筋应力计设置在各土层交界面处,每一个截面设2只钢筋测力计(基本呈180°对称布置),各钢筋应力计埋设截面的平、剖面图如前图; 2、JTM-V1000振弦式钢筋应力计采用焊接法固定在钢筋笼主筋上,并与桩身纵轴线平行;

3、连接在应力计的电缆线用柔性材料保护,绑扎在钢筋笼内侧并 引至地面; 4、所有应力计均用明显标记编号; 5、仪器设备:检测仪器设备采用JTM-V1000振弦式钢筋应力计、JTM-V10B 型频率读数仪、集线箱等组成。 三、测试原理 1位2ε c1j = εεs1j 3E cj 、E sj —砼弹性模量、钢筋弹性模量[E s 取2.0×108(kPa)] A cj 、A sj —同一截面处砼面积、钢筋总面积。 εcj 、εsj —同一截面处砼与钢筋的应变 4、钢筋应力计受力的计算公式: ) 2()(' 2 02 ----------------??=-?=Si Sij S i ij Sij A E F F k P ε

式中: P Sij —第i 量测截面处在j 级荷载下应力计所受轴向力(kN ) F ij —第i 量测截面处在j 级荷载下应力计的实测频率值(Hz) F i0—i 截面处钢筋应力计的初始频率值(Hz ) K A si ’—56f ij P ij —i A i 12、弦式钢筋应力计宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。在地面处(或以上)应设置一个测量断面作为钢筋应力计传感器标定断面。钢筋应力计埋设断面距桩顶和桩底的距离不宜小于1倍桩径。在同一断面处对称设置2个钢筋应力计。钢筋计应按主筋直径大小选择。仪器的可测频率范围应大于桩在最大加载时的频率的1.2倍; 3、使用前应对钢筋计逐个标定,得出压力(拉力)与频率之间的关系。带有接长 ) 3()(' -------------------------?= Si S Sij Sij A E P ε

超长建筑结构温度应力分析

超长建筑结构温度应力分析 夏云峰 (上海中交水运设计研究有限公司, 上海 200092) 摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。通过比较得出超长建筑在各种温度作用下的最不利工况。可为超长建筑结构考虑温度作用进行设计和施工提供参考。 关键词:建筑 超长建筑物 温度荷载 温度应力 St udy on t he Te mperature Stress of Super-Lengt h Buil di ng X ia Yunfeng (Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092) Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord- i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le- m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns. K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress 建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝,以及由这两种变形共同引起的温度收缩裂缝,则是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现。对超长结构的温度变形与温度应力,若在结构设计中处理不当,将使结构产生裂损,严重影响建筑结构的正常使用。我国的建筑结构设计规范中不考虑温度作用[1],只做构造处理。因此,温度应力是超长建筑结构设计中的重要研究课题之一。1 超长高层建筑结构温度问题有限元建模研究 结合工程实例,分析建筑结构各个阶段温度作用的特点,完善温度作用和温差取值的计算原则,并选出在工程设计中起控制作用的温差取值,方便设计采用。根据实际情况建立超长建筑结构的有限元分析模型,采用有限元分析程序ANSYS 有限元计算程序,进行结构整体分析。 郑州第二长途电信枢纽工程主体为超长高层建筑结构。主楼地下1层,地上主体19层。19层之上局部突起2层。柱网9.6 12m,主体结构东西长134m。由于功能要求建筑中间不设缝,南 10 港口科技 港口建设

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

应力计算

①叶片离心拉应力计算 1)对于涡轮增压器来说,等截面叶片根部截面上的拉应力公式为 20m 1=2u a σρσθ+ 2/N m 其中 ρ为叶片的材料密度(3 /kg m ); m u 为叶片中经处的圆周速度(m/s ); /m D l θ=为直径叶高比; m D 为叶片平均直径(m ); l 为叶片高度(m ); a σ为叶片附加应力,其表示式为: 2222p p t e a m m h m h D A D A u z D A D A πρσ????????=+ ? ????????? ,2/N m 其中 z 为叶轮叶片个数; t D 为叶冠中经(m ); p D 为叶片凸台或拉筋的中经(m ); h D 为叶根直径(m ); e A δ=?为叶冠截面面积(2m ); p A 为凸台或拉筋的截面积(2 m ); h A 为叶根截面面积(2m ); 如果叶片没有设置阻尼拉筋或凸台,则p A =0;如果叶片不带冠,则e A =0;当两者均不存在时,a σ=0. 2)叶片截面面积沿叶高按线性变化时的拉应力计算式: 212113m a u λλσρσθθ+-??=++ ??? 2/N m 式中,/t h A A λ=是叶顶叶根截面比。通常,对压气机叶片,λ=0.3~0.65 3)叶片截面面积沿叶高按某一任意规律变化时,任意一个截面上离心应力可

用数值积分法计算。对于第i 个几面,离心力i σ可按下式计算: 21i i ic i i V r A σρω?=∑ 2/N m 其中 ()112 i i i i im i V A A x A x -?=+?=?为叶片第i 个微段的体积(3m ); i A 和1i A -为叶片第i 个微段的内径与外径上的截面积(3m ); ic h i ic r r x x =++?为第i 个微段重心c 的半径(m ); ()1216i i ic i im A A x x A -+?=?为第i 个微段重心c 离第i 截面的间距(m ); ω为旋转角速度(rad/s ); ρ为材料密度(3/kg m ); ②叶片弯应力计算 1)由气体作用引起的弯矩 作用于叶片任意截面上的气体周向弯矩gu M 可以按下式计算: ()2gu i M B l x =- N m ? 而 ()122um um G B c c zl =+ N/m 式中 i x 为计算截面至叶根的距离(m ); z 为叶片个数; l 为叶片的高度(m ); 1um c ,2um c 为叶片中经处、出口气流周向分速(m/s ); G 为气体流量(kg/s )。 作用于叶片而难以截面上的气体周向弯矩ga M 的计算公式也表达为: ()2ga i M D l x =- N m ? 而 ()()12122m a a r G D c c p p zl z π=-+- N/m 式中 1a c ,2a c 为叶片进、出口中经截面上的周向分速(m/s ); 1p ,2p 为叶片进、出口中经截面上的气体压力(2 /N m );

基于元ANS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 0 1.1 设计参数 0 1.2 计算及评定条件 0 1.3 材料性能参数 0 2 结构有限元分析 (1) 2.1 理论基础 (1) 2.2 有限元模型 (1) 2.3 划分网格 (1) 2.4 边界条件 (2) 3 应力分析及评定 (2) 3.1 应力分析 (2) 3.2 应力强度校核 (2) 4 分析结论 (3) 4.1 上封头接头外侧 (4) 4.2 上封头接头内侧 (5) 4.3 上封头壁厚 (7) 4.4 筒体上 (9) 4.5 筒体左 (10) 4.6 下封头接着外侧 (12) 4.7 下封头壁厚 (14)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

2 结构有限元分析 2.1 理论基础 传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。 塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。基于各方面的考虑,产生了“分析设计”这种理念。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。 对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。 按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。 2.2 有限元模型 由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。分析设计所用的几何模型如图1所示。在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。 图1 压力容器模型 2.3 划分网格 在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。图3~图5

工程的温度应力计算

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。 当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月

份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----?≈???-?=ε

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

地应力计算公式解读

地应力计算公式 (一)、井中应力场的计算及其应用研究(秦绪英,陈有明,陆黄生 2003年6月) 主应力计算 根据泊松比μ、地层孔隙压力贡献系数V 、孔隙压力0P 及密度测井值b ρ可以计算三个主应力值: ()001H v A VP VP μσσμ??=+-+??-?? ()001h v B VP VP μσσμ??=+-+??-?? H v b dh σρ=?? 相关系数计算: 应用密度声波全波测井资料的纵波、横波时差(p t ?、s t ?)及测井的泥质含量sh V 可以计算泊松比μ、地层孔隙压力贡献系数V 、岩石弹性模量E 及岩石抗拉强度T S 。 ① 泊松比 22 2 20.52()s p s p t t t t μ?-?=?-? ② 地层孔隙压力贡献系数 22222(34)12() b s s p m ms mp t t t V t t ρρ??-?=-?-? ③ 岩石弹性模量 222 2234s p b s s p t t E t t t ρ?-?=???-? ④ 岩石抗拉强度 22 (34)[(1)]T b s p sh sh S a t t b E V c E V ρ=???-????-+?? 注:,,,m ms mp t t ρρ??分别为密度测井值,地层骨架密度,横波时差和纵波时差值。,,a b c 为地区试验常数。 其它参数 不同地区岩石抗压强度参数是参照岩石抗拉强度数值确定,一般是8~12倍,也可以通过岩心测试获得。岩石内摩擦系数及岩石内聚力是岩石本身固有特性参数,可以通过测试分析获得。地层孔隙压力由地层水密度针对深度积分求取,或者用重复地层测试器RFT 测量。也可以通过地层压裂测试获得,测试时,当井孔压力下降至不再变化时,为储层的孔隙压力。

工程的温度应力计算

工程的温度应力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影 响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 表1 2000年~2009年青岛月平均气温 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

球罐应力分析报告模板

XXX球罐应力分析报告 设备名称:XXX球罐 设备位号:XXX 应力分析报告

目录 1基本设计参数 (4) 2计算数据 (6) 2.1 计算条件 (6) 2.2材料性能数据 (7) 3主要受压元件计算 (8) 4整体结构分析计算 (9) 4.1 力学模型和有限元模型 (9) 4.2 载荷工况分析 (11) 4.3 载荷边界条件 (12) 4.4 位移边界条件 (15) 4.5 应力强度分布云图及路径选取 (15) 4.6 应力线性化及强度评定 (20) 4.7 整体结构强度评定汇总 (33) 5局部结构分析计算 (34) 5.1 人孔与接管N1/N4局部结构分析 (34) 5.1.1 力学模型和有限元模型 (34) 5.1.2载荷边界条件 (36) 5.1.3位移边界条件 (38) 5.1.4应力分布云图及路径选取 (39) 5.1.5 应力线性化及强度评定 (40) 5.1.6 人孔与接管N1/N4应力线性化及强度评定 (48) 5.2 人孔与接管V1/K3/K4局部结构分析 (48) 5.2.1 力学模型和有限元模型 (48) 5.2.2载荷边界条件 (51) 5.2.3位移边界条件 (53) 5.2.4应力分布云图及路径选取 (54) 5.2.5 应力线性化及强度评定 (55)

5.2.6 人孔与接管V1/K3/K4应力线性化及强度评定 (63) 5.3 人孔与接管K1/K2局部结构分析 (63) 5.3.1 力学模型和有限元模型 (63) 5.3.2载荷边界条件 (66) 5.3.3位移边界条件 (68) 5.3.4应力分布云图及路径选取 (69) 5.3.5 应力线性化及强度评定 (70) 5.3.6 人孔与接管K1/K2应力线性化及强度评定 (78) 5.4 人孔与接管N2局部结构分析 (78) 5.4.1 力学模型和有限元模型 (78) 5.4.2载荷边界条件 (81) 5.4.3位移边界条件 (83) 5.4.4应力分布云图及路径选取 (84) 5.4.5 应力线性化及强度评定 (85) 5.4.6 人孔与接管N2应力线性化及强度评定 (93) 5.5 人孔与接管N5局部结构分析 (93) 5.5.1 力学模型和有限元模型 (93) 5.5.2载荷边界条件 (96) 5.5.3位移边界条件 (99) 5.5.4应力分布云图及路径选取 (100) 5.5.5 应力线性化及强度评定 (101) 5.5.6 人孔与接管N5应力线性化及强度评定 (109) 6结论 (109) 附录 (109) 球罐SW6计算文件

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为

m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

相关文档
最新文档