艾默生充电模块定期维护指导说明

艾默生充电模块定期维护指导说明
艾默生充电模块定期维护指导说明

艾默生模块定期维护指导说明

一,维护时间间隔

对于只做了简单防尘网过滤的直通风系统,一般应用环境每半年清理一次;根据第一次维护清理的灰尘堆积情况,确定针对该站点的维护清理周期。对于在风沙较大的地区,或者比较繁忙的马路附近,公交枢纽或停车场附近的,积灰会比较严重,请适当缩短维护周期;反之对于室内型的,或者周围运行环境比较好的,则可以适当延长,但尽量不要超过一年。

二,维护清理所需工具

工具包括:十字螺丝刀,镊子,毛刷,控制模块的简易通信,万用表。

注意:选择十字口稍钝的十字螺丝刀或电批,防止打滑。

电气条件:三相380V交流,用于清理后测试模块。如果没有简易上电装置,可放在系统中每个模块逐一开机上电验证;注意必须单个模块验证合格后才能放入系统中运行。

三,ER45033/T模块的清理维护步骤如下:

1.取下模块上盖的固定螺钉,取下上盖,注意模块尾部有两个固定上盖的螺钉;注意取前

面板时底面的四个螺钉只需松开靠前端的两个,如图1所示。然后取下前面板的安装螺钉,并拔下显示板连接线缆的插头,如图2所示,再将前面板连同风扇一起取下。如果线缆插头点胶固定,请小心取下,防止将插头底座拔出。

图1 前面板和机箱底壳之间的固定螺钉示意图

图2 显示板与控制板之间的连接线缆

图3 风扇安装位置(注意风扇安装方向,切勿装反)

2. 用毛刷将散热器以及PCB板上的灰尘清扫干净,特别注意进风口处的器件,需要仔细清理。然后用风枪将残留在器件和PCB板上的灰尘吹掉,可以从出风口顺序往进风口方向吹扫(从出风口往进风口方向吹更容易将灰尘清理干净),直至将残留灰尘吹出机箱外。

3. 将拆下的面板风扇组件也清理干净。

(以下是ER45033/T清理后重新装配的步骤)

5. 现将风扇安装在面板上,将面板靠近机箱,插上显示板连接线缆,如图2所示;然后将面板组件安装到机箱上,装上侧面以及背面的安装螺钉。

6. 将电感板装上,注意电感板的安装螺钉要拧紧。确认接线缆两端是否都安装到位。

7. 扣上机箱上盖,保证机箱螺钉孔对准;特别注意确认风扇顶部部分上盖是否安装平整。如果风扇安装位置有偏差,可能导致上盖干涉,需要重新将风扇安装到位。

注意:装配过程注意不要将螺钉掉落到机箱内。

8. 装配完成后,用专门测试的简易工装验证是否工作正常。插上输入、输出插座,连接通信,接通380V交流电并发送开机指令。如果模块可正常开机,面板指示灯正常且万用表测量输出电压为默认值,则清理工作完成。下电关机并将模块放置好。

四,注意事项

1.搬运模块要小心轻放,防止强烈冲撞损坏模块

2.摆放模块时要平放或者侧放,严禁竖直放置,如图8~9所示。因竖直放置很容易损坏插

座。

3.模块下电取下后裸露的端口以及内部高压电容有残留电压,需要放置2分钟以上才能打

开即可,防止人身触电。

4.整个过程请戴上防静电手套,防止静电损坏PCB板上的器件,同时保护皮肤不被刮伤。

5.用电批松开或者拧紧螺钉时请将力矩调小,转速放慢,防止螺钉打滑后取不下来。

6.安装风扇时注意风扇有标签的一面朝向模块内部,风扇是往模块内部吹风。

图8 错误的模块放置方式

图9 正确的模块放置方式

艾默生DCS_OVATION系统手册

OVATION系统硬件培训手册 (Solaris操作系统) Rev.1 上海西屋控制系统有限公司 (Aug.2005)

OVATION系统 目录 Ovation 系统硬件 第一章 Ovation分散控制系统概述 1.1 系统概述 ……………………………………………………………1-1 1.2 典型的Ovation系统结构 ……………………………………………1-3 1.3 Ovation系统诊断 ……………………………………………………1-4 1.4 参考手册 ……………………………………………………………1-7 第二章 Ovation系统网络 2.1 系统的组成 ……………………………………………………………2-1 2.2 网络的结构形式 …………………………………………………... 2-1 2.3 单网网络星形拓扑结构………………………………………………….. 2-3 2.4 多网网络 …………………………………………………………... 2-4 2.5 网络设备的功能 ……………………………………………………2-4 2.5.1 快速以太网的一般概念 ………………………………….. 2-4 2.5.2 集线器(Hub) ……………………………………………2-5 2.5.3 交换机(Switch) …………………………………………... 2-5 2.6 Ovation网络地址 ……………………………………………………. 2-6 2.7 网络中的数据流 ……………………………………………………. 2-7 第三章 Ovation控制器 3.1 控制器 …………………………………………………………3-1 08/16/05 1

艾默生PEX精密空调故障告警及使用指南资料-共21页

PEX空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

附件:PEX机组码―――――20页

1.公共报警 产生原因:在系统发生报警时,事件记录菜单会同时产生一条公共报警记录, 并且主控制板公共报警端子会产生干接点输出变化,主控制板右下角的K3 继电器闭合,左侧红色LED指示灯亮,同时75/76公共报警输出端子输出闭 合导通信号。见下图: K3在主控制板右下 角位置,耐压125V, 通流能力5安培 K3继电器在控制原 理图右上侧位置,系 统有报警时被触发 K3闭合会输出闭合信 75/76端子 用户利用75/76端 子可以在空调有报 警时得到一个闭合 干接点信号, 解除办法:当报警解除时,公共报警自动解除,公共报警端子恢复开路。 2.压缩机1或2高压

产生原因:有几种可能,一是排气过温报警,二是高压保护报警,三是机组 拆解时将高压保护开关接错,四是保压保护开关本身故障或针阀口憋压。下 图是1号压缩机的高压保护局部电路图,2号压缩机类似。 排气温度开关 高压保护开关 如上图所示,先看看第一第二种可能情况,在有制冷需求时,无论高压保护 开关动作还是排气温度开关动作,主控制板上的报警反馈光耦开关U29都会 得到一个24V交流电压而触发控制系统报警,此时U29旁的LED指示灯常 亮。排气温度开关过温报警的原因通常是压缩机低压运行(低于50PSI),压 缩机由于循环吸排气量下降,压缩机的机械摩擦发热由于循环吸排气量下降 发生冷却不良,压缩机内部机械温度上升,排气温度随之上升,达到125oC 时排气温度开关被触发闭合使U29得到电压产生报警。高压保护开关在室外 冷凝器散热出现问题压缩机排气压力上升到360PSI(或400PSI)时,COM 端与NO端闭合同样使U29得到电压产生报警。第三种可能是机组垂直搬运 上楼时进行过整机解体,上楼后恢复安装时将高压保护开关接错了。最后一 种就是高压开关本身有问题或安装不良(用压力表检测高压正常), 解除办法:由于报警牵涉到压缩机的运行状态,第一件需做的事情是接好双 头压力表,然后在维护菜单的诊断菜单将压缩机报警次数改为0,复位报警 后启动压缩机,检查压缩机的吸排气压力,如果发现低压偏低则因重点怀疑 排气过温异常,如果发现排气压力高则应检查冷凝器的运行状况。如果压力 完全正常,则应检查排出报警反馈电路的连接可靠性及是否有接线错误,检 查高压开关的管路连接可靠性。注意:在某一种高压开关接错线的情况下,会发生既不误报高压报警,实际发生高压保护工况时也不报警的危险情况。在排除了接线错误后,还有一种可能,就是由于针阀阀芯位置陷得较深,高

艾默生监控模块

艾默生监控模块 PSM-E20监控模块功能: 电池管理 监控模块对电池的智能化管理主要体现在以下几种工作状态: 1、正常充电状态 监控单元自动记录均充和浮充的开始时刻,在上电(或复位)初始,如果监控单元发现均充过程尚未结束,则会继续进行均充。如果上电(或复位)前是处于限流均充状态,则继续进行限流均充;如果是处于恒压均充状态,则继续进行恒压均充。在限流均充时,当充电电压达到恒压均充电压值的时候,会自动转入恒压均充。 2、定时均充状态 用户可选择是否采用定时均充这种维护方式,还可对定时均充的时间间隔及每次均充的时间进行设定。一旦设定,电池管理程序就可自动计算电池定时均充的时间,以便确定在何时启动定时均充,何时停止定时均充,所有这些操作都是自动进行的,运行维护人员可在现场通过监控单元上的显示来明确这一过程,也可在远程监控中心的主机上查看这一过程。一般电池以每隔30天均充一次,每次均充24小时为宜,特殊情况必须根据电池说明书的实际的情况设置。 3、电池放电后均充状态 交流停电后,电池组对设备进行供电,放电终止后,再次恢复交流供电时,若电池电流大于设定值(转均充参考电流),则监控单元会自动控制模块进行均充。在监控模块的软件设置中,放电终止后的均充转换条件为:电池充电电流 4、其它电池管理功能 λ设置功能 电池的均浮充电压均可通过键盘设置,用户可根据不同型号的电池,不同的电池电压灵活配置,极大地方便了用户管理。均浮充电压设置好后,监控单元会根据当前的均浮充状态把电池端电压调节到设定的值。需要注意的是,若此时动力母排上有模块发生通讯中断,则模块进入自动保护运行模式,输出电压降为234V/117V,通讯正常后可自动退出保护运行模式。λ温度补偿 用户可选择是否对均浮充电压进行温度补偿,并可对温度补偿中心点、温度补偿系数进行设置。一旦设定,监控单元就会根据电池房的温度自动对浮充电压进行调节,确保电池工作温度正常。 λ容量分析 用户可设置电池的充电效率、放电特性曲线等参数来调整电池容量的计算结果。监控单元可根据电池电流、充放电状态以及充放电系数对电池容量进行估算,每隔15秒计算一次电池容量的变化量,并在菜单上实时显示出来,使用户能一目了然地看到电池容量的实时变化。λ自动与手动相结合 监控单元可在“自动”和“手动”两种方式下工作,在“自动”方式下,监控单元可自动完成上述的所有功能,完全不需人工干预;在“手动”方式下,电池的管理交给维护人员来完成,维护人员可通过菜单控制电池的均浮充转换,调节电压及模块限流点,还可以对模块作开关机控制,此时监控单元将只通过通讯采集各模块的数据及配电数据,不对模块作任何控制处理,因而不会在放电后作自动均浮充转换,也不会启动定时均充,但仍可对电池的容量进行估算。由于长期均充可能导致电池寿命下降,为了防止在“手动”方式下均充时间过长,监控单元会自动监视均充时间,当均充时间超过用户设定的定时均充时间时,就会转入浮充。

艾默生机房精密空调的重点日常维护

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理? ? 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。? ? 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。? ? 二、计算机机房中选用精密专用空调的原因? ? 1、温度、湿度控制对计算机机房的重要性? ? 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料

对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。? ? 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。? ? 2、与舒适性空调的区别? ? 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。? ?

爱默生模块及监控中文说明书

PowerMaster智能高频开关电力操作电源系统 合作生产技术指导书 资料版本V5.0 归档日期2008-10-17 BOM 编码31031222 艾默生网络能源为客户提供全方位的技术支持,用户可与就近的艾默生网络能源办事处或客户服务中心联系,也可直接与公司总部联系。 艾默生网络能源 所有,保留一切权利。容如有改动,恕不另行通知。 艾默生网络能源 地址:市南山区科技工业园科发路一号 邮编:518057 公司网址:https://www.360docs.net/doc/6a5985572.html, 客户服务投诉热线:00 E-mail:https://www.360docs.net/doc/6a5985572.html,

第一章充电模块(必选件) 1.1 HD22010-3系列 1.1.1 模块简介 HD22010-3系列充电模块是电力电源最主要的配置模块,广泛应用于35kV到330kV的变电站电力电源中。 HD22010-3系列充电模块采用自冷和风冷相结合的散热方式,在轻载时自冷运行,符合电力系统的实际运行情况。 型号说明 HD 220 10 - 3 产品版本 额定输出电流10A 额定输出电压220Vdc 充电模块 产品系列 产品系列见下表。 表1-1 订货信息 工作原理概述 以HD22010-3模块的工作原理框图如下图所示。 图1-1 HD22010-3充电模块原理图 HD22010-3充电模块由三相无源PFC和DC/DC两个功率部分组成。在两功率部分之外还有辅助电源以及输入输出检测保护电路。 前级三相无源PFC电路由输入EMI和三相无源PFC组成,用以实现交流输入的整流滤波和输入电流的校正,使输入电路的功率因素大于0.94,以满足DL/T781-2001中三相谐波标准和GB/T 17794.2.2-2003中相关EMI、EMC标准。

艾默生SDC空调使用说明手册

艾默生SDC空调使用说明手册 一、设备用途 向地下吹风的打空调,用于机房温湿度调节。 二、接口类型 通讯接口采用RS485/232方式。 信息传输方式为异步方式,起始位1位,数据位8位,停止位1位,无校验。 数据传输速率为1200、2400、4800、9600和19200bps可以设置。 三、通信参数设置 1、控制器 SDC系列空调的控制器为PACC控制器,采用240*128点阵蓝色背光液晶显示 屏显示,用户界面操作简单。多级密码保护,能有效防止非法操作。控制器具 有掉电自恢复功能。通过菜单操作可以准确了解各主要部件运行时间。专家级 故障诊断系统,可以自动显示当前故障内容,方便维护人员进行设备维护。可 存储200多条历史事件记录,配置RS485接口,通信协议采用信息产业部标准 通信协议,控制器面包那如图1所示 图1 控制器面板 2、操作键功能说明 控制器有5个操作键,分别是开/关键、退出键、上移键、下移键和回车键。功 能见下表: 表1 操作键功能说明

3 3.1 主界面 图2 主界面 界面上包含三类机组工作图标,分别是动画运行状态图标、锁定状态图标和开关机主备状态图标,这些图标告知操作员机组正在何种运行模式下运行。图标及其含义如图3所示。 图3 图标含义 3.2 密码界面 在主界面下按回车键,显示输入密码界面,如图4所示。输入正确密码确认后即可进入主菜单界面。 图4 密码输入界面 进入菜单界面的密码分3个等级,需要密码打开的菜单在它的标题后标有菜单级别[1]、[2]、[3],以表示所需密码的级别。各种密码等级的使用者、初始密码、允许进入的菜单等级见图5。 图5 密码等级

艾默生

艾默生公司 艾默生公司创立于1890年,公司的前身是密西西比州圣路易的一家电动机和电扇制造厂。在过去100年中,该公司从一个小型的地区性生产厂家发展成全球性企业,生产和销售种类繁多的电器、电子和电机产品。现在,该公司在150多个国家设有60多个分支机构,雇员达10万人。其主要在自动化方向的产品与服务如下表: 公司名称产品与服 务 产品种 类 分类1 分类2 分类3 分类4 分类5 Emerson 工业自动 化 液体自 动化 液体控制 产品 气动和运 动控制产 品 工业电 器产品 电气施工 材料 电源和电 源质量解 决方案 工业照 明 加入材 料及精 密清洗 塑料连接 系统 超声波清 洗解决方 案 金属连 接系统 机械动 力传动 轴承联轴器 传动装 置与驱 动 输送部 分 电机及 驱动器 工业电机减速电机 变频调 速器 光伏并 网逆变 器配合 伺服驱动 和电机发电发电机 风力发电 机变奖系 统 风力发 电机开 关和控 制柜

DeltaV系统 当前,现场总线技术已经成为自动化技术发展的热点,在产业化方面已经走向成熟。其中艾默生过程管理公司于1996年推出的DeltaV系统应该算是现场总线系统中最为成功的一套总线系统。到目前,该系统在全球已经签订了4500多套供应合同,在业界受到广泛的欢迎,获得十几个国际奖项。本文将就该系统的特点作一简单介绍,从中可以看出该套系统的成功之处。 1、DeltaV系统的推出背景 1.1适应技术发展潮流,采用FF标准 其实早在80年代,国外就提出了现场总线的概念,但由于刚开始没有一个统一的国际标准,导致目前多种砚场总线标准并存的局面。就其影响和国际标准化的程度来看,由于FF(现场总线基金会,由艾默生过程管理领导的ISP现场总线组织和World Fip联合组成)是不附属于某企业的非商业的国际标准化组织,其宗旨是制定单一的国际现场总线标准,无专利许可要求供任何人使用,其制定的现场总线物理层巳获国际电工委员会IEC批准,因此FF是目前最受用户认可的总线组织。也正因为如此,文默生过程管理公司的DeltaV系统完全以FF标准进行设计,所以DeltaV系统一经推出,就迅速获得业界的广泛赞誉和普及。 1.2继承传统DCS的优点 艾默生过程管理公司在此之前有两套著名的DCS系统:PROVOX和RS3,所以在开发新系统DeltaV系统时,注入了该公司在DCS系统方面几十年的心血和经验。 DeltaV系统理所当然地继承了PROVOX和RS3系统的优势,所以DeltaV系统完全可以更好、更简单地完成,并且提供了最简单地向现场总线过渡的解决方案。 1.3充分考虑了用户的需求 在推出DeltaV系统时,公司作了大量的调查研究,看用户究竟需要什么样的系统,高中低 性能价格比与其他厂家DCS集成先进批量控制 易于使用在线帮助先进控制 具有扩展能力基于Windows SPC/SQC能力 高集成度控制策略冗余I/O冗余 高可靠性历史数据采集能力提供组态能力 与现场总线集成基于PC DeltaV系统对用户所关注的上术方面都进行了非常好的解决,因此,DeltaV系统一经推出,就获得了很多国际奖项。 2、DeltaV系统的特点 2.l DeltaV系统的控制网络:采用工业以太网 DeltaV系统采用FF规定拓朴结构即工业以太网,工作站和控制器构成控制网络的节点,DeltaV系统的任何两个节点之间都是对等的,信息直接交流,而且所支持的数据格式相同,即DeltaV系统的控制器直接支持TCWIP数据,数据传输速率为1∞Mbps,所以目前DeltaV系统的控制网络传输速率为100Mbps,远高于其它DCS系统。 DeltaV系统的控制网络结构决定了DeltaV系统的结构简单、安装方便、组态容易、可靠性高,任何一个节点离线,不会对系统运行造成影响。 2.2系统规模可变,在线升级扩展 DeltaV系统具有规模可变的特点,搭积木式的系统组成使得系统的扩展非常容易,同时系统支持任意的光缆扩展连接,使系统的扩展更加随意。DeltaV系统的在线升级可以

艾默生机房精密空调的重点日常维护修订稿

艾默生机房精密空调的 重点日常维护 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中选用精密专用空调的原因 1、温度、湿度控制对计算机机房的重要性

在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。 2、与舒适性空调的区别 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静

充电模块电路分析报告

充电桩充电模块常见结构、原理以及市场调研 随着电动汽车的快速发展,充电桩作为电动汽车产业的基础设施建设越来越受到中央和地方政府的重视,对充电桩电源模块的要求也越来越高,充电模块属于电源产品中的一大类,好比充电桩的“心脏”,不仅提供能源电力,还可对电路进行控制、转换,保证了供电电路的稳定性,模块的性能不仅直接影响充电桩整体性能,同样也关联着充电安全问题。同时,充电模块占整个充电桩整机成本的一半以上,也是充电桩的关键技术核心之一。因此,作为充电桩的设备生产厂家,面对激烈的市场竞争,避免在行业洗牌阶段被无情的淘汰出局的悲剧命运,必须掌握并自主研发生产性价比高的充电模块。 一、充电模块生产厂家 各主流充电机模块的型号、技术方案,技术参数和尺寸等相关参数如下表所示: (艾默生),盛弘,麦格米特,核达中远通,新亚东方,金威源,优优绿源,中兴、凌康技术,健网科技,菊水皇家,泰坦、奥特迅,英耐杰,科士达,台湾的飞宏,华盛新能,石家庄的通合电子,杭州的中恒电气,北京的中思新科等厂家在对外销售或自家充电桩使用。 二、充电模块的主流拓扑 1、前级PFC的拓扑方式: (1)三相三线制三电平VIENNA:

目前市场上充电模块主流的PFC拓扑方式如上图所示:三相三线制三电平VIENNA,英可瑞,英飞源,艾默生,麦格米特,盛弘,通合等均采用此拓扑结构。此拓扑方式每相可以等效为一个BOOST电路。 由于VIENNA整流器具有以下诸多优点,使得其十分适合作为充电机的整流装置的拓扑。 1、大规模的充电站的建设需要大量的充电机,成本的控制十分必要,VIENNA整流器减少了功率开关器件个数同时其三电平特性降低了功率开关管最大压降,可以选用数量较少且相对廉价的低电压等级的功率器件,大大降低了成本; 2、功率密度即单位体积的功率大小也是充电机的重要指标,VIENNA整流器控制频率高的特点使电感和变压器的体积减小,很大程度上缩小了充电机的体积,提高了功率密度; 3、VIENNA整流器的高功率因数和低谐波电流,使充电机不会给电网带来大量的谐波污染,有利于充电站的大规模建设。因此,主流的充电模块厂家均以VIENNA整流器作为充电机的整流装置拓扑。 4、每相两个MOS管是反串联,不会像PWM整流器那样存在上下管直通的现象,不需要

艾默生直流分路计量设备接入艾默生FSU安装调试指导手册知识讲解

艾默生直流分路计量设备安装指导手册 一、分路计量设备现场安装指导 1、常用安装工具及辅材准备 1)分路计量设备安装所需工具大致如图所示,施工小组上站之前注意要配齐这些工具,并注意工具绝缘保护。 2)工具:手电钻、螺丝刀、剥线钳、斜口钳、钳形万用表等。 3)辅材:导轨、自攻丝、压线端子、绕线管、机打标签纸等。 2、开关电源供电线路的区分与确认 霍尔传感器安装之前,必须确定出所有需要检测的线缆,并区分出各线缆归属的运营商。这一操作步骤一定认真完成,确保准确,如遇问题及时联系随工维护人员。 1)确认开关电源供电线路是否有电流 使用钳形万用表对每一条线缆进行测量确认,查看线缆中的电流大小,当电流大于0.5A时,默认用户使用,需要再次核实、校验。核实在用的线缆必须加装霍尔传感器进行监控(可多线缆安装一个霍尔传感器)。所有的一次下电、二次下电的供电线路都需要核实、校验并监控。 2)确认开关电源供电线路所属运营商 3、电量计量模块安装要求 1)电量计量模块安装位置选择 ①开关电源柜内,用导轨进行安装固定

②如果开关电源柜内无法安装,则安装在开关电源柜的两侧,如果开关电源柜两侧有其他机柜遮挡不方便安装,再选择电源柜的后侧。侧面安装位置应遵循从左往右,从上往下依次进行安装,为后续扩容留有位置。 2)固定导轨的安装 导轨安装时,选择距离电源柜顶部约4--5CM的位置,要保证电量计量模块安装后其最上端,不高于开关电源柜的顶部边缘。 3)电量计量模块的固定 ①电量计量模块固定在导轨上,注意保证卡槽固定到位、牢固。 ②电量计量模块所用线缆需用扎带绑扎、固定。 4、电量计量模块供电要求 电量计量模块采用-48V供电,供电位置必须选择在开关电源二次下电供电空开。供电线缆需用标签进行标注“电量计量模块用电”,且一定注意区分一、二次下电位置与所贴标签是否正确。

艾默生PEX精密空调故障告警及使用指南设计

1 PEX空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

序号故障及报警名称页码序号故障及报警名称页码 2 1 公共报警 3 3 2 与主机通信失败12 2 压缩机1或2高压 3 33 机组运行13 3 压缩机1或2低压 5 3 4 机组关机13 4 冷冻水高温 5 35 睡眠模式13 5 冷冻水水流丢失 5 3 6 备用模式13 6 电加热高温 6 3 7 上电14 7 主风机过载7 38 掉电14 8 气流丢失7 39 自然冷源传感器故障14 9 过滤网堵塞7 40 ON/OFF键禁止14 10 用户自定义1 8 41 LWD传感器故障14 11 用户自定义2 8 42 地板溢水14 12 用户自定义3 9 43 RAM/电池故障15 13 用户自定义4 9 44 存储器1内存不足15 14 自然冷源锁死9 45 压缩机1或2过载15 15 维护通知9 46 加湿器故障15 16 回风高温9 47 远程关机16 17 室内高温9 48 除湿运行时间超限16 18 室内低温10 49 自然冷源运行时间超限16 19 室内高湿10 50 压缩机1或2防冻保护16 20 室内低湿10 51 压缩机1或2抽空故障17 21 传感器A高温或故障10 52 BMS掉线17 22 传感器A低温10 53 数码涡旋1或2高温17 23 传感器A高湿10 54 烟感报警17 24 传感器A低湿11 55 备用乙二醇泵运行17 25 机组运行时间超限11 56 热水/汽运行时间超限17 26 压缩机1或2运行时间超限11 57 电加热1或2运行时间超限17 27 加湿器运行时间超限11 58 机组码丢失18 28 送风传感器故障11 59 机组码01~18不匹配18 29 数码涡旋1或2传感器故障11 60 压缩机1或2短周期18 30 室内传感器故障12 61 断电报警18 31 低压传感器1或2故障12 62 机组上电不能完成自检18 附件:PEX机组码―――――20页

几种艾默生电源监控模块的干结点说明

几种艾默生电源监控模块的干结点说明 一、PSM-15监控模块告警开关量输出功能说明 1、 PSM-15监控模块提供6组无源告警开关量信号输出。每组信号同时提供常开与常闭触点输出。触点容量为:AC 125V 0.5A/DC 110V 0.3A 。 2、接口定义: COM 公共端NC 常闭 NO 常 开 3、PSM-15监控单元告警干结点输出量是固定的,不需设置。当监控单元产生告警时。对应的一组接点动作,原来常开接点变为闭合,常闭接点变为断开。例如:当交流停电时从监控单元后面板左侧看,1、2接点之间由常开状态变为闭合,2、3接点之间由常闭状态变为断开。如果监控设备采集的是开关量,则可以根据接入要求确定是接常开接点或常闭接点,

后台监控软件可以对应配置告警信息。 4、PSM-15的密码是:1234 二、PSM-A监控单元告警干节点功能特点: 1、PSM-A 监控单元背部提供7组无源告警开关量信号输出,如下图所示。每组信号同时提供常开与常闭触点输出。触点容量为250V AC/5A,24VDC/5A (可能不同时期的产品继电器的型号不同,但应该均能满足上述指标)。 输出1输出7 输出6输出5输出2输出3输出4 常开NO 常闭 公 共 端2、输出定义: 7组告警信号具体定义由监控模块软件设置。用户所需要的任何一种或多种监控告警可以从7组干接点中任一组中输出。每组干接点可以输出多种告警,但同一种告警不可以同时从多组干接点输出。 3、设置方法(详细资料可以参看产品用户手册): 在监控模块任一界面按一次或多次F2键即可进入主菜单: 1 交流参数 2 直流参数 3 模块参数 4 告警参数 5 系统管理 6 远程通信 7 其它设备 4、设置举例: 假设需要将交流停电、过压、欠压等故障从告警1输出,则应按如下方法设置: 进入告警级别设置,找到交流停电对应行,检查该告警是否为一般告警(或紧急告警),告警序号设置是否为1,如果不符合要求则使用左右箭头以及确认键进行重新设置不符合的选项。同样,找到交流过压、交流欠压等相关告警量,检查并对设置进行确认。除了所需要的信号从告警1输出外,清除那些不需要从告警1输出的无关告警量。

艾默生机房精密空调的重点日常维护精修订

艾默生机房精密空调的重点日常维护 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中选用精密专用空调的原因 1、温度、湿度控制对计算机机房的重要性 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。 2、与舒适性空调的区别 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。

艾默生逆变模块MODBUS协议

1、概述 本文描述了电力电源逆变模块使用的Modbus通讯规约,应用于逆变模块与上级监控设备之间的通信。 2、适用范围 规约兼容于艾默生网络能源有限公司开发的逆变模块,是开发、测试电力电源逆变模块通讯软件的依据。 3、参考文献 Modico n Modbus Protocol Refere nee Guide PI-MBUS-300 Rev.J 4、物理接口 RS485/RS232 (可选),波特率9600,字符格式采用奇校验位、8位数据位、1 位停止位(081)的异步串行通讯格式,数据应答时间<100ms,(数据应答时间是指上位机发送完查询数据包的最后一个字节与接收到逆变器应答的第一个有效字节之间的时间)。 5、帧结构 ________________________________________________________ 8Bit地址| 8Bit功能码| nX8Bit数据| 16BitCRC校验码采用Modbus规约的RTU (Remote Termi nal Un it)方式,每个字节以2个十六进制数, 有效的数据范围为0~9, A~F。 地址 指逆变模块的地址,范围:185~204 (通过按键界面设置,详见液晶操作说明)功能码 逆变模块只支持功能码03 (读数据)数据 上报或下设的数据,按寄存器(数据地址)进行发送,每一个寄存器由两个字节组成,关于寄存器号的定义,请参阅附录A o CR校验码 CRC (Cyclical Redundancy Check)对地址、功能码和数据进行校验,由两字节组成,CRC由传输设备生成,附加在数据帧中,如果由接收到数据计算出来的校验和与附加在数据后的校验和不一致,则有错误发生。关于CRC生成函数,请参阅 附录B内容。 6、命令解释 6.1查询数据,功能码03 上位机发送数据查询命令信息帧,逆变模块接收到正确的查询命令后, 对命令进行响应回送数据给上位机。格式如下: 查询命令帧格式

艾默生机房精密空调的重点日常维护

艾默生机房精密空调的重 点日常维护 Prepared on 22 November 2020

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理? ? 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。? ? 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。? ? 二、计算机机房中选用精密专用空调的原因? ? 1、温度、湿度控制对计算机机房的重要性? ? 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。? ? 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。? ? 2、与舒适性空调的区别? ? 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。? ?

艾默生充电模块定期维护指导说明

艾默生模块定期维护指导说明 一,维护时间间隔 对于只做了简单防尘网过滤的直通风系统,一般应用环境每半年清理一次;根据第一次维护清理的灰尘堆积情况,确定针对该站点的维护清理周期。对于在风沙较大的地区,或者比较繁忙的马路附近,公交枢纽或停车场附近的,积灰会比较严重,请适当缩短维护周期;反之对于室内型的,或者周围运行环境比较好的,则可以适当延长,但尽量不要超过一年。 二,维护清理所需工具 工具包括:十字螺丝刀,镊子,毛刷,控制模块的简易通信,万用表。 注意:选择十字口稍钝的十字螺丝刀或电批,防止打滑。 电气条件:三相380V交流,用于清理后测试模块。如果没有简易上电装置,可放在系统中每个模块逐一开机上电验证;注意必须单个模块验证合格后才能放入系统中运行。 三,ER45033/T模块的清理维护步骤如下: 1.取下模块上盖的固定螺钉,取下上盖,注意模块尾部有两个固定上盖的螺钉;注意取前 面板时底面的四个螺钉只需松开靠前端的两个,如图1所示。然后取下前面板的安装螺钉,并拔下显示板连接线缆的插头,如图2所示,再将前面板连同风扇一起取下。如果线缆插头点胶固定,请小心取下,防止将插头底座拔出。 图1 前面板和机箱底壳之间的固定螺钉示意图

图2 显示板与控制板之间的连接线缆 图3 风扇安装位置(注意风扇安装方向,切勿装反) 2. 用毛刷将散热器以及PCB板上的灰尘清扫干净,特别注意进风口处的器件,需要仔细清理。然后用风枪将残留在器件和PCB板上的灰尘吹掉,可以从出风口顺序往进风口方向吹扫(从出风口往进风口方向吹更容易将灰尘清理干净),直至将残留灰尘吹出机箱外。 3. 将拆下的面板风扇组件也清理干净。 (以下是ER45033/T清理后重新装配的步骤) 5. 现将风扇安装在面板上,将面板靠近机箱,插上显示板连接线缆,如图2所示;然后将面板组件安装到机箱上,装上侧面以及背面的安装螺钉。 6. 将电感板装上,注意电感板的安装螺钉要拧紧。确认接线缆两端是否都安装到位。

充电模块在实际使用中,需要注意以下几点。

HD22020-2采用自冷散热设计,效率达到世界一流水平,HD22010-2充电模块在实际使用中,需要注意以下几点。 一、HD22020-2模块均流 HD22020-2模块出厂已经经过严格的均流调试,在模块工作于自动状态下,任何模块设置为相同输出电压时,不需要作任何均流调整,HD22020-2充电模块也不提供外部调整的器件。均流指的是连接到同一母线上的模块均分负载。 系统存在控制模块时,控制模块和合闸模块之间只作通讯连接。任何情况下,HD22020-2充电模块和监控模块之间只作通讯连接! 如果发现模块电压严重不均流情况,采用排除的方法,将造成不均流的模块更换。确认艾默生HD22020-2模块是否均流损坏的方法如下: l 、彻底断开HD22020-2模块的均流电缆和通讯电缆,单独开启一个充电模块。 2、待充电模块HD22020-2开启以后,给充电模块加载,使模块至少输出1A 以上电流。 测量均流母线上电压. HD22020-2充电模块的输出电流和均流母线上的电压成正比,对应关系如下: 20A模块-输出电流20A时,均流母线电压为2.6V左右,10A对应1.3V,以此类推.。 10A模块-输出电流10A时,均流母线电压为2.0V左右,5A对应1.0V,以此类推。

5A模块-输出电流5A 时,均流母线电压为2.0V左右,2.5A对应1.0V,以此类推。 为了测试准确,可给HD22020-2模块加较大的负载(不能超过额定负载),若根据模块输出电流计算出的均流母线电压和实际测得的均流母线电压值相差大于0.3V或均流母线上电压接近0V,可判断为均流芯片损坏. 例:20A模块输出电流为5A,根据以上对应关系均流母线电压应为0.65V 左右,用万用表测量均流母线上电压,正常时不小于0.35V,否则可判断为均流损坏。 l 逐个测量每个HD22020-2充电模块在负载情况下的均流母线电压,若电压值在正常范围内的话,则需要检查均流母线是否可靠地正确连接、充电模块是否在自动工作状态下。如果在负载状态下测量的均流母线电压为零,则HD22020-2充电模块的均流电路已经损坏。 二、艾默生HD22020-2模块散热 HD22020-2模块采用自然冷却方式,因此在设计模块安装时,需要进行模块的散热设计,即在安排模块位置时,应该充分考虑HD22020-2充电模块发热对环境的影响,如监控模块、配电监控,特别是其他一些测量电路的影响不容忽视,设计时应避免将直流采样盒、霍尔传感器、配电监控盒等部件安置在模块附近。 模块层次之间应留有15~20cm的散热风道,同时能够有效导热,保持空气流通。 三、艾默生HD22020-2模块热插拔

艾默生逆变模块MODBUS协议

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 艾默生逆变模块MODBUS协议 甲方:___________________ 乙方:___________________ 日期:___________________

本文描述了电力电源逆变模块使用的Modbus通讯规约,应用丁逆变模块与上级监控设备之间的通信。 2、适用范围 规约兼容丁艾默生网络能源有限公司开发的逆变模块,是开发、测试电力电源逆变模块通讯软件的依据。 3、参考文献 Modicon Modbus Protocol Reference Guide PI-MBUS-300 Rev.J 4、物理接口 RS485/RS232 (可选),波特率9600,字符格式采用奇校验位、8位数据位、1 位停止位(。8少的异步申行通讯格式,数据应答时间<100ms,(数据应答时间是指上位机发送完查询数据包的最后一个字节与接收到逆变器应答的第一个有效字节之间的时间)。 5、帧结构 采用Modbus规约的RTU (Remote Terminal Unit)方式,每个字节以2个十六进制数, 有效的数据范围为0~9, A~F。 地址 指逆变模块的地址,范围:185~204 (通过按键界面设置,详见液晶操作说明)功能码 逆变模块只支持功能码03 (读数据) 数据 上报或下设的数据,按寄存器(数据地址)进行发送,每一个寄存器由两个字节组成,关丁寄存器号的定义,请参阅附录Ao CR胶验码 CRC (Cyclical Redundancy Check)对地址、功能码和数据进行校验,由两字节组成,CRC由传输设备生成,附加在数据帧中,如果由接收到数据计算出来的校验和与附加在数据后的校验和不一致,则有错误发生。关丁CRC生成函数,请参阅附录B内容。 6. 命令解释 6.1查询数据,功能码03 上位机发送数据查询命令信息帧,逆变模块接收到正确的查询命令后,对命令进行响应回送数据给上位机。格式如下: 查询命令帧格式

艾默生SmartAisle模块化数据中心解决方案建议

艾默生模块化数据中心设计方案 文档版本: 2.0 文档日期:XXXX-XX-XX

目录 前言 (3) 第一部分项目概况及设计原则与目标 (4) 1.1项目概况 (4) 1.2系统配置 (5) 1.3设计原则 (6) 1.4设计目标 (7) 1.5设计依据 (8) 第二部分高密度模块技术方案 (9) 2.1供电系统 (10) 2.1.1 供电需求 (10) 2.1.2 高压直流供电方案............................................................... 错误!未定义书签。 2.1.2 SPM精密配电方案 ............................................................... 错误!未定义书签。 2.1.2 APM模块化冗余UPS供电方案 (10) 2.2制冷系统 (13) 2.2.1 制冷需求 (13) 2.2.2 CRV+Coolflex行间制冷方案 (15) 2.3机柜系统 (18) 2.3.1 机柜需求 (18) 2.3.2 机柜方案 (18) 2.4监控系统 (21) 2.4.1监控需求 (21) 2.4.2监控方案 (21) 2.5消防系统 (26) 2.5.1 消防需求 (26) 2.5.2 消防方案 (27) 2.6辅助照明系统 (30) 2.6.1 辅助照明需求 (30) 2.6.2 辅助照明方案 (31) 第三部分、质量保证体系................................................................................. 错误!未定义书签。第四部分、售后服务 ........................................................................................ 错误!未定义书签。 4.1保修服务 ..................................................................................................... 错误!未定义书签。 4.2服务主体 ..................................................................................................... 错误!未定义书签。 4.3全国服务热线 ............................................................................................. 错误!未定义书签。附录一:艾默生网络能源有限公司简介. (38)

相关文档
最新文档