matlab实验十七__牛顿迭代法

matlab实验十七__牛顿迭代法
matlab实验十七__牛顿迭代法

实验十七牛顿迭代法

【实验目的】

1.了解牛顿迭代法的基本概念。

2.了解牛顿迭代法的收敛性和收敛速度。

3.学习、掌握MATLAB软件的有关命令。

【实验内容】

用牛顿迭代法求方程3210

x x x

10-。

++-=的近似根,误差不超过3【实验准备】

1.牛顿迭代法原理

2.牛顿迭代法的几何解析

3.牛顿迭代法的收敛性

4.牛顿迭代法的收敛速度

5.迭代过程的加速

6.迭代的MATLAB命令

MATLAB中主要用for,while等控制流命令实现迭代。

【实验重点】

1.牛顿迭代法的算法实现

2.牛顿迭代法收敛性和收敛速度

【实验难点】

1.牛顿迭代法收敛性和收敛速度

【实验方法与步骤】

练习1用牛顿迭代法求方程3210

++-=在x=0.5附近的近似

x x x

根,误差不超过310-。

牛顿迭代法的迭代函数为

322()1()()321

f x x x x

g x x x f x x x ++-=-=-'++ 相应的MATLAB 代码为

>>clear;

>>x=0.5;

>>for i=1:3

>>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1)

>>end

可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。

练习2 用牛顿迭代法求方程2(0)x a a =>的近似正实根,由此建立一种求平方根的计算方法。 由计算可知,迭代格式为1()()2a g x x x =+,在实验12的练习4中已经进行了讨论。

【练习与思考】

1.用牛顿迭代法求方程ln 1x x =的近似根。

2.为求出方程310x x --=的根,在区间[1,2]内使用迭代函数进行迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。

3.使用在不动点*x 的泰勒公式,证明牛顿迭代法收敛原理。

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

matlab实现牛顿迭代法求解非线性方程组教学文稿

matlab实现牛顿迭代法求解非线性方程组 已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到0.00001 ———————————————————————————————— 首先建立函数fun 储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ———————————————————————————————— 建立函数dfun 用来求方程组的雅克比矩阵将dfun.m保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df'); ———————————————————————————————— 编程牛顿法求解非线性方程组将newton.m保存到工作路径中: function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

matlab实验十七__牛顿迭代法(可打印修改)

实验十七牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习、掌握MATLAB软件的有关命令。 【实验内容】 用牛顿迭代法求方程的近似根,误差不超过。 3210 ++-=3 10- x x x 【实验准备】 1.牛顿迭代法原理 2.牛顿迭代法的几何解析 3.牛顿迭代法的收敛性 4.牛顿迭代法的收敛速度 5.迭代过程的加速 6.迭代的MATLAB命令 MATLAB中主要用for,while等控制流命令实现迭代。 【实验重点】 1.牛顿迭代法的算法实现 2.牛顿迭代法收敛性和收敛速度 【实验难点】 1.牛顿迭代法收敛性和收敛速度 【实验方法与步骤】 练习1用牛顿迭代法求方程在x=0.5附近的近似 3210 ++-= x x x

根,误差不超过。 310-牛顿迭代法的迭代函数为 322()1()()321 f x x x x g x x x f x x x ++-=-=-'++相应的MATLAB 代码为 >>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。 练习2 用牛顿迭代法求方程的近似正实根,由此建2(0)x a a =>立一种求平方根的计算方法。 由计算可知,迭代格式为,在实验12的练习4中1()()2a g x x x =+已经进行了讨论。 【练习与思考】 1.用牛顿迭代法求方程的近似根。 ln 1x x =2.为求出方程的根,在区间[1,2]内使用迭代函数进行310x x --=迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。 3.使用在不动点的泰勒公式,证明牛顿迭代法收敛原理。*x

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

牛顿迭代法解元方程组以及误差分析matlab实现

.0],;,[0 ),()(),()(),(0),()(),()(),(,.**,0],;,[),()()(),()()(,0),(),(),(])()[(),(),(),(),(),(])()[(),(),(2,),(])()[(21),(])()[(),(),()(2 )(''))((')()(: 1n 1n 110101010100000000000000000000000000200000000000 00 000fg g f y y g f g f g f fg x x g g f f y x g y y y x g x x y x g y x f y y y x f x x y x f y x y x y x g f g f fg g f y y g f g f g f fg x x g f g f fg g f y y g f g f g f fg x x g g f f y x g y x g y y y x g x x y x f y x f y y y x f x x y x g y x f y x g y y y x x x y x g y x g y x f y x g y x f y y y x x x y x f y x f y x y x f y y y x x x y x f y y y x x x y x f y x f x x f x x x f x f x f x x n n x y y x y y y x y x n n y n n n x n n n n n y n n n x n n n n n x y y x x x x y y x y y x y y x x x x y y x y y y x y x y x y x y y x x y y x x y x y y x x ,则其解可记为: 的行列式不为若系数矩阵: 附近的线性化方程组为在一元方程牛顿迭代法,类似 ,的新近似值于是就得到了根,则可得解: 的行列式不为若系数矩阵),(),( ),(),( 则两式构成方程组: 令可得: 构成二元方程组,同样与若另有一方程: 阶小项,得到线性方程忽略在方程根附近取值时,当二元函数的展开为: 开类似一元函数的泰勒展?????+-+=-+-+=?????=-+-+=-+-+??? ????-+-+=-+-+=????????-+-=--+-=-?????-=-+--=-+-==??-+??-+=??-+??-+=??-+??-+??-+??-+=-+ -+=++========η ξξ

MAAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

MATLAB程序(牛顿法及线形方程组)

MATLAB 程序 1、图示牛顿迭代法(M 文件)文件名:newt_g function x = new_g(f_name,x0,xmin,xmax,n_points) clf,hold off % newton_method with graphic illustration del_x = 0.001; wid_x = xmax - xmin; dx = (xmax - xmin)/n_points; xp = xmin:dx:xmax; yp = feval(f_name,xp); plot(xp,yp);xlabel('x');ylabel('f(x)'); title('newton iteration'),hold on ymin = min(yp); ymax = max(yp); wid_y = ymax-ymin; yp = 0. * xp; plot(xp,yp) x = x0; xb = x+999; n=0; while abs(x-xb) > 0.000001 if n > 300 break; end y=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o') fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y); xsc = (x-xmin)/wid_x; if n < 4, text(x,wid_y/20,[num2str(n)]), end y_driv = (feval(f_name,x + del_x) - y)/del_x; xb = x; x = xb - y/y_driv; n = n+1; plot([xb,x],[y,0]) end plot([x x],[0.05 * wid_y 0.2 * wid_y]) text( x, 0.2 * wid_y, 'final solution') plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) 传热问题 假设一个火炉是用厚度为0.05m 的砖单层砌成的。炉内壁温度为T 0=625K, 外壁温度为T 1(未知)。由于对流和辐射造成了外壁的热量损失,温度T 1由下式决定: 44111()()()()0f k f T T T T T h T T x εσ∞=-+-+-=? 其中: k :炉壁的热传导系数,1.2W/mK ε: 发射率,0.8 T 0:内壁温度,625K T 1:外壁温度(未知),K T ∞:环境温度,298K T f :空气温度,298K H :热交换系数,20W/m 2K

MATLAB计算方法迭代法牛顿法二分法实验报告分析

姓名实验报告成绩 评语: 指导教师(签名) 年月日

说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点2a b x -= 判 断是否0)(=x f ;若是,则有根 2a b x -= 。否则,继续判断是否0)()(

(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不 超过 3 105.0-?。 (2)、取初值00=x ,用迭代公式=+1k x -0x ) (') (k k x f x f ,求方程0210=-+x e x 的 近似根。要求误差不超过 3 105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误 差不超过 3 105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 7.0软件,建立一个实现二分法的MATLAB 函数文件agui_bisect.m 如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end %如果fa*fb>0,则输出两端函数值为同号 k=0 x=(a+b)/2 while(b-a)>(2*e) %循环条件的限制

非线性方程组求解的牛顿迭代法用MATLAB实现

1. 二元函数的newton 迭代法理论分析 设),(y x f z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,则有 ?? ? ????? +??+≈++==00) ,(),(),(),(0000y y x x y x f y k y x f x h y x f k y h x f 其中 0x x h -=,0y -=y k 于是方程0),(=y x f 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x f y k y x f x h y x f 即 0),()(),()(),(y k =-+-+k k k k k x k k y x f y y y x f x x y x f 同理,设y)g(x,z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,亦有 ?? ?????? +??+≈++==00),(),(),(),(0000y y x x y x g y k y x g x h y x g k y h x g 其中0x x h -=,0y -=y k 于是方程0),(g =y x 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x g y k y x g x h y x g 即 0),(g )(),()(),(y k =-+-+k k k k k x k k y x y y y x g x x y x g 于是得到方程组 ? ??=-+-+=-+-+0),(g )(),()(),(0),()(),()(),(y k y k k k k k k x k k k k k k k x k k y x y y y x g x x y x g y x f y y y x f x x y x f

关于牛顿迭代法的课程设计实验指导

y x O x * x 1 x 0 关于牛顿迭代法的课程设计实验指导 非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。牛顿迭代法正是将局部线性化的方法用于求解方程。 一、牛顿迭代法及其收敛速度 牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为 )()()()(000x f x x x f x f '-+≈ 由此得一次方程 0)()()(000='-+x f x x x f 求解,得 ) ()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。设x n 是方程解x *的近似,迭代格式 ) ()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。牛顿迭代法的最大优点是收敛速度快,具有二阶收敛。以著名的平方根算法为例,说明二阶收敛速度的意义。 例1.已知4.12≈,求2等价于求方程f (x ) = x 2 – 2 = 0的解。由于x x f 2)(='。应用牛顿迭代法,得迭代计算格式 )/2(2 11n n n x x x +=+,(n = 0,1,2,……) 取x 0= 1.4为初值,迭代计算3次的数据列表如下 迭代次数 近似值 15位有效数 误差 0 1.4 1.41421356237310 -1.42e-002 1 1.41428571428571 1.41421356237310 7.21e-005 2 1.41421356421356 1.41421356237310 1.84e-009 3 1.41421356237309 1.41421356237310 - 2.22e-016 图1 牛顿迭代法示意图

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间 [-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与 f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。

开始 输入x0,e X1=f(x0)|x1-x0|

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

2-8牛顿迭代法matlab

实验七 牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习掌握MATLAB 软件有关的命令。 【实验内容】 用牛顿迭代法求方程0123=-++x x x 的近似根,误差不超过310-。 【实验准备】 1.牛顿迭代法原理 设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大. 设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得 ) (')(0001x f x f x x -= 重复这一过程,得到迭代格式 ) (')(1n n n n x f x f x x -=+ 这就是著名的牛顿迭代公式,它相应的不动点方程为 ) (')()(x f x f x x g -=. 2. 牛顿迭代法的几何解析 在0x 处作曲线的切线,切线方程为))((')(000x x x f x f y -+=。令 0=y ,可得切线与x 轴的交点坐标) (')(0001x f x f x x -=,这就是牛顿法的迭代公式。因此,牛顿法又称“切线法”。

3.牛顿迭代法的收敛性 计算可得2)] ('[)(")()('x f x f x f x g -=,设*x 是0)(=x f 的单根,有0)(',0)(**≠=x f x f ,则 0)]('[)(")()('2**** =-=x f x f x f x g , 故在*x 附近,有1)('>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算得迭代数列的前3项0.5455, 0.5437, 0.5437.近三次迭代,就大大超过了精度要求. 练习2用牛顿迭代法求方程)0(2>=a a x .的近似正实根,由此建立一种求平方根的计算方法. 由计算可知,迭代格式为)(21)(x a x x g += .,在实验12的练习4种已经进行了讨论. 练习3用牛顿迭代法求方程1=x xe 的正根. 牛顿迭代法的迭代函数为

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

牛顿迭代法的实验报告

牛顿迭代法实验报告 1.功能 本程序采用牛顿法,求实系数高次代数方程 f(x)=a0x n+a1x n-1+…+a n-1x+a n=0(a n≠0)(1) 的在初始值x0附近的一个根。 2.使用说明 (1)函数语句 Y=NEWTON_1(A,N,X0,NN,EPS1) 调用M文件newton_1.m。 (2)参数说明 A n+1元素的一维实数组,输入参数,按升幂存放方程系数。 N整变量,输入参数,方程阶数。 X0 实变量,输入参数,初始迭代值。 NN整变量,输入参数,允许的最大迭代次数。 EPS1实变量,输入参数,控制根的精度。 3.方法简介 解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 !2) (0x f'' +… 取其线性部分,作为非线性方程f(x)=0的近似方程,则有 f(x0)+fˊ(x0)(x-x0)=0 设fˊ(x0)≠0则其解为 x1=x0-f(x0)/fˊ(x0) 再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。若f(x1)≠0,则得 x2=x1-f(x1)/fˊ(x1) 这样,得到牛顿法的一个迭代序列 x n+1=x n-f(x n)/fˊ(x n) 4.newton_1.m程序

function y=newton_1(a,n,x0,nn,eps1) x(1)=x0; b=1; i=1; while(abs(b)>eps1*x(i)) i=i+1; x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1)); b=x(i)-x(i-1); if(i>nn)error(ˊnn is fullˊ); return; end end y=x(i); i 5.程序附注 (1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m 是方程一阶导数的函数。由使用者自己编写。 (2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。 6.例题 用牛顿法求下面方程的根 f(x)=x3+2x2+10x-20 7.运行结果 >>a=[1,2,10,-20] ; >>n=3; >>x0=1; >>nn=1000; >>eps1=1e-8; >>y=newton_1(a,n,x0,nn,eps1)

相关文档
最新文档