深水钻井关键装备现状与选择

深水钻井关键装备现状与选择
深水钻井关键装备现状与选择

万方数据

万方数据

万方数据

。4’石油矿场机械2009年10月

触面也进?步加大。凶此随着作业水深的增加,水下

井II也变得越来越大,压力等级、抗弯能力、町悬挂

套管质垦和数最对各种套管层序的适川性、操作性

和安全町靠性等性能指标也越来越高。

4结语

走向深水既足提高油气产量的需求,也是全球

海洋石油发展的趋势。深水浮式钻井装置、隔水管

系统和水下井II等是进行深水钻井的必要装备。深

水钻井区别于浅滩和陆地钴升作、Ik,所需装备的没

计、制造难度很大,国外涉足深水领域已有几十年的

历程,深水钻井装备已成为成熟技术。依靠进fl深

水作、Ip装备,小但耗费人量资会。在关键技术上也受

制于人,严重制约着我国深水石油开发进度,因而展

开相关研究工作已迫在眉睫。

图1水卜.井11系统

临时导向基座用于定井位,是首先下入的设备,坐在海底泥线卜;永久导向基座安装在临时导向基座之上,通过连接在导向柱上的导向绳引导后续J二具的入井及设备的安装;0762mm(30in)导管头悬挂导管坐落在永久导向基座内,用专用下入工具随永久导向基座同时下入;0476.25mm(18%in)高压井[I头下部连接表层套管,坐落在导管头内,通过液压连接器连接水下防喷器;各层技术套管通过套管挂和密封总成悬挂在高压井II头内。

深水条件下对水下井【1的选择主要考虑井筒中需要悬挂的套管层序、套管尺寸和连接方式、抗弯曲能力、压力级别、可悬挂的最大套管质鼍等。在没计的前期,需要对海况条件下井口呵能受到的钻井隔水管、防喷器组上部质量以及可能的轴向力和弯矩进行分析,尤其是采用动力定f《》=时,钻井船偏离井口或紧急情况下进行紧急解脱时。防喷器组和水下井口头可能会承受很大的弯矩∽。…。

井口头压力级别的选用应与防喷器一致,主要根据地层压力的情况,通常选用69MPa(10000psi)或103MPa(15000psi)压力等级,在一些特殊情况下,也可选用138MPa(20000psi)。抗弯曲能力在2710~9484kN?m(2000~7000klb?ft)。常规水下井口的抗弯曲能力在3387~4065kN?m(2500~3000klb?ft)。井[1头的抗弯能力与高压井fl头的壁厚相关,典型的高压井口头的外径大约是0685.8mm(27in)。为了获得较高的抗弯能力,高压井口的外径不断增加,而且与低压井口的接参考文献:

[1]PettingillHS,WeimerP.Worldwidedeepwaterex—plorationandproduction:past,presentandfuture

[-CJ//Houston,Texas:21stAnnualResearchConfer—

ence,2001.

I-z]赵政璋。赵贤正,李景明,等.国外海洋深水油气勘探发展趋势及启示LJ].中国石油勘探,2005。10(6):71—

76.

[3]兰洪波,张玉霖,菅志军,等.深水钻井隔水管的应用及发展趋势[J].石油矿场机械。2008,37(3):96—98.

1-4_]杨进,曹式敬.深水石油钻井技术现状及发展趋势[J].右油钻采工艺。2008,30(2):1013.

[5]方华灿.海洋深水双梯度钻J{:用水下装备[J].石油矿场机械,2008,37(11):1-6.

[6]陈国明,殷志明,许亮斌。等.深水双梯度钻井技术研究进展[J].石油勘探与开发,2007,34(2):246-251.[7]SmithKI.,(;auk人D,WittDE.eta1.Subseamudliftdrillingjointindustryproject:deliveringdualgradient

drillingtechnologytOindustryLO].SPE71357,2001.[8]SchumacherJP,DowellJD,RibbeckI.R.eta1.SubseaMudLiftDrilling(SMD):planningandpreparationfor

thefirstsubseafieldtestofafullscaledualgradient

drillingsystematgreencanyon136,GulfofMexico

[G].SPE71358,2001.

I-9]EggemeyerJC,AkinsME,BrainardPE。eta1.Sub—Seamudliftdrilling:designandimplementationofa

dualgradientdrillingsystem[G].SPE71359,2001.[10]MaurerWC。Medley(jH,McDonaldWJ.Muhigra—dientdrillingmethodandsystem:UnitedStates,

006530437[P].2003—03—11.万方数据

深水钻井关键装备现状与选择

作者:侯福祥, 张永红, 王辉, 肖建秋, 李青松, HOU Fu-xiang, ZHANG Yong-hong,

WANG Hui, XIAO Jian-qiu, LI Qing-song

作者单位:侯福祥,王辉,肖建秋,李青松,HOU Fu-xiang,WANG Hui,XIAO Jian-qiu,LI Qing-song(中国石油集团,钻井工程技术研究院,北京,100097), 张永红,ZHANG Yong-hong(甘肃蓝科石化高

新装备股份有限公司,兰州,730050)

刊名:

石油矿场机械

英文刊名:OIL FIELD EQUIPMENT

年,卷(期):2009,38(10)

引用次数:0次

参考文献(10条)

1.Pettingill H S.Weimer P World-wide deepwater exploration and production:past,present and future 2001

2.赵政璋.赵贤正.李景明国外海洋深水油气勘探发展趋势及启示 2005(6)

3.兰洪波.张玉霖.菅志军深水钻井隔水管的应用及发展趋势 2008(3)

4.杨进.曹式敬深水石油钻井技术现状及发展趋势 2008(2)

5.方华灿海洋深水双梯度钻井用水下装备 2008(11)

6.陈国明.殷志明.许亮斌深水双梯度钻井技术研究进展 2007(2)

7.Smith K L.Gault A D.Witt D E Subsea mudlift drilling joint industry project:delivering dual gradient drilling technology to industry[SPE 71357] 2001

8.Schumacher J P.Dowell J D.Ribbeck L R Subsea MudLift Drilling(SMD):planning and preparation for the first subsea field test of a full scale dual gradient drilling system at green canyon 136,Gulf of Mexico[SPE 71358] 2001

9.Eggemeyer J C.Akins M E.Brainard P E SubSea mudlift drilling:design and implementation of a dual gradient drilling system[SPE 71359] 2001

10.Maurer W C.Medley G H.McDonald W J Multigradient drilling method and system 2003

相似文献(6条)

1.期刊论文杨金华.Yang Jinhua全球深水钻井装置发展及市场现状-国际石油经济2006,14(11)

截至2006年7月初,全球有103座深水半潜式钻井平台和33艘深水钻井船,它们主要分布于美国墨西哥湾、北海、巴西和西非海域.全球只有26家公司有能力从事深水钻井,其中美国公司最多,它们所拥有的深水钻井装置占全球总数的约70%.随着技术的进步,半潜式钻井平台和钻井船不断更新换代,额定作业水深和钻深能力相应增大.当前的钻井水深纪录和海上钻井井深纪录已分别达到3051米和10421米.半潜式钻井平台的钻深能力在6000~11430米,深水钻井船的钻深能力在5000~11887米.这两种在建钻井装置的钻深能力分别达到9000米或超过万米,并都采用动力定位方式.目前,国际市场上深水钻井装置供不应求,利用率接近或达到100%,最高日费已突破50万美元.国内的石油公司现在还没有深水钻井装置,这严重制约着我国三大石油公司进军深海的步伐,应引起有关部门的高度重视.

2.期刊论文任新民.REN Xin-min浮简式深水钻井装置(ABS)的研制-中国修船2009,22(1)

借助于在海面以下近200~400 m建立一个人工海床,利用目前第2或第3代半潜式钻井平台,将现在的400 m作业水深扩展到1 500 m,提高深水钻井作业的能力.

3.期刊论文孙友义.陈国明.金辉.畅元江.SUN You-yi.CHEN Guo-ming.JIN Hui.CHANG Yuan-jiang深水钻井隔水管耦合系统分析-船舶力学2009,13(3)

对于深水系泊钻井系统而言,移动式海洋钻井装置与细长结构(系缆、钻井隔水管)之间的耦合效应在预测浮体运动及钻井隔水管响应时起决定性作用.文中建立了深水系泊钻井系统的全耦合有限元模型,考虑波频与低频环境载荷,对系统进行了非线性时域分析.分析表明,由低频浮体运动激励的低频隔水管动态响应可对深水钻井隔水管设计产生重要影响.常规方法将低频浮体运动作为准静态效应考虑,对于连接在锚泊钻井装置上的深水钻井隔水管而言是不精确的.

4.期刊论文窦玉玲.管志川.徐云龙.Dou Yuling.Guan Zhichuan.Xu Yunlong海上钻井发展综述与展望-海洋石油2006,26(2)

简要回顾了海洋石油工业从20世纪40年代起步至今在可及水深、钻井装置方面的飞速发展;同时结合海上钻探实例,阐述了特殊的地质环境及低温、浅部水层等给深水钻井带来的一系列困难;面对深水钻井的挑战,在钻探技术及钻井工具方面提出了有效的应对措施;展望了国内外深水钻井的发展前景.

5.期刊论文王成文.王瑞和.卜继勇.陈二丁.钟水清.李福德.WANG Chengwen.WANG Ruihuo.PU Jiyong.CHEN Erding

.ZHONG Shuiqing.LI Fude深水固井面临的挑战和解决方法-钻采工艺2006,29(3)

水深超过500 m的深水海域所蕴藏的油气资源是非常诱人的,进一步开发利用深水油气资源大势所趋.但深水所带来的低温、地层破裂压力低、浅层流体流动和高昂的深水钻井装置费用等问题又提出了严峻的挑战.通过对深水注水泥温度确定、低密度水泥浆稳定性、流变性、胶凝强度、候凝时间、水泥石具有的机械力学性能等一系列的特殊要求分析,提出了以准确预测深水注水泥温度为前提,以深水固井材料体系研究为基础,以新型钻井液固井液一体化技术为方向,以深水固井时可能存在的风险为指导,有针对性地优化深水固井水泥浆的性能和注水泥工艺,以有效解决深水固井中所面临的困难.

6.会议论文刘科.付英军.蒋世全深水钻井过程中钻具和钻材用量研究2007

甲板可变载荷与钻井装置租会和钻井作业后勤供应等有直接关系。结合中海石油在建深水钻井船,对与可变载荷直接相关的深水钻具和钻材用量进行了分析,其中重点是钻井液用量的确定,并以国外一口深水井为基础,计算了 3000m水深10000m井深的钻具和钻材用量,为可变载荷问题的进一步研究奠定基础。

本文链接:https://www.360docs.net/doc/6b13779552.html,/Periodical_sykcjx200910001.aspx

下载时间:2010年4月18日

海洋钻井平台组成及功能

关于海洋钻井平台 半潜式的系统,总的来说,平台的系统有点和普通的船舶相似,它们是: 1,压载系统,ballast system 2,消防系统,fifi system ,包含fire water system , water mist system , deluge system, foam system, co2 extinguishsystem, water spray system 按照每个平台基本设计的不同,会有其中的几个。 3,舱底水系统,bilge system 4, 海水冷却系统,sea water cooling system 5,淡水冷却系统,fresh water cooling system 6,燃油系统,fuel oil system 7,润滑油系统,lub oil system 8,主机排烟系统,exhaust system 9,废油系统,waste oil and sludge system 10,透气溢流系统,vent and overflow system 11,测深系统,souding system 包含 manual soundIng system 或者remote sounding system 12,启动空气系统,starting air system 13,平台空气系统,rig air system 14,仪表与控制空气系统, instrument air system 15,饮用水系统,potable system 16,生活水排放系统,sanitary discharege system 17,生活水供给系统 ,sanitary supply system 18,盐水系统,brine system 19,钻井水液系统,drill water system 20,钻井基油系统,base oil system 21,泥浆供给系统,mud supply system 22,高压泥浆排出系统,mud discharge system 23,泥浆处理系统,mud process system 24,泥浆真空系统,mud vacuum system 25,井口控制系统,subsea control system 26,分流器,高压管系系统,hp manifold and diverter system 27,灌井系统,trip tank system 28,除气系统,mud gas separator system 29,测井系统,well test system 30,隔水套管张紧系统,riser tensioner system 31,液压系统,hydaulicoil system 32,泥浆混合系统,mud mixing system 33,散货系统,包含bulk cement system 以及bulk mud system 34,高压冲洗系统,high pressure washing down system 35,甲板泄水系统,deck drain system 36,快关阀系统,quick closing vavle system 37,切屑处理系统,cutting handling system 38,直升机加油系统,helicopter refueling system 39,排舷外系统,overboard discharge system 40,刹车冷却系统,brake cooling system 41,呼吸空气系统,breath air system 42,推进器系统,包含 thruster hydraulic oil and lub oil system 43,泥坑冲洗系统,mud pit washing system

海洋深水钻井钻井液技术

海洋深水钻井钻井液技术 深水钻井一般指在海上作业中水深超过900m的钻井;水深大于1500m时为超深水钻井,近年来随着海洋石油储量开采比例的不断增加,海洋石油勘探逐步向深水区发展。然而,深水钻井所涉及的钻井环境温度低、钻井液用量大、海底页岩稳定性、井眼清洗、浅水流动、浅层天然气及形成的气体水合物等问题,给钻井、完井带来严峻的挑战。 1.深水钻井带来的主要问题 与浅水区域相比,深水钻井面临的主要问题有以下几个方面:①井壁稳定性;②钻井液用量大;③地层破裂压力窗口窄;④井眼清洗;⑤低温下钻井液的流变性;⑥浅层天然气与形成的气体水合物。这些问题给钻井工艺带来了许多困难,同时对钻井液提出了更高的要求。 1.1 海底页岩的稳定性 在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中。如通过稀释或替换钻井液来控制钻井液的低密度钻井液的低密度固相的含量,必将需要大量钻井液。因此,针对海底页岩稳定的问题,采取了加入一定量的页岩稳定剂的措施。如在深水钻井液中加入无机盐(NaCl、CaCl2)和具有浊点的聚合醇、以达到增强页岩稳定性的目的。 1.2 钻井液用量大 实践证明,在深水钻井作业中的钻井液量远远大于其它同样深度但钻井条件不同的井,因为海洋钻井需要采用隔水管、隔水管体积一般高达159m3,加上平台钻井液系统,所以钻井液需要用量比其他同样深度但钻井条件不同井大得多。钻井中为了避免复杂情况的发生,一般多下几层套管,因此所需的井眼直径也相应增大。深水钻井时应配备3台高频率振动筛,以及大流量的除砂器和除泥器等固控设备,在非加重的钻井液中,固相的有效清除率大于75%,将钻井液中的钻屑含量控制在适当的范围内,可节省大量的钻井费用。 1.3 井眼清洗 深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出高要求,一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速度粘度,以及有规律地短程起下钻等方法,均有助于钻井过程中钻屑的清除。使用与钻井过程中钻井液粘度不同的钻井液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。 1.4 浅层气与气体水合物 深水钻井遇到的主要问题之一是浅层气砂岩引起的气体水合物的生成。一般在钻井液管线中发现生物气(沼气)并不算大问题。但是在深层发现含气砂岩则会引起大问题。因为对砂岩地层来说,浅层一般多是含有重油的非胶结性地层,而深层则是含有气体的低渗透率的硬质地层。在深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题因为这种气体水合物是堵塞气体传输管线的主要原因。气体水合物类似冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏水。但是它在性质上又不象冰,如果压力足够,它可以在0℃以上形成。在深水钻井作业中,海底较高的静水压力和较低的环境温度进一步增加了生成气体水合物的可能性,尤其是节流管线、钻井隔水导管以及海底的井口里,一旦

国内外海洋石油开发现状与发展趋势

一、海洋石油开发现状 世界石油开发已有200 多年的历史,但直到19 世纪61 年代末期,才真正进入近代石油工业时代。1869 年是近代石油工业纪元年,从此,世界石油产量开始迅速增长。尽管在19 世纪末,美国已在西海岸水中打井,开始了海洋石抽生产,但真正成为现代化海洋石油工业,还是在第二次世界大战以后。海洋石袖是以1947 年美国成功地制造出第一座钢质平台为标志,逐步进人现代化生产。 1990-1995 年期间全世界除美国外有718 个海上新拙气田进行开发。最活跃的地区在欧洲,有265个油气田进行开发,其配是亚洲,有l88个,非洲102 个,拉丁美洲94 个,澳大利亚41 个,中东21 个。 1990 -1995 年期间开发的海上新油气目中,储量、天然气田生产能力、油田生产能力排在~ 前 5 位的国家如下图所示。在此期间,全世界18个国家开发的海上油气田数见表 发展最快的是北美,从1989 年的410 口上升到1993 年的500口。全世界有242 个海上油气田投入生产,其中油田139个,气田103个。从分布上看,西北欧居第一位,共投产67个油、气田,其中油田40个,气田27个。在此期间全球海洋石油总投资额为3379亿美元。 1990-1995年期间,全世界(不含美国)共安装了7113座平台,其中有83座不采用常规固定式平台,而采用半潜式、张力腿式和可移式生产平台。巴西建造了300~1400m深的采油平台,挪威建造的张力腿平台水深达350m,中国南海陆丰22I生产储

油船和浮式生产系统工作水深约为355m。有41个国家大约安装370多座水深不超过60m的浅水采油平台。 总之,世界平台市场需求量增加,利用率在提高。 二、海洋石油开发技术与发展趋势 石油是重要战略物资各国都很重视。21世纪,石油和天然气仍将是世界主要能源。世界油气资源潜力还相当大,有待发展先进技术,进一步加强勘探和开发,以提高发现成功率和采收率,降低勘探开发成本。 海洋石油的开发已为全世界所瞩目,世界海洋石油的日产量也在逐年增长。随着陆上石油逐渐枯竭,海上油气的开采将会越来越重要。同时,由于开采技术的不断提高,海洋石油的开发也将不断向南、深、难的方向发展,其总的趋势如下。 (一)石油地质勘探技术 今后的世界石油勘探业将是希望与困难井存。一方面,还有许多远景盆地有待勘探,成熟盆地还有很大的勘探潜力。油气新远景区可能是深海水域、深地层和北极盆地。另一方面,20世纪四年代的油气勘探己向广度和深度发展。世界范围内寻找新油气田,增加油气勘探储量,提高最终采收率的难度越来越大,油气田勘探开发成本直线上升。石油地质工作者将面临降低勘探成本、提高探井成功率,增加探明储量的挑战。在这种严峻的形势下,今后的石油地质科技将向三个方面发展. ①加强盆地数字模拟技术的研究,以深入解剖盆地,揭示油气分布规律, ②加强综合勘探技术的研究,以提高探井成功率,降低勘探成本; ③加强开发地质研究,探明石油储量,帮助油藏工程师优化石油开采,最大限度地提高采收率。 (二)地质勘探技术 海上地震勘探技术的发展趋势是:海上数据采集将越来越多地采用多缆、多震源及多船的作业方式,这样可大大提高效率,降低费用,研究和应用适于海上各种开发区的观测方法,实现海上真三维地震数据来集;研究大容量空气枪减少复杂的气枪组合;开发海上可控震源;不断增大计算机容量,提高三维处理技术,计算机辅助解释系统的发展将进一步满足人机交互解释的需要,并向小型、多功能、综合解释方向发展。对未来交互解释站计算机能力的期望是100 MB的随机存取存储器;2000万条指令∕s,高分辨率荧光屏,软件可移植性。新一代交互解释站将具有交互处理能力,具备叠前、叠后、反演、模拟等处理功能,能作地质、测井、VSP横波资料的综合分析和解释,将物理的定量分析和地质信息结合起来,进行地层和岩性解释。 (三)钻井工艺技术 钻井在油气勘探、开发中占有重要的地位。钻井技术水平不仅直接影响勘探的效果和油气的产量,而且由于钻井成本占勘探开发成本的大部分,因此,它直接关系到油田勘探开发所需要的投资额。基于这一点,提高钻井技本水平和钻井效率、降低钻井戚本对油气田勘报开发具再重要意义。 过去的10年是钻井技术发展的10年,钻井技术的各个领域都取得了明显的进步。随钻测量系统可以把井眼位置、钻井妻数和地层参数及时传送到地面,从而能够实时了解井下情况和监测钻进过程,随锚测量还大大提高了钻井的安全性相钻井效率,地面数据采集与处理计算机系统和计算机信息网络,提高了钻井过程的实时控制和预测能力,实现钻井过程的系统优化、连续控制井眼轨迹技术提高了定向钻井水平;基础研究的加强,促进了钻头设计、钻头性能预测等方面的改善;聚晶金刚石钻头的发展和新型的聚晶金刚石钻头的出现,不仅显著提高了钻头机械钻速,而且成功地解决了非均质破裂研磨性地层的经济钻进问题;优质泥浆和固控技术解决了复杂地层的钻井问题,提高了钻

深水钻井的难点及关键技术

深水钻井的难点及关键技术 随着油气资源的持续开采, 陆地未勘探的领域越来越少, 油气开发难度越来越大。占地球面积70%以上的海洋有着丰富的油气资源, 油气开发重点正逐步由陆地转向海洋, 并走向深海。目前, 国外钻井水深已达3000 m 以上, 而我国海上油气生产一直在水深不足500 m 的浅海区进行, 我国南海拥有丰富的油气资源但这一海域水深在500~ 2 000m, 我国目前还不具备在这样水深海域进行油气勘探和生产的技术。周边国家每年从南沙海域生产石油达5 000×10 4 t 以上, 相当于我国大庆油田的年产量, 这种严峻的形势迫使必须加快我国南海等海域的深水油气勘探开发。石油工业没有关于“深水”的预先定义。“深水”的定义随时间、区域和专业在不断变化。随着科技的进步和石油工业的发展,“ 深水”的定义也在不断发展。据2002 年在巴西召开的世界石油大会报道,油气勘探开发通常按水深加以区别:水深400m 以内为常规水深 400m-1500m 为深水,超过1500m 为超深水。但深度不是唯一的着眼点,只要越过大陆架,典型的深水问题就会出现。一、深水钻井的难点 与陆地和浅水钻井相比, 深水钻井有着更为复杂的海况条件面临着更多的难题, 主要表现在以下几个方面。 1、不稳定的海床由于滑坡形成的快速沉积,浊流沉积,

陆坡上松软的、未胶结的沉积物形成了厚、松软、高含水、未胶结的地层。这种地层由于沉积速度、压实方式以及含水量的不同,所以它们的活性很大,给导管井段的作业带来了很大困难。河水和海水携带细小的沉积物离海岸越来越远,这些沉积物由于缺乏上部压实作用,所以胶结性差。 在某些地区,常表现为易于膨胀和分散性高,这将会导致过量的固相或细颗粒分散在钻井液中。 2、较低的破裂压力梯度 对于相同沉积厚度的地层来说,随着水深的增加,地层的破裂压力梯度在降低,致使破裂压力梯度和地层孔隙压力梯度之间的窗口较窄,容易发生井漏等复杂情况。在深水钻井作业中,将套管鞋深度尽可能设置得深的努力往往由于孔隙压力梯度与破裂压力梯度之间狭小的作业窗口而放弃。结果,深水区域的井所需的套管柱层数,常比有着相同钻进深度的浅水区域的井或陆上的井多。有的井甚至没有可用的套管而没有达到最 终的钻井目的。 3、气体水合物的危害 气体水合物是气体(甲烷、天然气、CO2 、N2 等)和水在一定条件(高温、高压)下形成的类似于冰物质。气体水合物在深水钻井作业中常常会遇到,通常在超过250m 水深的海域都会形成水合物, 一旦形成很难去除。气体水合物是一 种潜在的危害, 生成时结冰堵塞管汇, 气化时生成大量气

中石油钻井工程技术现状、挑战及发展趋势分析

中石油钻井工程技术现状、挑战及发展趋势分析 发表时间:2016-07-08T17:08:03.557Z 来源:《基层建设》2016年7期作者:冯畅 [导读] 它在促进我国能源结构调整方面有着至关重要的作用。 辽宁石油化工大学抚顺市 113001 摘要:现阶段,大部分国家都把石油、天然气作为主要使用能源。但是,目前我国主要消费能源还是以煤炭为主。但是,由于煤炭资源有一定的使用局限性,企业很难获得良好社会、经济效益。因此,我国能源消费结构亟待调整,只有这样,才能缓解我国能源短缺的现状和不足,以实现我国经济、能源的可持续发展。而石油钻井工程作为开发利用石油资源的基础,它在促进我国能源结构调整方面有着至关重要的作用。 关键词:钻井工程;现状;发展趋势 通过对近几年全球钻井技术发展动向的分析,钻井工程正面临着重大的变革。上百年对资源的开发利用,使得一些能源已经消耗殆尽,而针对极端环境下的资源勘探和开发已经成为资源开发的热点。科学技术的发展为人类开展高难度活动提供了可能。不仅井下工具市场的发展实现了质的飞跃,并且,钻井技术也实现了远程控制,自动化、智能化的作业模式大大降低了工作的难度。基于此种情况,笔者对中石油钻井工程技术现状、挑战及其发展趋势进行了详细地阐述。 一、中石油油气工程技术的发展现状 从全球石油工业的发展形势来看,工程技术的重大变革,都伴随着全球油气在产量、储采等方面的巨大飞跃。特别是近些年来,各种工程技术水平的快速提升,加速推进了全球第四次石油技术革命的发展进程,世界能源格局得以改变。目前,中石油油气工程技术得到了飞速的发展,体现在水平井钻完井方面尤为明显,大大提高了勘探开发工作的效率,现已成为开发油气田的重要手段之一。但是,从某种方面来讲,油气工程技术的发展现状也不容乐观,油气资源品质逐渐劣化,并且油气目标也更加复杂,勘探开发的区域也延伸至海洋,由此可见,中石油油气工程技术面临着重大挑战。 二、中石油油气工程技术面临的挑战 现阶段,全球油气开发工作都发生了重大改变,主要体现在,范围从陆地延伸至海洋,开发深度也从浅层延伸至深层,在这种形势下,原有的工程技术已经不能满足实际发展需要,只有对其进行革新才能保证其工作的效率和质量。一直以来,我国的钻井工程技术都是对国外先进的生产技术进行模仿,自主研发的能力非常弱,始终和发达国家有一定的差距。核心技术和硬件始终都要依赖于进口,这在很大程度上制约了我国钻井工程核心竞争力的提高。体现在非常规环境、海洋和深海等探测领域尤为明显,这也是制约我国钻井工程技术发展的关键因素。深井、超深井、钻井所面临的挑战,主要表现在传统井壁稳定理论已经无法使用,原有的随钻测量系统的信道受到了一定的制约等等。海洋钻井面临的挑战主要有,受到水深、浅层水、气流、风浪流、天然气水合物等方面带来的影响非常大。非常规油气钻井所面临的挑战主要有:旋转导向系统的研发尚不成熟,破岩效率非常低,并且钻井周期非常长,成本也非常,进行流体回收和处理的装备与技术还不够完善。 三、中石油钻井工程技术的发展趋势 对于钻井工程技术的发展趋势,主要涵括三个方面:一方面是对工程技术的未来发展方向,另一方面是对钻完井技术的发展趋势,还有就是钻井工程技术的发展建议。具体内容如下: (一)工程技术的发展方向 当今世界油气技术正在向着集成化、智能化、绿色化的方向发展,而油气钻井技术则向着高效、经济、清洁、安全的方向发展发展。钻井技术不仅是开通油气通道的重要途径,更是促进油气井产量提升的有效手段。现阶段,很多企业都加大了相关技术的研究力度,以实现钻井的自动化操作,提高破岩工具的工作效率,完善井筒配套技术,对井下进行有效的检测和控制。通过对国外工程技术的分析发现,工程技术的创新具有长期性、高投入性以及持续性特点。工程技术的发展方向主要是围绕高效服务来展开的,通过钻井手段来提高发现率、采收率,并降低吨油的成本,提高企业的核心竞争力,实现工程技术的高效化、智能化发展。针对现阶段钻井工程技术面临的挑战,企业应明确攻关方向,以此来保证工程技术的服务能力。 (二)钻完井技术的发展趋势 钻完井技术的发展趋势如下:首先,和钻井技术相关的装备正向着大型化、自动化和模块化的方向发展,海洋钻井装备更可靠、安全、高效,且配套装备的质量也得到了同步提升。其次,高新钻井技术的远程专家控制正在逐步实现。再次,用新型钻井技术来促进油气井产量、开发效益和剩余油的采收率已经成为其新的主流趋势。最后,通过对破岩技术的不断创新,现阶段高效破岩技术不断涌现出来,一些非接触式钻井技术得以应用而生,大大提高了破岩技术的工作质量。此外,像井下测量工具以及控制仪器都在向着智能化方向发展。连续管、套管、膨胀管等钻井技术的配套工作逐渐完善,技术应用已经呈现出高速发展态势。同时,一些非常规的钻井完井技术实现了重大突破。 (三)工程技术的发展建议 对于非常规油气技术来说,应加快水平井的发展速度,实现钻机自动化,加大新型压裂液和流体回收处理技术的研究力度,推进产业优势形成进程。对于深层油气勘探开发来说,应对先关装备进行研发给予高度重视,比如,对抗高温、长寿命螺杆的研发,对高压、高温试油检测装备的研发等等。对于海洋油气勘探开发来说,应提高技术储备的速度,加快钻机、修井机等钻完井设备的研发力度,并且还要对超低温钻井液以及水泥浆等流体进行研究。 结束语 总而言之,虽然我国钻井工程技术仍然面临着巨大的挑战,其现状也不容乐观,但是,通过上述分析可以得知,钻井工程技术还是有着十分广阔的发展空间的。只要相关工作人员积极创新工作模式,改变工作理念,强化企业之间的合作,借鉴国外先进生产经验,加大研究力度,实现技术的自主性创新,为促进油气资源利用率的提升夯实牢固的基础,才能为我国经济的可持续发展提供源源不断的动力。

常用钻井工具英文缩写

钻井英语缩写 1.DP drill pipe 钻杆 2.HWDP heavy weight (wall) drill pipe 加重钻杆 3.DC drill collar 钻铤 4.BHA bottom hole assembly 井下钻具 组合 5.STB stabilizer 钻杆扶正器 6.PNMDC pony non-magnetic drill collar 短无磁钻铤 7.SMDC short non-magnetic drill collar 短无磁钻铤 8.PDM positive displacement motor 螺 杆 9.BOP blowout preventer 封井器 10. BOPE blow out preventer equipment 封井器设备 11. IBOP inside blowout preventer 内 防喷工具 12. CSG casing 套管 13. TBG tubing 油管 14. JNT/JT joint 单根 15. XO cross-over 配合接头 16. IF internal flush 内平 17. FH full hole 贯眼 18. REG regular 正规 19. IU internal upset 内加厚 20. EU external upset 外加厚 21. EUE external upset 外加厚 22. IEU internal&external upset 内外 加厚 23. OH open hole 裸眼 24. WOB weight on bit 钻压 25. RPM revolutions per minute 转速/ 分钟 26. SPM strokes per minute 冲程/每分 钟 27. ECD equivalent circulating density 当量泥浆密度 28. MT metric ton 公制吨 29. DST drill stem test 钻具测试 30. KS key seat 键槽 31. KSW key seat wiper 键槽清洁器 32. STDS stands 立柱33. VIS viscosity 粘度 34. PV plastic viscosity 塑性粘度 35. YP yield point 屈服值 36. FL filtrate loss 滤失 37. WL water loss 失水 38. TVD true vertical depth 垂深 39. MD measured depth 测量井深 40. TD total depth 总井深 41. PBTD plug back total depth 人工井 底 42. PCS piece 件,个 43. KOP kick off point 造斜点 44. DIR direction 定向 45. AZM azimuth 方位 46. DEV deviation 井斜 47. ROP rate of penetration 机械转速 48. ID inside-diameter 内径 49. OD outside diameter 外径 50. FTG footage 进尺 51. PPG pounds per gallon (密度)每 加仑磅 52. PSI pounds per square inch 磅每平 方英尺 53. SGL single 单根 54. LP low pressure 低压 55. HP high pressure 高压 56. H P horsepower 马力 57. HHP hydraulic horsepower 水马力 58. HTHP high temperature high pressure 高温高压 59. AD assistant driller 副司钻 60. LCM lost circulation material 堵 漏剂 61. API American petroleum institute 美国石油协会 62. IADC international association of drilling contractors 国际钻井承包商 协会 63. CNPC China national petroleum 中 国石油天然气总公司 64. P/N part number 零件型号 65. S/N serial number 系列号 66. N/W net weight 净重 67. G/W gross weight 毛重

海洋石油深水钻完井技术概述

海洋石油深水钻完井技术概述 摘要:深水区海洋环境恶劣,台风和孤立内波频发,深水钻完井工程设计和作业难度大、风险高。在充分借鉴我国浅水钻井设计和国外深水钻完井设计及施工经验的基础上,研究并提出了深水钻完井设计的技术流程与工作方法,逐步形成了深水技术、深水科研、深水管理的三大体系,克服了深水特殊环境条件下的技术挑战和作业难题,满足了深水油气钻完井安全、高效的作业要求,具备了国内外深水自主作业能力。 关键词:深水;钻完井;作业实践;超深水跨越 目前,世界各国高度重视深水油气的勘探与开发,以BP、Shell、Petrobras 等为代表的油公司和以Transocean等为代表的服务公司掌握了深水钻井完井关键技术,主导着深水油气勘探开发作业。我国南海是世界四大油气聚集地之一,其中70%蕴藏于深水区。深水是挑战当今油气勘探开发技术和装备极限的前沿领域,尤其是在恶劣海洋环境下,如何安全、高效地开展深水钻完井作业成为了业界极为关注的焦点[1-3]。因此,研究深水钻完井所具有的特点,把握其发展趋势,对于促进我国石油工业可持续发展、增加油气产量、保障能源安全具有重要意义。1深水钻完井设计面临的挑战 在深水环境钻完井难度很大,深水钻完井设计不同于常规水深的钻完井设计,主要面临以下几个方面的挑战: 2.1深水低温 海水温度随水深增加而降低,深水海底温度通常约为4℃,海水的低温可以影响到海底泥线以下约数百米的岩层[4]。低温带来的问题主要包括:海水低温环境使隔水管中的钻井液流变性发生变化,在该温度下容易形成水台物,而且这样低的温度的对于钻井液和水泥浆的物理性质有很大的不利影响。会使钻井液的黏度和密度增大,钻井液的黏度增大可产生凝胶效应,在井筒流动中产生较高摩擦阻力,增大套管鞋处地层被压开的风险。容易引起钻井液稠化,使其流变性变差。低温还会延缓水泥水化导致水泥胶凝强度和水泥石抗压强度发展缓慢,流体易侵入水泥基体,容易造成油、气、水窜,后续作业无法顺利进行,影响固井质量。 2.2浅层气和浅层流

QHS 海上钻井作业井控规范

Q/HS 中国海洋石油总公司企业标准 Q/HS2028—2010 代替Q/HS 2028—2007 海上钻井作业井控规范 Specification for well control of offshore drilling operations 2011-01-28发布2011-04-01实施中 国 海 洋 石 油 总 公 司发布

Q/HS 2028—2010 目次 前言 (Ⅱ) 1 范围 (1) 2 钻井井控设计 (1) 3 井控装置的安装和使用 (2) 4 钻开油气层前的准备和检验 (3) 5 油气层钻井过程中的井控作业 (3) 6 溢流处理和压井作业 (4) 附录A (资料性附录)钻开油气层前检查表 (6) 附录B (规范性附录)压井原始数据表 (9) 附录C (规范性附录)关井操作程序 (11) 附录D (资料性附录)防喷演习记录表 (14) 附录E (规范性附录)压井施工单 (15) 附录F (资料性附录)压井施工记录表 (17) I

Q/HS 2028—2010 II 前言 本标准的起草依据GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》。 本标准代替Q/HS 2028-2007《海上钻井作业气井井控规范》。 本标准与Q/HS 2028-2007相比,主要变化如下: ——删除了术语和定义; ——对目次进行了调整,相关内容重新组合、排序,增加了钻井井控设计、井控装置的安装和使用,并补充相应内容; ——增加了高温高压井、深水井井控有关内容; ——增加了附录A(资料性附录)钻开油气层前检查表、附录B(规范性附录)压井原始数据表、附录C(规范性附录)关井操作程序、附录D(资料性附录)防喷演习记录表、附录E(规范性附录)压井施工单、附录F(资料性附录)压井施工记录表; ——删除了防喷器组具体配置要求,保留了基本功能要求,改为“安装的防喷器组其闸板防喷器应具备剪切和全封闭功能”; ——缩简了套管和固井基本要求、其他设施配备基本要求、安全资质基本要求; ——删除了有关修井的文字及内容; ——删除了人员资历基本要求、安全作业周期; ——明确了平台加重材料储备量; ——删除了有关管理性要求; ——删除了浅层气井控、失控应急措施。 本标准由中国海洋石油总公司钻完井专业标准化技术委员会提出并归口。 本标准起草单位:中海石油(中国)有限公司深圳分公司钻井部。 本标准起草人:韦红术、陈建兵、黄凯文、罗勇、刘正礼。 本标准主审人:周俊昌、熊志强。

深水海洋石油钻井装备发展现状

深水海洋石油钻井装备发展现状 摘要:为加快我国深海油气开发的步伐,有必要深入调研和跟踪国外深水油气勘探的动态和成功经验,了解国外深水海洋石油钻井装备的结构特点、现状和技术水平。对国外深水半潜式平台和钻井船的特点、现状及发展趋势,深水平台钻机和隔水管系统的发展现状和技术水平,以及深水钻井防喷器系统的工作特点及应用情况做了介绍,对我国深水钻井领域的发展具有指导作用。 关键词: 深水钻井;半潜式平台;双井架钻机;隔水管系统;水上防喷器当今世界油气储量迅速递减,陆上石油资源紧缺问题日渐突出,而占地球面积70%以上的海洋,预计油气储量相当可观。据估计,全世界未发现的海上油气储量有90%是在水深超过1000 m以下的地层中。我国深水海域也十分广阔,蕴藏着丰富的油气资源,但是目前我国的深水钻探开发仍处于起步阶段,深水钻完井技术与国际先进水平相比存在很大差距,在很多方面缺乏自主的关键技术,已成为我国深水油气勘探开发的瓶颈。因此,有必要深入调研和跟踪国外深水油气勘探的动态和成功经验,了解国外深水海洋石油钻井装备的结构特点、现状和技术水平。 1 深水半潜式钻井平台 随着陆地资源的日益枯竭,石油天然气开采已经逐渐由陆地转移到海洋,坐底式平台、重力式平台、导管架平台、自升式平台等主要作业于浅海区域,随着油气勘探开发日益向深海推进,张力腿平台也显示出其局限性,钻井船和半潜式平台成为主要选择,然而半潜式钻井平台由于具有极强的抗风浪能力、优良的运动性能、巨大的甲板面积和装载容量、高效的作业效率等特点,在深海能源开采中具有其他型式平台无法比拟的优势。 1. 1 结构和运动特点 半潜式钻井平台上部为工作甲板,下部为2个下船体,用支撑立柱连接。工作时下船体潜入水中,甲板处于水上安全高度,水线面积小,波浪影响小,稳定性好、支持力强、工作水深大,新发展的动力定位技术用于半潜式平台后,到21世纪初,工作水深可达3000 m,同时勘探深度也相应提高到9000~12000 m。据Rigzone网站截至2006207初的统计,全球现有165座半潜式钻井平台,其中额定作业水深超过500m的深水半潜式钻井平台有103座,占总数的62%。 与固定式平台不同,半潜式平台在工作时漂浮于海面,因而可以不受作业水深的限制,适用于各种水深的海域。在半潜作业时,平台一直处于运动状态。与钻井船相比,半潜式平台由于大部分排水量都集中在水下较深处,这使得平台整体受波浪的影响较弱,在波浪中的运动响应较小,能够适应大多数的海洋环境,与钻井船相比有更好的运动特性。在作业海况下,半潜式平台的升沉≤1.0~1.5 m,水平位移不大于水深的5%~6% ,平台的纵倾角不大于±(2°~3°)。平台的这种运动是在钻井作业所允许的最大运动幅度之内,因而能很好地满足海上作业要求。 1. 2 技术现状 在用深水半潜式钻井平台主要是在美国墨西哥湾、巴西、北海、和墨西哥海域作业。为适应向深水和深井找油的需求,近年来运用综合高科技,国外设计建造了工作水深超过3810 m (12500 ft) 、钻深达到1219m (40000 ft)、钻机绞车功率增至5292 kW (7200 hp)的第6代海上半潜式钻井平台。

海上钻井平台各系统简介

钻井平台各系统简介 不知道从什么时候起,石油的价格节节攀升。能源越来越紧张的今天,很多国家把目光从陆地转向了海洋。自从世界上第一个海洋钻井平台制造出来以后,海洋工程有了长足的发展。在几十米甚至上3~4000米深的海底钻一口井并不是一件容易的事,因为在海上环境的复杂多变以及恶劣。经常要承受巨浪和暴风的袭击。而钻井又要保持一个相对稳定的作业环境。才能把一根根长长的钻杆钻进海底。 钻井平台从近海到深海,主要可以分为座底式,自升式,半潜式、钻井船等。 座底式是指,平台的结构直接座在海床上,几乎和陆上钻井没多大区别。所以它们的可钻探深度很有限。只能在几十米的水深的浅海区域作业。 自升式,又叫jack-up。顾名思义,这种平台可以象千斤顶一样可以升降它的高度。它典型的特征就式3-4条腿。高高的绗架结构。上面安装又齿条。平台本体安装有齿轮。它们一起啮合,传动。在到达钻井区域的时候,腿就慢慢的伸到海床上。平台就靠这几条腿站在海里了。因为考虑到拖航的稳性,腿不能太长。所以这种平台一般在120~150米水深的近海区作业。 半潜式,最新的已经到了第6代了。这种平台综合了钻井船和坐底式驳船的优点,是漂浮在海面上的。这样的话,它们就可以在更深的水域工作了;船体灌放水,可以调节吃水深度,保持船体稳定。塔的下部是相当容积的浮筒,上面是若干个中空的立柱,支撑着上部平台平台上面是全部的钻井装备和必要的生活设施。整个平台靠浮筒浮在水面。它们带有2~3级动态定位系统,海底声纳定位系统,卫星定位系统等来保证平台的相对稳定的坐标。它们有各种位移补偿装置来补偿海况带来的不稳定状况。 钻井船,钻井船是设有钻井设备,能在水面上钻井和移位的船,也属于移动式(船式)钻井装置。较早的钻井船是用驳船、矿砂船、油船、供应船等改装的,现在已有专为钻井设计的专用船。目前,已有半潜、坐底、自升、双体、多体等类型。钻井船在钻井装置中机动性最好,但钻井性能却比较差。钻井船与半潜式钻井平台一样,钻井时浮在水面。井架一般都设在船的中部,以减小船体摇荡对钻井工作的影响,且多数具有自航能力。钻井船在波浪中的垂荡要比半潜式平台大,有时要被迫停钻,。增加停工时间,所以更需采用垂荡补偿器来缓和垂荡运动。钻井船适于深水作业,但需要适当的动力定位设施。钻井船适用于波高小、风速低的海区。它可以在600m水深的海底上进行探查,掌握海底油、气层的位置、特性、规模、贮量,提供生产能力等

深水钻井液技术现状与发展趋势

深水钻井液技术现状与发展趋势 文/邱正松赵欣,中国石油大学 引言 深水已成为国际油气勘探开发的重点区域。深水钻井液技术作为深水油气开发的关键技术之一,需解决深水复杂地层井壁失稳、低温流变性调控、天然气水合物的生成等技术问题。由于深水钻井液技术难度大,风险高,目前主要由国外技术服务公司垄断。中国深水钻井液技术尚处于起步阶段,与国外先进水平存在很大差距。笔者对深水钻井液面临的技术问题及对策进行全面分析,总结深水钻井液体系研究与应用进展以及中国深水钻井液技术研究现状,并对深水钻井液技术的发展趋势进行了展望,以期把握先进深水钻井液技术动向,对中国深水钻井液技术的发展起到一定的参考与借鉴作用。 1 深水钻井液面临的主要技术问题及对策 与陆地和浅水相比,深水钻井液面临着许多特殊的技术问题,包括深水地质条件的复杂性、钻井液低温流变性调控、天然气水合物的生成、井眼清洗问题及环保问题。 1.1 深水地质条件的复杂性 1.1.1 海底疏松地层井壁失稳与井漏问题 由于深水沉积过程中部分上覆岩层由海水代替,造成地层欠压实,孔隙压力大,胶结性差,海底泥页岩易膨胀、分散。欠压实作用下地层破裂压力低,导致钻井液的安全密度窗口变窄,易出现井漏等问题。 海底浅部地层通常存在数百米厚的硅质软泥,含水量为50%~70%,其物理性质类似于牙膏,剪切强度低,地层承载力差,易引发井壁失稳。 1.1.2 天然气水合物地层分解问题 由于天然气水合物可稳定存在于深水高压低温环境中,钻井过程中不可避免地钻遇赋存天然气水合物地层。由于钻具的机械扰动以及钻井液的侵入和传热作用等因素,井壁周围地层压力和温度的变化导致地层中的水合物分解,地层强度降低,引发井壁坍塌。此外,水合物分解释放大量气体和少量的水,增加了井壁地层的含水量和地层孔隙压力,引发井壁失稳;而大量的气体进入井筒易引起井涌或井控问题。 1.1.3 深水厚盐岩层井壁失稳问题

钻井常用打捞工具

钻井常用打捞工具 一.公锥 公锥是一种从管体内部打捞管状物的工具。因此,要求被打捞的管状落物要有一定的抗破损强度。第二,鱼顶的端面和管子内径基本要规则,以便公锥能顺利进入鱼顶。 公锥常用于打捞钻铤的水眼、钻杆接头的水眼、钻杆加厚部分的水眼以及井下特殊工具的水眼部分,带接箍的油管等。 公锥有1:12(高强度公锥,没有排屑槽,锯齿螺纹);1:16;1:24;1:32几种锥度,打捞直管落物应尽量选择1:24或1:32锥度小一些的公锥。 (一)使用公锥下井前必须注意以下几点: 1.掌握鱼顶所处井眼段的井眼直径,鱼顶以下钻具的压缩距等。公锥搬运时严禁摔打,紧扣时防折伤。 2.掌握鱼顶的内径和最大外径。 3.公锥尺寸,包括:水眼、造扣部分最小直径、最大直径、有效扣长,接头最大直径。丝扣是否完好,检查一下丝扣强度,以不缺不卷为好。 4.公锥造扣部位必须在尖端以后的100㎜以上。 5.分析当鱼顶和公锥在井眼内直径上相反方向各自都绝对靠边时,公锥尖端是否能进入鱼顶水眼内。 6.复杂井段打捞最好使用原钻具结构。 7.根据井内钻具被卡的情况以及被卡后,卡点以上钻具自由段的

长度,确定是否使用安全接头,如果打捞钻铤必须使用安全接头。 8.使用安全接头,必须清洁丝扣,分件清洗,掌握对扣和卸扣圈数。 9.准确计算鱼顶方入和造扣方入。如果井内情况允许和必要时,可下相应尺寸的钻头探鱼顶后再进行打捞。 (二)公锥入井的操作 1. 紧公锥接头扣时,接头距转盘面越近越好,避免折伤公锥丝杆,造成井下事故复杂化。 2.下钻要慢,防止井内突然遇阻折断公锥(尤其带有下击器的钻具)。 3.下钻完调试好方入,卸去井口回压凡尔(最好方入调在方钻杆的中部) 4.接方钻杆开泵循环,在鱼顶以上0.3~0.5米大排量冲洗鱼顶10-20分钟。 5.掌握并记录开泵时悬重,停泵时悬重。开泵时上提摩阻悬重,下放时摩阻悬重;停泵时上提摩阻悬重和下放时摩阻悬重。 6.下放钻具探鱼顶 A.在有把握公锥绝对能进入鱼顶水眼时,可低排量(记下泵压)开着泵静放探鱼顶。钻压控制在摩阻悬重增加10~20KN,遇阻后,泵压有上升的趋势时摘泵。记下此时的方入,有可能是进入鱼顶,不要转动转盘急于造扣。 a)上提钻具至计算鱼顶以上,注意观察有无挂卡现象。

海洋钻井平台扫盲

巨型海洋钻井平台 ——世界第六代3000米深水半潜式钻井平台 工程总投资:60亿元 工程期限:2008年——2011年 大型海洋石油钻井平台堪称海上巨无霸,其使用的平台作业吊钩比人还高。 目前,世界上已探明的海上油气资源大部分蕴藏在大陆架及3000米以下的海底。有数据显示,深海能源储量将是陆地能源储量的100倍,但由于开采技术上的限制,其还是能源领域最具潜力的处女地。 2009年4月20日上午,我国海洋工程装备制造标志性项目——世界第六代3000米深水半潜式钻井平台,在上海外高桥造船有限公司顺利下坞,进入关键的搭载总装阶段。这是我国首次自主设计、建造的当今世界上最先进的深水半潜式钻井平台,不仅填补了我国在深水钻井特大型装备项目上的空白,而且对于加速我国进军世界级海洋工程装备开发、设计和制造领域,提升我国深水作业能力,具有重要的战略意义。 这座深水半潜式钻井平台的拥有者是中国第三大石油集团——中国海洋石油总公司,由中国船舶工业集团公司708研究所和上海外高桥造船有限公司联合承担详细设计与生产设计,由上海外高桥造船有限公司承建,是我国实施深水海

洋石油开发战略的重点配套项目之一,也是“十一五”期间国家重点“863”项目之一,并作为拥有自主知识产权的重大装备项目纳入国家重大科技专项。 上海外高桥造船厂承建的世界第六代3000米深水半潜式钻井平台,造价60亿元人民币。 海上巨无霸 2008年4月29日,这座第六代3000米深水半潜式钻井平台在上海外高桥造船有限公司开工兴建。这是中国继1983年成功自主开发“勘探3号”大型半潜式钻井平台后,时隔20多年再次斥巨资设计建造新一代深水半潜式钻井平台。 该钻井平台自重30670吨,甲板长度为114米,宽度为79米,甲板面积相当于一个足球场大小,从船底到钻井架顶高度为130米,相当于43层的高楼,电缆总长度650公里,相当于上海至天津的直线距离。在主甲板前部布臵可容纳约160人的居住区,甲板室顶部配备有包含完整消防系统的直升机起降平台,可起降Sikorsky S-92型直升机。 这座平台具有多项自主创新设计:如平台稳性和强度按照南海恶劣海况设计,能抵御200年一遇的台风;选用大马力推进器及DP3动力定位系统,可以在45海里/小时的风速下正常作业,在109海里/小时的风速下生存。在1500米水深内可使用锚泊定位,甲板最大可变载荷达9000吨等;可在中国南海、东南亚、西非等深水海域作业,其最大作业水深3050米,钻井深度10000米,设计寿命30年,入美国船级社(ABS)和中国船级社(CCS),计划于2010年底交付。该项目总造价近60亿元人民币,堪称海洋工程领域的“航空母舰”。 深海石油作业是国际上公认的海洋石油工业的前沿战略阵地,其核心技术一直由欧美少数国家所掌握。我国的海洋石油开发长期以来受技术水平所限只能在近海进行,如今这一情况将得到根本性的转变。作为目前国内设施最先进、综合实力领先的造船企业,上海外高桥造船有限公司一直致力于先进海洋工程装备

深水石油钻井技术现状及发展趋势

文章编号:1000-7393(2008)02-0010-04 深水石油钻井技术现状及发展趋势3 杨 进1 曹式敬2 (1.中国石油大学石油工程教育部重点实验室,北京 102249; 2.中国海洋油田服务股份有限公司钻井事业部,北京 101149) 摘要:随着世界深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程提出了更高的挑战,钻井技术的难度越来越大。从目前国内外深水钻井实践出发,对深水的钻井设备、定位系统、井身结构设计、双梯度钻井技术、喷射下导管技术、动态压井钻井技术、随钻环空压力监测、钻井液和固井工艺技术和钻井隔水管及防喷器系统等关键技术进行了阐述,对深水的钻井设计和施工进一步向深水钻井领域发展具有重要导向作用。 关键词:深水钻井;钻井设备;关键技术 中图分类号:TE21;TE24 文献标识码:A Curren t situa ti on and develop i n g trend of petroleu m dr illi n g technolog i es i n deep wa ter Y ANG Jin1,CAO Shijing2 (1.MO E Key Laboratory of Petroleum Engineering in China U niversity of Petroleum,B eijing102249,China; 2.D rilling D epart m ent of China O ffshore O ilfield Services L i m ited,CNOOC,B eijing101149,China) Abstract:A s more and more oil and gas res ources are discovered in deepwater world wide,the deep water drilling has become more and more in recent years.It requires more on drilling engineering and drilling technol ogies due t o the increased water dep th and comp licated marine conditi ons.Based on the p ractice in deep water drilling both at home and abr oad,s ome key technol ogies are dis2 cussed in this paper,including the drilling equi pment,the positi oning syste m,the casing p r ogra m design,the dual-gradient drilling technol ogy,the technol ogy of jetting and l ower circuit,the dyna m ic killing and drilling technol ogy,the technol ogy of annulus p ressure detecti on while drilling,the technol ogy of drilling fluid and ce menting,the drilling raiser technol ogy,and the bl owout p reventer sys2 te m.A ll the technol ogies p lay an i m portant r ole in enabling drilling design and constructi on t o expand int o deep water. Key words:deep water drilling;drilling equi pment;key technol ogy 全世界未发现的海上油气储量有90%潜伏在水深超过1000m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而言,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影响未来石油发展的重要因素。 1 国内外深水油气勘探形势 全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108t,探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108 t,待发现天然气资源量7815×1012m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。 随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500m为深水,大于1500m则为超深水。据估计,世界海上44%的油气资源位于300m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上, 第30卷第2期 石油钻采工艺 Vol.30No.2 2008年4月 O I L DR I L L I N G&PRODUCTI O N TECHNOLOGY Ap r.2008  3作者简介:杨进,1966年生。1989年毕业于石油大学(华东)钻井工程专业,现从事油气钻井工程研究工作,教授,本刊编委。电话:010 -89733204。

相关文档
最新文档