LMV321和LMV358低压低功耗运放参数

LMV321和LMV358低压低功耗运放参数
LMV321和LMV358低压低功耗运放参数

国产运放LMV321和LMV358的特性

低压低功耗运放IC:LMV321/LMV358特性

LMV321特性:

单通道

工作电压2.1V-5.5V

静态电流60uA

电源电流23mA

输入失调电压3mV

电压增益105dB

共模抑制比80dB

电源电压抑制比90dB

封装SOT-25

LMV358特性:

双通道

工作电压2.1V-5.5V

静态电流120uA

电源电流23mA

输入失调电压3mV

电压增益105dB

共模抑制比80dB

电源电压抑制比90dB

封装SOP8

应用领域:

LMV321/LMV358的这些特点使其可应用于温度测量、压力传感器、精密电流传感、电子秤、应变计放大器、医疗仪器、热电偶放大器、手持式测试设备等众多领域。

低压电力电缆技术规范

低压电力电缆技术规范 Revised by Petrel at 2021

低压电力电缆技术规范 目录 1规范性引用文件 ............................. 错误!未指定书签。2技术参数及要求 ............................. 错误!未指定书签。 3 使用环境条件表............................ 错误!未指定书签。4试验..................................... 错误!未指定书签。5包装及运输 ................................ 错误!未指定书签。

低压电力电缆技术规范 1规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB12706额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件IEC60502额定电压1kV(Um=1.2kV)到30kVUm=36kV)的挤包绝缘电力电缆及附件GB3597电力电缆铜、铝导电线芯 GB/T3048电线电缆电性能试验方法 GB/T3956电缆的导体 GB6995电线电缆识别标志方法 DL/T401高压电缆选用导则 GB2952电缆外护套 GB50217电力工程电缆设计规范 2技术参数及要求 2.1设备名称1kV交联电缆 2.2系统额定电压:1kV及以下 2.3电缆额定电压(U0/U):0.6/1kV 2.4额定频率:50Hz 2.5敷设条件 敷设环境有空气中、直埋、沟槽、排管、桥架、竖井、隧道等多种方式。地下敷设时电缆局部可能完全浸于水中。 2.60.6/1kV挤包绝缘电力电缆结构及技术参数见表1。

集成电路低功耗设计方法研究【文献综述】

毕业设计文献综述 电子信息科学与技术 集成电路低功耗设计方法研究 摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。 关键字:低功耗,标准单元,ASIC设计 前言: 自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。 随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。 一、电路功耗的组成 CMOS电路中有两种主要的功耗来源,动态功耗和静态功耗。其中,动态功耗包括负载电容的充放电功耗(交流开关功耗)和短路电流引起的功耗;静态功耗主要是由漏电流引起的功耗,如图1所示。

运放参数详解-超详细

运放参数的详细解释和分析1—输入偏置电流和输入失调电 流 一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。在接下来的一些主题里,将对每一个参数进行详细的说明和分析。力求在原理和对应用的影响上把运放参数阐述清楚。由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。 第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios .的。但每一颗实际运放都会有输入偏置电流Ib和输入失调电流Ios .我们可以用下图中的模型来说明它们的定义。 输入偏置电流Ib是由于运放两个输入极都有漏电流(我们暂且称之为漏电流)的存在。我们可以理解为,理想运放的各个输入端都串联进了一个电流源,这两个电流源的电流值一般为不相同。也就是说,实际的运入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。那么输入偏置电流就定义这两个电流的平均值,这个很好理解。输入失调电流呢,就定义为两个电流的差。

说完定义,下面我们要深究一下这个电流的来源。那我们就要看一下运入的输入级了,运放的输入级一般采用差分输入(电压反馈运放)。采用的管子,要么是三级管bipolar,要么是场效应管FET。如下图所示,对于bipolar,要使其工作在线性区,就要给基极提供偏置电压,或者说要有比较大的基极电流,也就是常说的,三极管是电流控制器件。那么其偏置电流就来源于输入级的三极管的基极电流,由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别,也就是输入的失调电流。Bipolar输入的运放这两个值还是很可观的,也就是说是比较大的,进行电路设计时,不得不考虑的。而对于FET输入的运放,由于其是电压控制电流器件,可以说它的栅极电流是很小很小的,一般会在fA级,但不幸的是,它的每个输入引脚都有一对ESD保护二极管。这两个二极管都是有漏电流的,这个漏电流一般会比FET的栅极电流大的多,这也成为了FET 输入运放的偏置电流的来源。当然,这两对ESD保护二极管也不可能完全一致,因此也就有了不同的漏电流,漏电流之差也就构成了输入失调电流的主要成份。

低压电力电缆技术规范

低压电力电缆技术规范

目录 1 规范性引用文件 ................................................................................... 错误!未定义书签。 2 技术参数及要求 ................................................................................... 错误!未定义书签。3使用环境条件表.................................................................................... 错误!未定义书签。 4 试验 ...................................................................................................... 错误!未定义书签。 5 包装及运输 ........................................................................................... 错误!未定义书签。

低压电力电缆技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB 12706 额定电压1kV(Um=)到35kV(Um=)挤包绝缘电力电缆及附件 IEC 60502 额定电压1kV(Um=)到30kV Um=36kV)的挤包绝缘电力电缆及附件GB 3597 电力电缆铜、铝导电线芯 GB/T3048 电线电缆电性能试验方法 GB/T3956 电缆的导体 GB 6995 电线电缆识别标志方法 DL/T 401 高压电缆选用导则 GB 2952 电缆外护套 GB 50217 电力工程电缆设计规范 2 技术参数及要求 设备名称1kV交联电缆 系统额定电压:1kV及以下 电缆额定电压(U0/U):1kV 额定频率:50Hz 敷设条件 敷设环境有空气中、直埋、沟槽、排管、桥架、竖井、隧道等多种方式。地下敷设时电缆局部可能完全浸于水中。 1kV挤包绝缘电力电缆结构及技术参数见表1。

MRS201低功耗霍尔元件

TMR 超低功耗全极磁开关 概述 是一款集成了隧道磁阻(TMR )传感器和CMOS 技术,为高灵敏度、高速、低功耗、高精度应用而开发的全极磁开关。采用高精度推挽式半桥TMR 磁传感器和CMOS 集成电路,包括TMR 电压发生器、比较器、施密特触发器和CMOS 输出电路,能将变化的磁场信号转化为数字电压信号输出。通过内部电压稳压器来提供温度补偿电源,并允许宽的工作电压范围。以低电压工作、1微安级的供电电流、高响应频率、宽的工作温度范围、优越的抗外磁干扰特性成为众多低功耗、高性能应用的理想选择。采用两种封装形式:SOT23-3和TO-92S 。 功能框图 产品特性 ? 隧道磁电阻 (TMR) 技术 ? 1.5微安超低功耗 ? 高频率响应可达1kHz ? 全极磁开关 ? 高灵敏度,低开关点 ? 宽工作电压范围 ? 卓越的温度稳定性 ? 优越的抗外磁场性能 典型应用 ? 流量计,包括水表、气表和热量表 ? 接近开关 ? 速度检测 ? 线性及旋转位置检测 磁开关MRS201MRS201MRS201MRS201MRS201MRS201

管脚定义 TO-92S SOT23-3 极限参数 性能参数(V CC = 3.0V, T A = 25°C) 注:在以上测试中,电源和地之间需连接一个0.1μF的电容。

磁特性(V CC = 3.0V, T A = 25°C) 电压和温度特性 输出和磁场关系 注:上电时,在工作磁场为零时,输出信号为高电平。 磁场感应方向磁场强度

MRS201应用指南 封装尺寸 SOT23-3封装图: 平行于TMR 传感器敏感方向的磁场超过工作点门限︱B OPS ︱(︱B OPN ︱)时,输出低电平。当平行于TMR 传感器敏感方向的磁场低于释放点︱B RPS ︱(︱B RPN ︱)时,输出高电平。磁场工作点和释放点的差值就是传感器的回差B H 。 为了降低外部噪音,推荐在传感器电源和地之间增加一个滤波电容(靠近传感器)。如应用电路图所示,典型值为0.1μF 。 MRS201

集成运放的主要参数和含义

集成运放数据手册中的主要参数和含义 一、直流参数: 1.---输入失调电压 为了是集成运放在零输入时达到零输出,需在其输入端加一个直流补偿电压,这个直流补偿电压的大小即为输入失调电压,两者方向相反。输入失调电压一般是毫伏(mV)数量级。采用双极型三极管作为输入级的运放,其为1-10mV;采用场效应管作为输入级的运放,其大得多;而对于高精度的集成运放,其的值一般很小。 2.---输入失调电压的温度系数 在确定的温度变化范围内,失调电压的变化与温度的变化的比值定义为输入失调电压的温度系数。一般集成运放的输入失调电压的温度系数为10-20;而高精度、低漂

移集成运放的温度系数在1以下。 3.----输入偏置电流 当集成运放的输入电压的输入电压为零,输出电压也为零时,其两个输入端偏置电流的平均值定义为输入偏执电流。两个输入端的偏置电流分别记为和,而表示为 双极型晶体管输入的集成运放,其为10nA-1;场效应管输入的集成运放,其一般小于1nA。 4.—输入失调电流 当集成运放的输入电压威灵,输出电压也为零时,两个输入偏置电流的差值称为输入失调电流,即 一般来说,集成运放的偏置电流越大,其输入失调电流也越大。输入偏置电流和输入失调电流的温度系数,分别用/ 和/来表示。由于输入失调电压和输入失调电流及输入偏置电流均为温度的函数,所以产品手册中均应注明这些参数的测试温度。另外,需要指出的是,上述各参数均与电源电压及集成运放输入端所加的共模电压值有关。手册中的参数一般指在标准电源电压值及零共模输入电压下的测试值。 5.---差模开环直流电压增益 集成运放工作在线性区时,差模电压输入以后,其输出电压变化与差模输入电压变化的比值,称为差模开环电压增益,即 = 差模开环电压增益一般用分贝(dB)为单位,可用下式表示 ( )=20lg()(dB)

中低压电缆技术规格书

中压电缆规格书

目录 1.适用范围 (2) 2.总则 (3) 3.标准规范 (3) 4.技术条件及要求 (4) 5.检查和试验 (7) 6.标记 (7) 7.供方责任 (8) 8.供方技术文件 (8) 9.包装、运输及存放 (8) 1.适用范围 本规格书为6(10)kV阻燃型中压交联聚乙烯(XLPE)绝缘、聚氯乙烯护套电力电缆设计、选材、制造和检验的最基本要求。

2.总则 2.1本规格书与相关法规、标准、数据表、图纸等之间的任何矛盾应在工程实施阶段由需方负 责澄清。 2.2本规定并未对一切技术细节作出规定,也未充分引述相关规范和标准的条文,故在具体工 程实施阶段,应要求供方根据工程的实际情况及国家最新标准、规范提供优质产品。 2.3本规定所列标准、规范如与供方所执行的标准不一致时,应按较高标准执行,且供方应充 分描述本技术规定与相关法规的不同点。 2.4供方应提供需方要求的全部资料和数据,不应用假设条件及未经实验的数据来掩盖产品参 数的缺陷。 2.5应按照相关的标准,包括:IEC标准、国家标准以及行业标准对低压动力及控制电缆进行 制造、检验、试验、包装运输、安装和运行。 2.6为确保电缆正确的安装、操作及维修,供方应提供所有必须附加的设备、专用工具和附件 及其清单,即使这些设备和工具在相关资料中没有列出。 2.7 6(10)kV电力电缆应是经过法定机关检验合格的并经过运行实践考验的、性能优良、 技术先进、价格合理的成熟的产品,而不应是试制品或不成熟的产品。 3.标准规范 交流中压动力的设计、制造和试验应符合本规格书及下列最新版国家标准和国际标准的要求。所列标准并非全部标准,仅列出了主要标准。 3.1 国家标准 GB311.1-6-1997 高电压试验 GB/T 2952.1-1989 电缆外护层第1部分:总则 GB/T 2952.3-1989 电缆外护层第3部分:非金属套电缆通用外护层 GB/T 3956-1997 电缆的导体 GB 6995.1-1986 电线电缆识别标志第1部分:一般规定 GB 6995.2-1986 电线电缆识别标志第2部分:标准颜色 GB 6995.3-1986 电线电缆识别标志第3部分:电线电缆识别标志 GB 6995.4-1986 电线电缆识别标志第4部分电气装备电线电缆绝缘线芯识别标志 GB 6995.5-1986 电线电缆识别标志第5部分电力电缆绝缘线芯识别标志 GB12706.3-1991 额定电压35kV及以下铜芯、铝芯塑料绝缘电力电缆第3部分:交联聚乙烯绝缘电力电缆 GB3957-83 电力电缆铜,铝导电线芯GB12666.1~7-90 电线电缆燃烧试验方法

实验5 集成运算放大器参数测试

实验五 集成运算放大器参数测试 一、实验目的: 1.通过对集成运算放大器741参数的测试,了解集成运算放大器组件主要参数的定义和表示方法。 2.掌握运算放大器主要参数的测试方法。 二、实验原理: 集成运算放大器是一种使用广泛的线性集成电路器件,和其它电子器件一样,其特性是通过性能参数来表示的。集成电路生产厂家为描述其生产的集成电路器件的特性,通过大量的测试,为各种型号的集成电路制定了性能指标。运算放大器的性能参数可以使用专用的测试仪器进行测试(“运算放大器性能参数测试仪”),也可以根据参数的定义,采用一些简易的方法进行测试。本次实验是学习使用常规仪表,对运算放大器的一些重要参数进行简易测试的方法。 实验中采用的集成运算放大器型号为741,其引脚排列如图5.1所示。它是一种八脚双列直插式器件,其引脚定义如下: ①、⑤调零端; 图 5.1 741引脚 ②反相输入端; ③同相输入端; ④电源负极; ⑥输出端; ⑦电源正极; ⑧空脚。 以下为主要参数的测试方法: 1.输入失调电压: 理想运算放大器,当输入信号为零时其输出也为零。但在真实的集

成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象(由晶体管组成的差动输入级,不对称的主要原因是两个差放管的U BE 不相等),使得输入为零时,输出不为零。这种输入为零而输出不为零的现象称为“失调”。为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做“输入失调电压”,记作U IO或V OS。 输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数: 式中:U IO — 输入失调电压 U OO — 输入为零时的输出电压值 A od — 运算放大器的开环电压放大倍数 本次实验采用的失调电压测试电路如图5.2所示。闭合开关K1及K2, 使电阻R B短接,测量此时的输出电压U O1即为输出失调电压,则输入失调电压 图5.2 U IO,I IO测试电路 实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO一般在1mV以下。 测试中应注意: ①要求电阻R1和R2,R3和R F的阻值精确配对。 2.输入失调电流I IO 当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO(有的资料中使用符号I OS)。 式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。 输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(μA或nA级),因此它们的差值通常不是直接测量的,测试电路如图5.2所示,测试分两步进行:1)闭合开关K1及K2,将两个R B短路。在低输入电阻下,测出输出

运放的主要参数

集成运放的参数较多,其中主要参数分为直流指标和交流指标。其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏臵电流、输入失调电流、输入偏臵电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 1、输入失调电压VIO(Input Offset Voltage)输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 3、输入偏臵电流IB(Input Bias Current) 输入偏臵电流定义为当运放的输出直流电压为零时,其两输入端的偏臵电流平均值。输入偏臵电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏臵电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏臵电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏臵电流一般低于1nA。对于双极性运放,该值离散性很大,但几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 4、输入失调电流(Input Offset Current)输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏臵电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏臵电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 5、输入阻抗 (1)差模输入阻抗差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。 (2)共模输入阻抗共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。 6、电压增益 (1)开环电压增益(Open-Loop Gain)在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,记作AVOL,有的datasheet上写成:Large Signal Voltage Gain。AVOL 的理想值为无限大,一般约为数千倍至数万倍,其表示法有使用dB及V/mV等。 (2)闭环电压增益(Closed-Loop Gain顾名思义,就是在有反馈的情况下,运算放大器的放大倍数、

低压电缆允许载流量表

低压电缆允许载流量表 发布日期:[2013-5-3] 共阅[412]次 低压电力电缆在工业生产中,对工业生产有着重要的意义。目前,低压电力电缆被广泛应用到各个工业生产中。本文将对低压电力电缆的主要特点进行简述。 低压电力电缆常见基本型号有哪些: VV----聚氯乙烯绝缘聚氯乙烯护套(铜芯)电力电缆; YJV---交联聚乙烯绝缘聚氯乙烯护套(铜芯)电力电缆。 如果是(铝芯)导体,则中间加L,即分别为VLV、YJLV; 阻燃电缆,则在前面加ZR,即ZR-VV、ZR-YJV; 耐火电缆,在前面加N(或NH),即NH-VV、NH-YJV; 无卤低烟,型号为WD-YJY,交联聚乙烯绝缘聚烯烃护套; 上面功能综合起来,有: WDZAN-YJY-(无卤低烟)交联聚乙烯绝缘聚烯烃护套、A级阻燃耐火电力电缆。 还有:预分支电缆,加F(或YF);辐照交联电缆,加FZ; 橡套电缆,YQ,YZ,YC(YQW,YZW,YCW),分别对应轻型、中型、重型。 还有很多种类,如防火电缆(矿物绝缘电缆)等,一般场合用不到。 低压电力电缆规格有哪些: 线径有1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240、300等; 电缆有单芯与多芯多种组合,常用的是3、4、5芯,其中4、5芯分等径与不等径,即常说的4芯、5芯对应3+1与4+1或3+2,不等径电缆之N线、PE线按国家标准,如4*185+1*95或3*185+2*95。

低压电缆允许载流量表: 型号 VV VLV VV 22 VLV 22 ZR-VV ZR-VLV ZR-VV 22 ZR-VLV 22 VV VLV VV 22 VLV 22 ZR-VV ZR-VLV ZR-VV 22 ZR-VLV 22 芯数 单芯 3-5芯 敷设 空气中 土壤中 空气中 土壤中 单芯电缆排列方式 ○ ○○ ○○○ ○ ○○ ○○○ 导体材质 Cu Al Cu Al Cu Al Cu Al Cu Al Cu Al 标称 截面 1.5 19 ... 24 ... 27 ... 29 ... 15 ... 22 ... 2.5 25 19 31 24 36 27 38 30 19 15 29 23 4 33 26 41 32 47 35 49 39 26 20 38 30 6 41 34 52 42 58 46 61 50 32 26 47 39 10 57 44 72 55 78 58 83 64 46 35 65 50 16 76 59 95 73 100 76 105 83 60 47 84 65 25 98 76 120 96 130 95 135 105 77 60 110 84 35 115 90 150 115 155 115 160 125 95 74 130 100 50 145 110 180 140 185 140 195 150 115 90 155 120 70 180 140 230 175 225 170 240 185 145 115 195 150 95 225 175 280 215 270 205 285 220 185 140 230 185 120 260 200 325 250 310 235 325 250 210 165 260 205 150 300 230 375 290 350 265 365 285 245 190 300 230 185 345 270 430 335 395 300 415 320 280 215 335 260 240 410 320 510 395 455 350 480 375 335 260 390 300 300 475 370 585 455 515 395 545 425 375 295 435 340 400 555 440 690 540 585 455 625 490 ... ... ... ... 500 640 510 800 630 660 520 710 560 ... ... ... (630) 730 595 920 740 740 590 810 645 ... ... ... ... 环境温度 40 25 40 25

LD27L2-超低功耗运算放大器

LD27L2 双通道精密运算放大电路 1、概述 LD27L2是一款有极低失调电压、高输入阻抗、轨对轨的运算放大器电路。主要应用于各种需要使用精密运算放大器的领域,其特点如下: z极低的输入失调电压,典型条件下小于1mV; z超低功耗,静态工作电流小于3uA z宽电压工作范围,1.8V~6.0V z高输入阻抗,典型为1013Ω; z超低的失调点偏移 z单位增益带宽14KHz z封装形式:SOP8 2、功能框图与引脚说明 2. 1、功能框图

2. 2、引脚排列图 2. 3、引脚说明与结构原理图 序号管脚名功能描述 1 OUT1 运放1的输出端 2 IN1‐ 运放1的反向输入端 3 IN1+ 运放1的正向输入端 4 GND 电源地 5 IN2+ 运放2的正向输入端 6 IN2‐ 运放2的反向输入端 7 OUT2 运放2的输出端 8 VDD 电源输入端

3、电特性 3. 1、极限参数 参 数 名 称 符 号 额 定 值 单 位 最大电源电压 IVsmax 6 V 输入电压范围 V I GND-0.3~VDD V 差分输入电压 VDD-GND V 工作环境温度 T amb -40~+85 ℃ 贮存温度 T stg -55~+125 ℃ 3. 2、电特性(VDD=2.2~5V ,T A =25℃) 参 数 名 称 符 号 测 试 条 件规 范 值 单 位最小 典型最大 工作电压 V DD 1.8 - 6.0 V 静态工作电流 I DD - 0.8 3 uA 输入失调电压 V OS - 1 2 mV 输入失调温度系数 -40℃~+85℃ - 1.3 - uV/℃电源抑制 V PSRR - 85 90 dB 输入偏置电流 I B - 1 - pA 输入失调电流 I OS - 1 - pA 共模输入阻抗 Z CM - 1013- Ω 差模输入阻抗 Z DIFF - 1013- Ω 共模输入电压 V CMR GND-0.3- VDD+0.3 V 共模抑制比 CMRR VDD=5V 60 90 - dB 单位增益带宽 B I VI=10mV 14 KHz 输出短路电流 I SC VDD=2.2V - 3 - mA VDD=5V - 20 - mA

超低功耗电路的设计原则及设计分析

超低功耗电路的设计原则及设计分析 以手机为代表的电池供电电路的兴起,为便携式仪表开创了一个新的纪元。超低功耗电路系统(包括超低功耗的电源、单片机、放大器、液晶显示屏等)已经对电路设计人员形成了极大的诱惑。毫无疑问,超低功耗电路设计已经对低功耗电路提出了挑战,并将扩展成为电子电路中的一个重要应用领域。 虽然超低功耗设计仍然是在CMOS集成电路(IC)基础上发展起来的,但是因为用户众多,数千种专用或通用超低功耗IC不断涌现,使设计人员不再在传统的CMOS型IC上下功夫,转而选择新型超低功耗IC,致使近年来产生了多种超低功耗仪表。电池供电的水表、暖气表和煤气表近几年能够发展起来就是一个证明。目前,电池供电的单片机则是超低功耗IC的代表。 本文将对超低功耗电路设计原则进行分析,并就怎样设计成超低功耗的产品作一些论述,从而证明了这种电路在电路结构和性价比等方面对传统电路极具竞争力。 1 CMOS集成电路的功耗分析 无论是低功耗还是超低功耗IC,主要还是建立在CMOS电路基础上的。虽然超低功耗IC 对单元电路进行了新形式的设计,但作为功耗分析,仍然离不开CMOS电路基本原理。以74系列为代表的TTL集成电路,每门的平均功耗约为10mW;低功耗的TTL集成电路,每门平均功耗只有1mW。74系列高速CMOS电路,每门平均功耗约为10μW;而超低功耗CMOS 通用小规模IC,整片的静态平均功耗却可低于10μW。传统的单片机,休眠电流常在50μA~2mA范围内;而超低功耗的单片机休眠电流可达到1μA以下。 CMOS电路的动态功耗不仅取决于负载,而且就电路内部而言,功耗与电源电压、集成度、输出电平以及工作频率都有密切联系。因此设计超低功耗电路时不得不对全部元件的内外性质做仔细分析。 CHMOS或CMOS电路的功耗特性一般可以表示为: P=PD+PA

(完整版)常用电力电缆规格型号

聚氯乙烯绝缘聚氯乙烯护套电力电缆 1、用途:本产品适用于交流50HZ,额定电压0.6/1KV的线路中,供输配电能之用。 2、产品标准:GB12706·2-91额定电压35KV及以下铜芯、铝芯塑料绝缘电力电缆、聚氯乙烯绝缘电力电缆 3、使用特性:1)电缆导体的最高额定温度为70℃。2)短路时(最长持续时间不超过5S)电缆导体的最高温度不超过160℃。3)敷设电缆时的环境温度应不低于0℃,最小弯曲半径应不小于电缆外径的10倍。 4、型号、名称和使用范围 6、生产范围

交联聚乙烯绝缘电力电缆 1、产品用途:本产品适用于额定电压(U0/U)为3.6/6至26/35KV电力线路,供输配电能之用。 2、产品标准:GB12706-91额定电压35KV及以下铜芯,铝芯塑料绝缘电力电缆。 3、产品使用特性:(1)电缆在环境温度不低于0℃条件下敷设时,无须预先加温。电缆的敷设落差不受限制。(2)电缆线芯长期允许工作温度不得超过下列规定:外护层是聚氯乙烯套的电缆为90℃;外护层是聚乙烯套的电缆为80℃。(3)线芯短路时(最长持续5S)温度不得超过250℃(4)电缆敷设时的最小弯曲半径规定如下:单芯电缆:20(d+D)±5%;三芯电缆:15(d+D)±5%。式中:D为电缆的实际外径,d为导体的实际外径。 4、产品型号、名称及使用范围 注:一根或二根单芯电缆不允许敷设在铁质管道中。 5、生产范围

聚氯乙烯绝缘电线 1、用途:本产品适用于交流额定电压450/750V及以下的动力装置的固定敷设。 2、产品标准:GB502 3、2-85《额定电压450/750V及以下聚氯乙烯绝缘电缆(电线)固定敷设用电缆(电线)》 3、产品使用特性:1)额定电压U0/U分为450/750V和300/500V。2)电缆的长期允许工作温度:BV-105型……应不超过105℃;其他型号……应不超过70℃。3)电缆的敷设温度应不低于0℃;

GS6001 6002 6004 聚洵低功耗运算放大器

GS6001.6002.6004描述 GS6001系列的增益带宽乘积为1MHz,转换速率为0.8V /μs,在5V时的静态电流为75μA/放大器。GS6001系列旨在在低压和低噪声系统中提供最佳性能。它们可将轨到轨的输出摆幅转换成重负载。输入共模电压范围包括地,对于GS6001系列,最大输入失调电压为3.5mV。它们的额定温度范围为扩展的工业温度范围(-40℃至+ 125℃)。工作范围为1.8V至6V。 GS6001单个采用绿色SC70-5和SOT23-5封装。 GS6002 Dual采用绿色SOP-8和MSOP-8封装。 GS6004 Quad具有绿色SOP-14和TSSOP-14封装。 应用: ASIC输入或输出放大器 ?传感器接口 ?医学交流 ? 烟雾探测器 ? 音频输出 ?压电换能器 ?医疗仪器 ?便携式系统 特征: ?+ 1.8V?+ 6V单电源供电 ?轨到轨输入/输出 ?增益带宽乘积:1MHz(典型值) ?低输入偏置电流:1pA(典型值) ?低失调电压:3.5mV(最大值) ?静态电流:每个放大器75μA(典型值) ?嵌入式射频抗电磁干扰滤波器 ?工作温度:-40°C?+ 125°C ?包装: GS6001提供SOT23-5和SC70-5封装 GS6002提供SOP-8和MSOP-8封装 GS6004提供SOP-14和TSSOP-14封装

Features ?Single-Supply Operation from +1.8V ~ +6V ?Operating Temperature: -40°C ~ +125°C ?Rail-to-Rail Input / Output ?Small Package: ?Gain-Bandwidth Product: 1MHz (Typ.) GS6001 Available in SOT23-5 and SC70-5 Packages ?Low Input Bias Current: 1pA (Typ.) GS6002 Available in SOP-8 and MSOP-8 Packages ?Low Offset Voltage: 3.5mV (Max.) GS6004 Available in SOP-14 and TSSOP-14 Packages ?Quiescent Current: 75μA per Amplifier (Typ.) ?Embedded RF Anti-EMI Filter General Description The GS6001 family have a high gain-bandwidth product of 1MHz, a slew rate of 0.8V/ s, and a quiescent current of 75 A/amplifier at 5V. The GS6001 family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for GS6001 family. They are specified over the extended industrial temperature range (-40 to +125 ). The operating range is from 1.8V to 6V. The GS6001 single is available in Green SC70-5 and SOT23-5 packages. The GS6002 dual is available in Green SOP-8 and MSOP-8 packages. The GS6004 Quad is available in Green SOP-14 and TSSOP-14 packages. Applications ?ASIC Input or Output Amplifier ?Audio Output ?Sensor Interface ?Piezoelectric Transducer Amplifier ?Medical Communication ?Medical Instrumentation ?Smoke Detectors ?Portable Systems Pin Configuration Figure 1. Pin Assignment Diagram

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。 (3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

低压电力电缆技术规范

低压电力电缆技术规范 目录 1规范性引用文件 ............................. 错误!未指定书签。2技术参数及要求 ............................. 错误!未指定书签。 3 使用环境条件表............................ 错误!未指定书签。4试验..................................... 错误!未指定书签。5包装及运输 ................................ 错误!未指定书签。

低压电力电缆技术规范 1规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB12706额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件IEC60502额定电压1kV(Um=1.2kV)到30kVUm=36kV)的挤包绝缘电力电缆及附件GB3597电力电缆铜、铝导电线芯 GB/T3048电线电缆电性能试验方法 GB/T3956电缆的导体 GB6995电线电缆识别标志方法 DL/T401高压电缆选用导则 GB2952电缆外护套 GB50217电力工程电缆设计规范 2技术参数及要求 2.1设备名称1kV交联电缆 2.2系统额定电压:1kV及以下 2.3电缆额定电压(U0/U):0.6/1kV 2.4额定频率:50Hz 2.5敷设条件 敷设环境有空气中、直埋、沟槽、排管、桥架、竖井、隧道等多种方式。地下敷设时电缆局部可能完全浸于水中。 2.60.6/1kV挤包绝缘电力电缆结构及技术参数见表1。

相关文档
最新文档