宜用反证法证明的几类命题

宜用反证法证明的几类命题
宜用反证法证明的几类命题

宜用反证法证明的几类命题

反证法是证明数学命题的一种重要方法,当直接证明思路受阻,难以成功时,反证法常使人茅塞顿开,柳暗花明.它通常用来证明下列几类命题.

一、否定性命题

问题的结论是以否定形式出现(例如“没有…”,“不是…”,“不存在…”等)的命题,宜用反证法.

例1 求证:3lg 2是无理数.

分析:在实数集内,证它是无理数,即证它不是有理数.

证明:假设3lg 2不是无理数,即为有理数,则设3lg 2=

m n (,m n ∈+N ,n m ,互质)从而32=m n

得, m n 32=

上式表明:偶数等于奇数,这与偶数不等于奇数矛盾,于是假设不成立. 故3lg 2是无理数.

例2 证明:一个三角形中不可能有两个直角.

分析:用三角形内角和为0180证一个三角形中不存在两个直角.

证明:假设一个三角形中有两个直角.不妨设∠A=090,∠B=090. ∵∠A+∠B+∠C=090+090+∠C=0180+∠C>0180

这与三角形内角和定理矛盾. ∴ 假设不成立,即原命题成立.

二、“至少”或“至多”类命题

若一个命题的结论是“至少…”或“至多…”,“不都…”则可考虑用反证法. 例3 已知1p 、2p 、1q 、2q ∈R,且1p 2p =2(1q +2q )

求证:方程2x +1p x +1q =0和2x +2p x +2q =0中,至少有一个方程有实根. 分析:“至少有一个”是“有一个”、 “有两个”,它的反面是“一个都没有”. 证明:假设这两个一元二次方程都没有实根,那么他们的判别式都小于0,即:

?????<

2212122221211440404q p q p q p q p ∴)(4212

221q q p p +<+ ∵1p 2p =2(1q +2q )代入上式得

02212221<-+p p p p ,即.0)(221<-p p .这与“任何实数的平方为非负数”相

A B P 矛盾,所以假设不成立.

故这两方程中,至少有一个方程有实根.

三、唯一性命题

若一个命题的结论是“…唯一”的形式出现,则可考虑用反证法. 例4 求证:在一个平面内,过直线l 外一点P 只能作出一条直线垂直于l . 证明:假设过点P 可以作两条直线垂直于直线l 如图,那么∠P AB =∠PBA =090. 于是∠APB +∠P AB +∠PBA >0180.

即?P AB 的内角和大于0180,

这与定理“三角形内角和等于0180”相矛盾,

故假设不成立.

l

反证法证明题简单

反证法证明题简单 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

反证法证明题 例1.已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2.已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a = . 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3.已知332,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以33(2)a b >-即3238126a b b b >-+-,

所以323281266(1)2a b b b b >-+-=-+. 因为26(1)22b -+≥ 所以332a b +>,与已知332a b +=矛盾. 所以假设不成立,所求证结论成立. 例4.设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2213S S S =?, 即222111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以22(1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5.是无理数. 是有理数,则存在互为质数的整数m ,n m n =. 所以m =即222m n =, 所以2m 为偶数,所以m 为偶数. 所以设*2()m k k N =∈, 从而有2242k n =即222n k =. 所以2n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 是无理数成立. 例6.已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。

2018中考尺规作图、定义、命题、定理真题

尺规作图、定义、命题、定理 参考答案与试题解析 一.选择题(共18小题) 1.(2018?嘉兴)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是() A. B.C.D. 【分析】根据菱形的判定和作图根据解答即可. 【解答】解:A、作图根据由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确; B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确; C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误; D、由作图可知对角线AC平分对角,可以得出是菱形,正确; 故选:C. 2.(2018?襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为() A.16cm B.19cm C.22cm D.25cm 【分析】利用线段的垂直平分线的性质即可解决问题. 【解答】解:∵DE垂直平分线段AC, ∴DA=DC,AE=EC=6cm,

∵AB+AD+BD=13cm, ∴AB+BD+DC=13cm, ∴△ABC的周长=AB+BD+BC+AC=13+6=19cm, 故选:B. 3.(2018?湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; ②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点; ③连结OG. 问:OG的长是多少? 大臣给出的正确答案应是() A.r B.(1+)r C.(1+)r D.r 【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题; 【解答】解:如图连接CD,AC,DG,AG. ∵AD是⊙O直径, ∴∠ACD=90°, 在Rt△ACD中,AD=2r,∠DAC=30°,

反证法证明题(简单)(可编辑修改word版)

反证法证明题 例1. 已知∠A ,∠B ,∠C 为?ABC 内角. 求证:∠A ,∠B ,∠C 中至少有一个不小于60o. 证明:假设?ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o, 所以∠A +∠B +∠C < 180O, 与三角形内角和等于180o矛盾, 所以假设不成立,所求证结论成立. 例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根. 证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b . a 假设方程ax = b 至少存在两个根, 不妨设两根分别为x1 , x2 且x1 ≠x2 , 则ax1=b, ax2=b , 所以ax1=ax2, 所以a(x1-x2 ) = 0 . 因为x1 ≠x2 ,所以x1 -x2 ≠ 0 , 所以a = 0 ,与已知a ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例3. 已知a3+b3= 2, 求证a +b ≤ 2 . 证明:假设a +b > 2 ,则有a > 2 -b , 所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3, 所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 . 因为6(b -1)2+ 2 ≥ 2 所以a3+b3> 2 ,与已知a3+b3= 2 矛盾. 所以假设不成立,所求证结论成立. 例4. 设{a n}是公比为的等比数列,S n为它的前n 项和. 求证:{S n}不是等比数列. 证明:假设是{S }等比数列,则S 2=S ?S , n 2 1 3

2 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ? a (1+ q + q 2 ) . 因为等比数列 a 1 ≠ 0 , 所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例 5. 证明 是无理数. m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 = . n 所以 m = 2n 即 m 2 = 2n 2 , 所以 m 2 为偶数,所以m 为偶数. 所以设 m = 2k (k ∈ N *) , 从而有4k 2 = 2n 2 即 n 2 = 2k 2 . 所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾. 所以假设不成立,所求证 是无理数成立. 例 6. 已知直线 a , b 和平面,如果 a ? , b ?,且 a / /b ,求证a / /。 证明:因为 a / /b , 所以经过直线 a , b 确定一个平面。 因为 a ? ,而 a ? , 所以 与是两个不同的平面. 因为b ?,且b ? , 所以 = b . 下面用反证法证明直线 a 与平面没有公共点.假设 直线 a 与平面 有公共点 P ,则 P ∈ = b , 即点 P 是直线 a 与 b 的公共点, 这与 a / /b 矛盾.所以 a / /. 例 7.已知 0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a ,(2 - c )b 不可能同时大于 1 证明:假设(2 - a )c , (2 - b )a ,(2 - c )b 都大于 1, 即 (2 - a )c>1, (2 - b )a>1, (2 - c )b>1,

反证法证明题

反证法证明题 例1. 已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2. 已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a =. 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3. 已知3 3 2,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以3 3 (2)a b >-即323 8126a b b b >-+-, 所以3 2 3 2 81266(1)2a b b b b >-+-=-+. 因为2 6(1)22b -+≥ 所以332a b +>,与已知33 2a b +=矛盾. 所以假设不成立,所求证结论成立. 例4. 设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2 213S S S =?,

即222 111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以2 2 (1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5. 证明2是无理数. 证明:假设2是有理数,则存在互为质数的整数m ,n 使得2m n =. 所以2m n = 即222m n =, 所以2 m 为偶数,所以m 为偶数. 所以设* 2()m k k N =∈, 从而有2 2 42k n =即2 2 2n k =. 所以2 n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 所以假设不成立,所求证2是无理数成立. 例6. 已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。 证明:因为//a b , 所以经过直线a , b 确定一个平面β。 因为a α?,而a β?, 所以 α与β是两个不同的平面. 因为b α?,且b β?, 所以b αβ=I . 下面用反证法证明直线a 与平面α没有公共点.假 设直线a 与平面α有公共点P ,则P b αβ∈=I , 即点P 是直线 a 与b 的公共点, 这与//a b 矛盾.所以 //a α. 例7.已知0 < a , b , c < 2,求证:(2 a )c , (2 b )a ,(2 c )b 不可能同时大于1 证明:假设(2 a )c , (2 b )a ,(2 c )b 都大于1,

尺规作图典型例题

尺规作图典型例题

————————————————————————————————作者:————————————————————————————————日期:

典型例题 例1 、求作等腰直角三角形,使它的斜边等于已知线段 已知:线段 求作:,使∠A=90°,AB=AC,BC=分析:由于等腰直角三角形比较特殊,内角依次为45°,45°,90°,故有如下几种作法: 作法一:1、作线段BC= 2、分别过点B、C作BD、CE垂直于BC 3、分别作∠DBC、∠ECB的平分线,交于A点 即为所求 作法二:作线段BC= 2、作∠MBC=45° 3、作∠NCB=∠MBC,CN与BM交于A点 即为所求 作法三:1、作线段BC=

2、作∠MBC=45° 3、过C作CE⊥BM于A 即为所求 作法四:1、作线段BC= 2、作BC的中垂线,交BC于O点 3、在OM上截取OA=OB,连结AB,AC 即为所求 说明:几种作法中都是以五种基本作图为基础, 不要求写出基本作图的作法和证明。 例2、已知三角形的两边和其中一边上的中线长,求作这个三角形. 已知:线段a、b为两边,m为边长b的中线 求作:,使BC=a,AC=b,且AM=MC,BM=m. 分析:先画草图,假定为所求的三角形,则有BC=a,AC=b,设M为AC边的中点,则MB=m,而,故的三边为已知作出,然后再作出 . 作法:(1)作,使BC=a,,MB=m; (2)延长线段CM至A,使MA=CM;

(3)连接BA,则为所求作的三角形. 小结:本题的突破口是找与所求的的关系.由于的三边已知,故 即可顺利作出. 例3、如图,A、B、C三点表示三个村庄,为解决村民就近入学问题,计划新建一所小学,要使学校到这三个村庄的距离相等,请你在图中用尺规确定学校的位置P. 分析:分两步:先作到A、B两点距离相等的点的图形,再作到B、C两点等距离的点的图形,两图形的交点,这就是所求作的点. 作法:(1)连结AB,做线段AB的垂直平分线DE; (2)连结BC,作线段BC的垂直平分线FG,交DE与点P. 则点P为所求作的学校位置. 小结:由于不能直接确定到三点距离相等的点的位置,可以分解为先求到A,B相等的所有点,再求作到B,C相等的所有点,交点即所求. 扩展资料 三大几何作图问题 三大几何作图问题是:倍立方、化圆为方和三等分任意角。由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究。早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问

用反证法证明几何问题

65yttrgoi 用反证法证明几何专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 一、反证法的概念: (又称归谬法、背理法)是一种论证方式,不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 二、反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 三、反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 四、适用范围 “反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。 五、反证法在平面几何中的应用 例1.已知:AB 、CD 是⊙O 内非直径的两弦(如图1),求证AB 与CD 不能互相平分。 (1) 证明:假设AB 与CD 互相平分于点M 、则由已知条件AB 、CD 均非⊙O 直径, 可判定M 不是圆心O ,连结OA 、OB 、OM 。 ∵OA =OB ,M 是AB 中点 ∴OM ⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得:OM ⊥CD ,从而过点M 有两条直线AB 、CD 都垂直于OM 这与已知的定理相矛盾。故AB 与CD 不能互相平分。 归缪法 穷举法

用反证法证明是无理数

据说最初发现 p q ,这里p和q是无公约数的正整数 传说毕达哥拉斯太珍惜这个发现,不打算公开这个结果。他的学生之一为了好奇,悄悄走进老师的家里偷文件,这方法才被公开出来。 我们下面介绍五个用反证法证明这结果,大家可以学习这种证明。 p q =,p,q是无公约数的整数。 (1)毕达哥拉斯方法: p q =两边平方得22 2 p q =,所以2p是偶数,因此p也须是偶数(因为奇数2k +1的平方后是4k2+4k+1=2(2k2+2k)+1仍旧是奇数)。所以我们可以设p是2a的样子,代入上式得(2a)2=2q2,即4a2=2q2两边同时消掉2可得2a2=q2,即q也是偶数。 由于p,q都是偶数,它们有一个公约数2,这和我们最初假设p, q (2)利用整数的个位数性质:我们知道任何整数平方其最后一位数是等于原数最后一位数的平方后的最后一位数。例如(12)2=144,最后一位数4=(2)2。而(17)2=289,(7)2=49,最后一位数是一样。 最后一位数可能出现0,1,2,3,4,5,6,7,8,9。 因此任何数的平方最后一位数只可能是0,1,4,5,6,9。 因此2q2的最后一位数只可能是0,2或8。 由于p2的最后一位数可能是0,1,4,5,6,9。而且由P2=2q2,故必须有2q2最后一位数是0,因此推到q2的最后一位数是0或5。 可是如果P2的最后一位数是0,而q2的最后一位数是0或5的话,则P的最后一位数是0,q的最后一位数是0或5,这样5就能整除p和q,这和p,q无公约数的假定矛盾。 (3)利用素因子的性质: p q =得22 2 p q =,这里q要大于1,如果是等于1 =p,这是个整数,明显是不合理的。现在我们可以得到2 2 p q p ?? =? ? ?? ,我们知道: (一)任何整数不是素数就是合数。

尺规作图类型题目以及全等三角形的几个证明

尺规作图类型讲解 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: (1)作射线AP; (2)在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法: (1)分别以M、N为圆心,大于 的相同线段为半径画弧, 两弧相交于P,Q; (2)连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) (怎样作线段的垂直平分线?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。作法: (1)以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; (2)分别以M、N为圆心,大于 的相同线段为半径画弧,两弧交∠AOB内于P; (3)作射线OP。 则射线OP就是∠AOB的角平分线。 题目四:作一个角等于已知角。 (请自己写出“已知”“求作”并作出图形,不写作法) 题目五:已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: (1)作线段AB = c; (2)以A为圆心b为半径作弧, 以B为圆心a为半径作弧与 前弧相交于C; (3)连接AC,BC。

则△ABC就是所求作的三角形。 题目六:已知两边及夹角作三角形。 已知:如图,线段m,n, ∠α. 求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法: (1)作∠A=∠α; (2)在AB上截取AB=m ,AC=n; (3)连接BC。 则△ABC就是所求作的三角形。 题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m. 作法: (1)作线段AB=m; (2)在AB的同旁 作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)。

反证法 教学设计

反证法 【教学目标】 1.使学生初步掌握反证法的概念及反证法证题的基本方法。 2.培养学生用反证法简单推理的技能,从而发展学生的思维能力。 【教学重点】 反证法证题的步骤。 【教学难点】 理解反证法的推理依据及方法。 【教学方法】 讲练结合教学。 【教学过程】 一、提问: 师:通过预习我们知道反证法,什么叫做反证法? 生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。 师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么? 生:共分三步: (1)假设命题的结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理,得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 师:反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。 例如:在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么? 解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2+b2=c2 二、探究 问题:

若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由。 探究: 假设a2+b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾。假设不成立,从而说明原结论a2+b2≠c2成立。 这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。像这样的证明方法叫做反证法。 三、应用新知 例1:在△ABC中,AB≠AC,求证:∠B≠∠C 证明:假设,∠B=∠C,则AB=AC这与已知AB≠AC矛盾。假设不成立。∴∠B≠∠C.小结:反证法的步骤:假设结论的反面不成立→逻辑推理得出矛盾→肯定原结论正确。 例2:已知:如图有a、b、c三条直线,且a//c,b//C。求证:a//b 证明:假设a与b不平行,则可设它们相交于点A.那么过点A就有两条直线a.b与直线c平行,这与“过直线外一点有且只有一条直线与已知直线平行”矛盾,假设不成立。∴a//B 小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾。 例3:求证:在一个三角形中,至少有一个内角小于或等于60°。 已知:△ABC,求证:△ABC中至少有一个内角小于或等于60°。 证明:假设△ABC中没有一个内角小于或等于60°。 则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180°。 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾。假设不成立。 ∴△ABC中至少有一个内角小于或等于60°。 三、课堂练习: 课本“练习”。 四、课时小结 本节重点研究了反证法证题的一般步骤及反证法证明命题的应用。对于反证法的熟练掌握还需在今后随着学习的深入,逐步加强和提高。 【作业布置】 课本“习题”1、2题。

用反证法证明施泰纳-莱默斯定理

用反证法证明施泰纳-莱默斯定理① ①本文及本章后面几段阅读资料参考了贺贤孝的《证明的艺术》一书(湖南教育出版社,2000年6月第1版). 我们知道,等腰三角形两个底角的平分线相等.反过来,有两个角的平分线相等的三角形是否为等腰三角形呢?德国柏林的莱默斯(C .L .Lemhus )研究了这个问题,并向著名几何学家施泰纳请教,1840年,施泰纳给出了第一个证明.为此,该定理称为施泰纳-莱默斯定理. 如图1所示,在△ABC 中,BD ,CE 分别是∠ABC ,∠ACB 的平分线,且BD =CE .求证:AB =AC . 如图2所示,施泰纳将△BCD 与△CBE 分别移到△B ′C ′D ′和△B ′C ′E ′的位置,连接D ′E ′.由BD =CE ,得B ′D ′=B ′E ′,故∠1=∠2.假设AB ≠AC ,则AB <AC 或AB >AC . 如果AB <AC ,那么∠ACB <∠ABC . 从而 ∠ACE =21∠ACB <2 1∠ABC =∠ABD . 所以 ∠B ′D ′C ′=∠BDC =∠A +∠ABD >∠A +∠ACE =∠BEC = ∠B ′E ′C ′, 即 ∠B ′D ′C ′>∠B ′E ′C ′. 又 ∠1=∠2, 所以 ∠3>∠4. 所以 C ′E ′>C ′D ′,即BE >CD . 在△BCD 与△CBE 中, BD =CE ,BC =CB ,CD <BE , 故 ∠CBD <∠BCE ,

即 21∠ABC <2 1∠ACB , 于是∠ABC <∠ACB ,AB >AC ,与假设AB <AC 相矛盾,故AB <AC 是不可能的. 同理可证AB >AC 也是不可能的. 从而,AB =AC . 施泰纳的参与引起了各国数学家的兴趣.100多年来,该定理的证明层出不穷.20世纪80年代美国《数学教师》杂志提出征解,结果收到了从美国、加拿大、丹麦、以色列、埃塞俄比亚和罗马尼亚寄来的2 000多封信,共提出80多种证法.不仅如此,人们更深入到它的孪生问题:如果一个三角形的两个角的外角平分线(简称外分角线)相等,那么这个三角形是否为等腰三角形? 利用代数方法,数学家们证明了如下的结论: 两外分角线相等且第三角为该三角形的最大内角或最小内角时,此三角形是等腰三角形.

尺规作图的意义

尺规作图的意义 初等几何中,所接触到的问题主要有两类:一类是先假设给出合乎一定条件的图形,然后研究这个图形有些什么性质,证明题、计算题即属于这一类;另一类是预先给出一些条件,要求作出具备这些条件的图形,这便是作图题.按照一定方法作出所求图形的过程,叫做解作图题.作图的方法,自然是和作图的工具有关的.古希腊以来,平面几何中的作图工具习惯上限用直尺和圆规两种.其中,直尺假定直而且长,但上面无任何刻度,圆规则假定其两腿足够长并能开闭自如.作图工具的这种限制,最先大概是恩诺皮德斯(Oenopides,约公元前465年)提出的,以后又经过柏拉图(Plato,公元前427—347)大力提倡.柏拉图非常重视数学,强调学习几何对训练逻辑思维能力的特殊作用,主张对作图工具要有限制,反对使用其他机械工具作图.之后,欧几里得(Euclid,约公元前330—275)又把它总结在《几何原本》一书中.于是,限用尺规进行作图就成为古希腊几何学的金科玉律. 其实,作图工具的这种限制并非个别人的癖好和主观旨意,主要有下面两方面的原因. 1.和研究的对象有关,因为初等平面几何研究的对象,只限于直线、圆以及由它们(或其一部分)所组成的图形.有了直尺和圆规这两种作图工具,直线和圆都已可作出,自然无需再增加别的工具. 2.和公理系统有关.在欧几里得几何中,从最少的基本假设(定义、公理、公设)出发,通过逻辑推理,得出尽可能多的命题,这里,关于作图题的结论是和几何证明、几何计算的结论相当的,欧几里得公理系统里的几条公设也就决定了只能是限用尺规作图.并且,凡能作出的图形都在欧几里得几何里加以研究;凡研究其性质的图形也必可用尺规来作出. 确定了作图工具后,还要明确允许怎样使用这两种工具.就是说,直尺和圆规具有什么功能?为此,在平面几何里约定,利用直尺和圆规可以并且只能完成如下几个认可的简单作图: 1.通过两个已知点可以作一条直线(欧几里得几何公理系统中的五条公设之一); 2.以一个已知点为圆心,以某一已知距离为半径,可以作一个圆(欧几里得几何公理系统中的五条公设之一); 3.两已知直线,一已知直线和一已知圆,或两已知圆,如其相交,可确定其交点. 此外还附加一个规约:在已知直线上或直线外,已知圆周上或圆内(外),均可任意取点,但所取的点不得附加其余任何特殊性质. 上面1.—3.条叫做作图公法,用以指明尺规作图的可能范围. 所谓利用直尺和圆规来完成一个作图题,就是指上述作图公法所确定的三种简单作图的有限次的组合. 能有限次地进行作图公法所确定的三种简单作图,从而最终可以得到给定条件的图形,这一类作图题称为尺规作图可能问题.反之,凡有限次地进行作图公法所确定的三种简单作图肯定不能得到给定条件的图形,这一类作图题就称尺规作图不能问题. 下面通过几个例子,从正、反两个方面来加深理解尺规作图的意义. [例1]已知∠AOB,求作射线OS,使∠AOS=∠SOB.

-反证法教案

§29.2反证法 教学目标: 1、知识与能力:(1)、通过实例,体会反证法的含义 (2)、培养学生用反证法简单推理的技能,从而发展学生的思维能力. 2、过程与方法:(1)、了解反证法的基本步骤,会用反证法证明简单的命题. (2)、使学生初步掌握反证法的概念及反证法证题的基本方法. 3、情感、态度、价值观:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性. 教学重点: 体会反证法证明命题的思路方法,掌握反证法证题的步骤。 教学难点: 理解反证法的推理依据及方法,用反证法证明简单的命题是教学难点. 教学方法: 讲练结合教学. 教学过程: 提问: 师:通过预习我们知道反证法,什么叫做反证法? 生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法. 师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么? 生:共分三步: (1)假设命题的结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理,得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确. 师:反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。 例如:在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么? 解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2 +b2 =c2 二、探究 问题: 若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2 +b2 ≠ c2 成立吗?请说明理由。 探究: 假设a2 +b2 =c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾。假设不成立,从而说明原结论a2 +b2 ≠ c2 成立。 这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。象这样的证明方法叫做反证法。 三、应用新知 例1:在△ABC中,AB≠AC,求证:∠B ≠∠ C 证明:假设,∠B =∠C 则AB=AC 这与已知AB≠AC矛盾.

第12讲尺规作图、命题与证明-2020中考数学全覆盖总复习硬核精华16讲(原卷版)

2020中考数学总复习模块四图形的性质(6)st

知识点8:尺规作图真题/典题/热点/重点/易错点掌握1.下列关于几何画图的语句,正确的是() A.延长射线AB到点C,使2 BC AB = B.点P在线段AB上,点Q在直线AB的反向延长线上 C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角 D.已知线段a、b,若在同一直线上作线段AB a =,BC b =,则线段AC a b =+ 2.(2020?河南模拟)如图,在Rt ABC ?中,90 ABC ∠=?,分别以点A和点B为圆心,大于1 2 AB长为半径 作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,若3 BF=,2 AG=,则( BC=) A.5B.43C.25D.213 3.下列说法正确的是() A.用直尺和圆规作一条线段的垂直平分线的过程,是用“到线段两端距离相等的点在这条线段的垂直平分线上” B.用直尺和圆规作一个角的平分线的过程,是用“边角边”构造了全等三角形 C.用直尺和圆规作一个角的平分线的过程,是用“到角的两边距离相等的点在这个角的平分线上” D.用直尺和圆规作一个角等于已知角的过程,是用“边角边”构造了全等三角形 4.下面是小明设计的“作三角形一边上的高”的尺规作图过程. 如图,已知钝角ABC ?,依下列步骤用尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧①; 步骤2:以B为圆心,BA为半径画弧②,交弧①于点D; 步骤3:连接AD,交BC延长线于点H,则AH即为所求. 作图依据:.

5.如图,利用尺规,在ABC ∠=∠,在射线AE上截取AD BC ?的边AC上方作CAE ACB =,连接CD,并证明:// CD AB(尺规作图要求保留作图痕迹,不写作法) 6.(2020?南昌模拟)(1)如图1:ABC ?是O的内接三角形,OD BC ⊥于点D.请仅用无刻度的直尺,画出ABC ?中BAC ∠的平分线.(保留作图痕迹,不写作法). (2)如图2:O为ABC ?的外接圆,BC是非直径的弦,D是BC的中点,连接OD,E是弦AB上一点,且// ?的内心I.(保留作图痕迹,不写作法).DE AC,请仅用无刻度的直尺,确定出ABC 7.如图,ABC ?中,AB AC =.按要求解答下面问题: (1)尺规作图:(保留作图痕迹,并把作图痕迹用黑色签字笔描黑) ①作BAC ∠的平分线AD交BC于点D; ②作边AB的垂直平分线EF,EF与AD相交于点P; ③连结PB、PC. (2)根据(1)中作出的正确图形,写出三条线段PA、PB、PC之间的数量关系. 8.(2019?江西)在ABC ?中,AB AC =,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列

谈谈“反证法”证明题中的应用

谈谈“反证法”证明题中的应用 【摘要】在数学问题的证明中,反证法是一种重要的证明方法,用反证法证明命题成立的基本步骤可以简单地概括为“否定-推理-反驳-肯定”。 【关键词】反证法存在性否定性唯一性证明矛盾 在数学问题证明中,反证法是一种重要的证明方法,反证法经常被用来证明存在性、否定性、唯一性等一些不易直接下手的命题。要证命题“若A则B”正确,途径之一是证与其等价的逆否命题正确。即从否定B出发,作出一系列正确、严密、合乎逻辑的推理,最后推出与A矛盾的结论,即原命题得证。用反证法证明命题成立的基本步骤可以简单地概括为“否定-推理-反驳-肯定”四个步骤。 下面通过不同的例题来说明反证法应用。 1 存在性命题 例1:证明任何大于1的整数一定有素因子。 分析:用反证法,首先要找出问题的否定形式,即否命题。本题结论的反面是:至少存在一个大于1的整数没有素因子,我们设法导出矛盾。 证明:假设有一个大于1的整数A没有素因子,则A本身一定不是素数,又A>1,故A为合数,则它一定有一个异于1和A的真因子B,故而A>B>1,且B也不是素数(否则B为A的素因子),同理B又有一个素因子C,满足A>B>C>1,且C亦不为素数,由此我们得到A>B>C>D>…>1,也就是说,在A 和1之间有无穷多个正整数,这当然是不可能的,故而假设不成立,原命题获证。 例2:证明:A,B,C,D,E五数之和等于5,则其中必有一个不小于1。 分析:这个问题看上去很简单,但是要直接证明却不容易。那么应用反证法,就可以轻松获证。 证明:假设A,B,C,D,E都小于1,那么A+B+C+D+EAM,同理,AB>BM,即在△AMB,AB大于其他两边。 由“大边对大角”知, ∠AMB>∠ABM, 同理,∠AMB>∠BAM。 所以

宜用反证法证明的几类命题

宜用反证法证明的几类命题 反证法是证明数学命题的一种重要方法,当直接证明思路受阻,难以成功时,反证法常使人茅塞顿开,柳暗花明.它通常用来证明下列几类命题. 一、否定性命题 问题的结论是以否定形式出现(例如“没有…”,“不是…”,“不存在…”等)的命题,宜用反证法. 例1 求证:3lg 2是无理数. 分析:在实数集内,证它是无理数,即证它不是有理数. 证明:假设3lg 2不是无理数,即为有理数,则设3lg 2= m n (,m n ∈+N ,n m ,互质)从而32=m n 得, m n 32= 上式表明:偶数等于奇数,这与偶数不等于奇数矛盾,于是假设不成立. 故3lg 2是无理数. 例2 证明:一个三角形中不可能有两个直角. 分析:用三角形内角和为0180证一个三角形中不存在两个直角. 证明:假设一个三角形中有两个直角.不妨设∠A=090,∠B=090. ∵∠A+∠B+∠C=090+090+∠C=0180+∠C>0180 这与三角形内角和定理矛盾. ∴ 假设不成立,即原命题成立. 二、“至少”或“至多”类命题 若一个命题的结论是“至少…”或“至多…”,“不都…”则可考虑用反证法. 例3 已知1p 、2p 、1q 、2q ∈R,且1p 2p =2(1q +2q ) 求证:方程2x +1p x +1q =0和2x +2p x +2q =0中,至少有一个方程有实根. 分析:“至少有一个”是“有一个”、 “有两个”,它的反面是“一个都没有”. 证明:假设这两个一元二次方程都没有实根,那么他们的判别式都小于0,即: ?????<

反证法证明题简单

反证法证明题 例1.已知A , B , C为ABC内角. 求证: A , B , C中至少有一个不小于60。. 证明:假设ABC的三个内角A,B,C都小于60。, 即 A 60。, B 60。, C 60。, 所以ABC 180°, 与三角形内角和等于180o矛盾, 所以假设不成立,所求证结论成立. 例2.已知a 0,证明X的方程ax b有且只有一个根. 证明:由于a 0,因此方程ax b至少有一个根x -. a 假设方程ax b至少存在两个根, 不妨设两根分别为捲必且X i X2, 贝卩ax j b, ax2 b, 所以ax i ax?, 所以a(X i X2) 0. 因为x1 x2,所以x1 x2 0 , 所以a 0,与已知a 0矛盾,所以假 设不成立,所求证结论成立. 例3.已知a3b32,求证a b 2. 证明:假设 a b 2,贝卩有a 2 b, 所以a3 (2 b)3即a3 8 12b 6b2 b3 ,

精心整理 所以a3 8 12b 6b2 b3 6(b 1)2 2. 因为6(b 1)2 2 2 所以a3 b3 2,与已知a3 b3 2矛盾. 所以假设不成立,所求证结论成立. 例4?设a n是公比为的等比数列,S n为它的前n项和. 求证:S n不是等比数列. 证明:假设是S n等比数列,则S; S i S3, 即a2(1 q)2 a i a i(1 q q2). 因为等比数列a i 0, 所以(1 q)2 1 q q2即q 0 ,与等比数列q 0矛盾, 所以假设不成立,所求证结论成立. 例5.证明;2是无理数. 证明:假设迈是有理数,则存在互为质数的整数m, n使得V2 —. n 所以m x. 2n 即m2 2n2, 所以m2为偶数,所以m为偶数. 所以设m 2k(k N*), 从而有4k2 2n2即n2 2k2. 所以n2也为偶数,所以n为偶数. 与m,n互为质数矛盾. 所以假设不成立,所求证.2是无理数成立.

第12讲尺规作图、命题与证明-2020中考数学全覆盖总复习硬核精华16讲(解析版)

2020中考数学总复习模块四图形的性质(6)TH

知识点8:尺规作图真题/典题/热点/重点/易错点掌握1.(2019秋?番禺区期末)下列关于几何画图的语句,正确的是() A.延长射线AB到点C,使2 BC AB = B.点P在线段AB上,点Q在直线AB的反向延长线上 C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角 D.已知线段a、b,若在同一直线上作线段AB a =,BC b =,则线段AC a b =+ 【解答】解:A.延长射线AB到点C,使2 BC AB =, 因为射线不能延长, 所以A选项错误,不符合题意; B.因为直线不能反向延长, 所以B选项错误,不符合题意; C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角. C选项正确,符号题意; D.已知线段a、b,若在同一直线上作线段AB a =,BC b =,则线段AC a b =+或a b =-. 所以D选项错误,不符合题意. 故选:C. 2.(2020?河南模拟)如图,在Rt ABC ?中,90 ABC ∠=?,分别以点A和点B为圆心,大于1 2 AB长为半径 作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,若3 BF=,2 AG=,则( BC=) A.5B.43C.25D.213 【解答】解:由作法得GF垂直平分AB, FB FA ∴=,2 AG BG ==, FBA A ∴∠=∠, 90 ABC ∠=?, 90 A C ∴∠+∠=?, 90 FBA FBC ∠+∠=?, C FBC ∴∠=∠, FC FB ∴=, 3 FB FA FC ∴===, 6 AC ∴=,4 AB=, 2222 6425 BC AC AB ∴=-- 故选:C.

中考复习模拟试题集锦——命题与证明

命题与证明 1、如图,在Rt ABC △中,90BAC ∠= ,3AB =,4AC =,将ABC △沿直线BC 向 右平移 2.5个单位得到DEF △,连结AD AE ,,则下列结论:①AD BE ∥,②ABE DEF ∠=∠,③ED AC ⊥,④ADE △为等腰三角形,正确..的有 A .1个 B .2个 C .3个 D .4个 答案:D 2、如图,在矩形ABCD 中,有一个菱形BFDE (点E 、F 分别在线段AB 、CD 上),记它们的面积 分别为ABCD S 和BFDE S . 现给出下列命题: ①若 ABCD BFDE S S = ,则tan EDF ∠=;②若2 ·DE BD EF =,则DF =2AD . 那么,下面判断正确的是( ) A .①是真命题,②是真命题 B .①是真命题,②是假命题 C .①是假命题,②是真命题 D .①假真命题,②假真命题 答案:A 3、数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是 2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代入法 B .换元法 C .数形结合 D .分类讨论 答案: C 4.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有 ( ) A .1个 B .2个 C . 3个 D .4个 第10题图

答案:B 二、解答题 1、已知二次函数25y x kx k =-+-. ⑴求证:无论k 取何实数,此二次函数的图像与x 轴都有两个交点; ⑵若此二次函数图像的对称轴为1x =,求它的解析式; 答案(1)证明:令y =0, 则 052=-+-k kx x , ∵△= )5(42--k k =2042 +-k k = 16)2(2 +-k ∵2 )2(-k ≥0, ∴ 16)2(2+-k >0 ∴无论k 取何实数,此二次函数的图像与x 轴都有两个交点. -------------4分 (2).∵对称轴为x =12 2==-- k k , ∴k =2 ∴解析式为322 --=x x y ---------7分 : 2、(本题满分10分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径. (1)如图1,损矩形ABCD ,∠ABC =∠ADC =90°,则该损矩形的直径是线段 . (2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:“尺规作图”不 要求写作法,但要保留作图痕迹. (3)如图2,,△ABC 中,∠ABC =90°,以AC 为一边向形外作菱形ACEF ,D 为菱形ACEF 的中心,连结BD ,当BD 平分∠ABC 时,判断四边形ACEF 为何种特殊的四边形?请说明理由.若此时AB =3,BD =BC 的长. 答案:(1)该损矩形的直径是线段AC ……1分 (2)取AC 中点O ,以O 为圆心、 1 2 AC 为半径作圆……3分 E F D A

相关文档
最新文档