1.ZigBee协议栈简介

1、ZigBee协议栈简介

本节内容仅仅是对ZigBee协议栈的一些大家必须理解清楚的概念进行简单的讲解,并没有对ZigBee协议栈的构成及工作原理进行详细的讨论。让刚接触ZigBee协议栈的朋友们对它有个初步的感性认识,有助于后面使用ZigBee协议栈进行真正的项目开发。

什么是ZigBee协议栈呢?它和ZigBee协议有什么关系呢

协议是一系列的通信标准,通信双方需要共同按照这一标准进行正常的数据发射和接收。协议栈是协议的具体实现形式,通俗点来理解就是协议栈是协议和用户之间的一个接口,开发人员通过使用协议栈来使用这个协议的,进而实现无线数据收发。

图1展示了ZigBee无线网络协议层的架构图。ZigBee的协议分为两部分,IEEE 802.15.4定义了PHY(物理层)和MAC(介质访问层)技术规范;ZigBee 联盟定义了NWK(网络层)、APS(应用程序支持子层)、APL(应用层)技术规范。ZigBee协议栈就是将各个层定义的协议都集合在一直,以函数的形式实现,并给用户提供API(应用层),用户可以直接调用。

图1 ZigBee无线网络协议层

在开发一个应用时,协议较底下的层与应用是相互独立的,它们可以从第三方来获得,因此我们需要做的就只是在应用层进行相应的改动。

介绍到这里,大家应该清楚协议和协议栈的关系了吧,是不是会想着怎么样才能用协议栈来开发自己的项目呢?技术总是不断地在发展地,我们可以用ZigBee厂商提供的协议栈软件来方便地使用ZigBee协议栈(注意:不同厂商提供的协议栈是有区别的,此处介绍TI推出的ZigBee 2007协议栈也称Z-Stack)。

Z-stack是挪威半导体公司Chipcon(目前已经被TI公司收购)推出其CC2430开发平台时,推出的一款业界领先的商业级协议栈软件,由于这个协议栈软件的出现,用户可以很容易地开发出具体的应用程序来,也就是大家说的掌

握10个函数就能使用ZigBee通讯的原因。它使用瑞典公司IAR开发的IAR Embedded Workbench for MCS-51作为它的集成开发环境。Chipcon公司为自己设计的Z-Stack协议栈中提供了一个名为操作系统抽象层OSAL的协议栈调度程序。对于用户来说,除了能够看到这个调度程序外,其它任何协议栈操作的具体实现细节都被封装在库代码中。用户在进行具体的应用开发时只能够通过调用API接口来进行,而无权知道ZigBee协议栈实现的具体细节,也没必要去知道。因此在这里提醒各位开发者,在使用ZigBee协议栈进行实际项目开发时,不需要关心协议栈是具体怎么实现的,当然有兴趣的也可以深入分析。

图2是TI公司的基于ZigBee2007的协议栈 Z-Stack-CC2530-2.3.0,所有文件目录如红色框所示,我们可以把它看做一个庞大的工程。或者是一个小型的操作系统。采用任务轮询的方法运行。

图2 TI Z-stack TI Z-Stack-CC2530-2.3.0

来个小总结:ZigBee协议栈已经实现了ZigBee协议,用户可以使用协议栈提供的API进行应用程序的开发,在开发过程中完全不必关心ZigBee协议的具体实现细节,要关心的问题是:应用层的数据是使用哪些函数通过什么方式把数据发送出去或者把数据接收过来的。所以最重要的是我们要学会使用ZigBee 协议栈。

举个例子,用户实现一个简单的无线数据通信时的一般步骤:

1、组网:调用协议栈的组网函数、加入网络函数,实现网络的建立与节点的加

入。

2、发送:发送节点调用协议栈的无线数据发送函数,实现无线数据发送。

3、接收:接收节点调用协议栈的无线数据接收函数,实现无线数据接收。

看起来是不是很简单呢,是不是有动手试试的冲动。具体的例程讲解在这里就不说先了,在接下来的教程里面会详细地和大家一起讨论ZigBee协议栈架构中每个层所包含的内容和功能及Z-stack的软件架构。

Zigbee协议栈系统事件

系统常用事件处理函数: -按键事件 -接收消息事件 -网络状态改变事件 -绑定确认事件 -匹配响应事件 1、按键事件 Case KEY_CHANGE: 当有按键事件发生的时,调用按键事件处理函数Sample_HandleKeys()来处理按键事件。 在SampleApp例程中按键处理函数处理了以下2件事情 -如果按键1按下,将向网络中的其他设备发送LED闪烁命令 -如果按键2按下,检测组ID号为SAMPLEAPP_FLASH_GROUP的组是否已经注册。如果已经注册,调用aps_RemoveGroup()将其删除;如果没注册就在APS层注册

2、接收消息事件 Case:AF_INCOMING_MSG_CMD: 如果有接收消息事件发生,则调用函数SampleApp_MessageMSGCB(MSG)对接收的消息进行处理。一般的接收消息事件是通过用户自定义的端点输入簇和输出簇来处理的。 在LED闪烁命令的发送函数中的输出簇为SAMPLEAPP_FLASH_CLUSTERID,所以在接收消息事件的输入簇中为SAMPLEAPP_FLASH_CLUSTERID即收到LED闪烁命令

3、网络状态改变事件 Case:ZDO_STATE_CHANGE 当有网络状态改变事件发生后,会调用函数SampleApp_NwkState()来处理网络状态改变事件。在SampleApp例程中,网络状态改变事件主要处理了以下事件: -判断设备类型(区分协调器、路由节点、终端节点) -当协调器网络建立成功后或其他类型节点加入网络后点亮led1 -通过调用osal_start_timerEx()设置一个定时事件,当时间到达后启用用户自定义事件SampleApp_Send_PERIODIC_MSG_EVT 备注:在使用过程中这里的3种设备类型不是全选,写一个就可以了,其他的删除

ZigBee协议栈OSAL介绍

讨论ZigBee协议栈的构成以及内部OSAL的工作机理。 ZigBee协议栈OSAL介绍 操作系统抽象层 OSAL常用术语: 1.资源(Resource):任何任务所占用的实体都叫资源,如变量、数组、结构体 2.共享资源(Shared Resource):两个或两个以上任务使用的资源,为防止破坏资源,任务在操作共享资源时是独占状态。 3.任务(Task):即线程,简单的程序的执行过程。任务设计时将问题尽可能分成多个任务,每个任务独立完成某项功能,同时赋予优先级、CPU寄存器和堆栈空间。一般一个任务设计为一个无限循环。 4.多任务运行(Muti-task Running):其实同一时刻只有一个任务运行。 5.内核(Kernel):内核负责管理各个任务。包括:分配CPU时间;任务调度;任务间的通信。 6.互斥(Mutual Exclusion):多任务通信最常用方法是共享数据结构。 保护共享资源常用的方法: 关中断; 使用测试并置位指令(T&S指令); 禁止任务切换; 使用信号量; 7.消息队列(Message Queue):用于任务间传递消息。 OSAL提供如下功能: 任务注册、初始化和启动; 任务间的同步、互斥; 中断处理; 储存器分配和管理; OSAL运行机理: OSAL就是一种支持多任务运行的系统资源分配机制。 OSAL是一种基于事件驱动的轮询式操作系统。、 void osal_start_system(void)是ZigBee协议栈的灵魂,不断的查看事件列表,如果有事件发生就调用相应的事件处理函数。 SYS_EVENT_MSG是一个事件集合,是由协议栈定义的事件,即系统强制事件(Mandatory Events),它的定义为: #define SYS_EVENT_MSG 0x8000; 它包含如下事件: AF_INCOMING_MSG_CMD 收到一个新的无线数据

ZigBee 协议架构

根据应用和市场需要定义了ZigBee 协议的分层架构,其协议的体系结构如图1 所示,其中物理层(physical layer,PHY)和媒介访问控制层(medium access control sub-layer,MAC)是由IEEE802.15.4-2003 标准定义的,在这个底层协议的基础上ZigBee 联盟定义了网络层(network layer,PHY)和应用层(application layer,APL)架构. 图1 zigbee协议栈体系结构 物理层规范 物理层定义了它与MAC 层之间的两个接口:数据服务接口PD-SAP 和管理服务接口PLME-SAP,其中PD-SAP 接口还为物理层提供了相应的数据服务,负责从无线物理信道上收发数据,而PLME-SAP 接口同时为物理层提供相应的管理服务,用于维护一个由物理层相关数据组成的数据库。物理层负责数据的调制、发送和接收、空闲信道评估(clear channel assessment,CCA)信道能量的监测(energy detect,ED)和链接质量指示(link quality indication,LQI)等。物理层帧结构由同步头、物理层帧头和物理层有效载荷三部分组成,如表1 所示。

同步头又包括32bit 的前同步码和8bit 的帧定界符,前同步码用来为数据收发提供码元或数据符号的同步;帧界定符用来标识同步域的结束及数据的开始。物理层帧头包括7bit 的帧长度和1bit 的预留位,帧长度定义了物理层净荷的字节数。物理层有效载荷就是MAC层的帧内容。 表一物理层帧格式 媒体接入控制层规范 MAC 层定义了它与网络层之间的接口,包括提供给网络层的数据服务接口MLDE-SAP 和管理服务接口MLME-SAP,同时提供了MAC 层数据服务和MAC 层管理服务。MAC层数据服务主要实现数据帧的传输;MAC 层管理服务主要负责媒介访问控制、差错控制等。 MAC 层主要功能包括以下几个方面: (1)ZigBee 协调器产生网络信标 (2)设备与信标同步 (3)支持节点加入或着退出操作 (4)信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制 (5)建立并维护保护时隙机制 (6)为设备提供安全支持 MAC 帧格式由三个基本部分组成:MAC 帧头、MAC 帧载荷和MAC 帧尾。不同类型的MAC 帧,其帧头和帧尾都是一样的,只是MAC 帧载荷有差别,通用MAC 帧格式如表2所示。 表二通用MAC帧格式 网络层规范 网络层定义了它与应用层之间的接口,包括提供给应用层的数据服务接口NLDE-SAP和管理服务接口NLME-SAP , 同时提供了网络层数据服务和网络层管理服务。网络层主要负责拓扑结构的建立和网络的维护,具体的功能如下:(1)初始化网络,即建立一个新的包含协调器、路由器和终端设备的网络(2)设备连接和断开时所采用的机制 (3)对一跳邻居节点的发现和相关节点信息的存储 (4)ZigBee 协调器和路由器为新加入节点分配短地址

Zigbee协议栈原理基础

1Zigbee协议栈相关概念 1.1近距离通信技术比较: 近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。?????WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。 1.2协议栈 协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。 1.2.1Zigbee协议规范与zigbee协议栈 Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeepro zigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。 1.2.2z-stack协议栈与zigbee协议栈 z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。 Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。 还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。 1.2.3IEEE802.15.4标准概述 IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。定义了物理层(PHY)和介质访问控制层(MAC)。 LR-WPAN网络具有如下特点: ◆实现250kb/s,40kb/s,20kb/s三种传输速率。 ◆支持星型或者点对点两种网络拓扑结构。 ◆具有16位短地址或者64位扩展地址。 ◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。(mac层) ◆用于可靠传输的全应答协议。(RTS-CTS) ◆低功耗。 ◆能量检测(EnergyDetection,ED)。 ◆链路质量指示(LinkQualityIndication,LQI)。 ◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。 为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备

2020年Zigbee协议栈中文说明免费

1.概述 1.1解析ZigBee堆栈架构 ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。 1.1.1ZigBee堆栈层 每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。 设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件。 图1-1 zigbe堆栈框架 从应用角度看,通信的本质就是端点到端点的连接(例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮)。 端点之间的通信是通过称之为簇的数据结构实现的。这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。图1-1-2就是设备及其接口的一个例子:

图1-1-2 每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。一共有二个特殊的端点,即端点0和端点255。端点0用于整个ZigBee设备的配置和管理。应用程序可以通过端点0与ZigBee 堆栈的其它层通信,从而实现对这些层的初始化和配置。附属在端点0的对象被称为ZigBee设备对象 (ZD0)。端点255用于向所有端点的广播。端点241到254是保留端点。 所有端点都使用应用支持子层(APS)提供的服务。APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。APS使用网络层(NWK)提供的服务。NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。应用层可以通过ZigBee设备对象(ZD0)对网络层参数进行配置和访问。 1.1.2 80 2.15.4 MAC层 IEEE 802.15.4标准为低速率无线个人域网(LR-WPAN)定义了OSI模型开始的两层。PHY层定义了无线射频应该具备的特征,它支持二种不同的射频信号,分别位于2450MHz波段和868/915MHz 波段。2450MHz波段射频可以提供250kbps的数据速率和16个不同的信道。868 /915MHz波段中,868MHz支持1个数据速率为20kbps的信道,915MHz支持10个数据速率为40kbps的信道。MAC层负责相邻设备间的单跳数据通信。它负责建立与网络的同步,支持关联和去关联以及MAC 层安全:它能提供二个设备之间的可靠链接。 1.1.3 关于服务接入点 ZigBee堆栈的不同层与802.15.4 MAC通过服务接入点(SAP)进行通信。SAP是某一特定层提供的服务与上层之间的接口。 ZigBee堆栈的大多数层有两个接口:数据实体接口和管理实体接口。数据实体接口的目标是向上层提供所需的常规数据服务。管理实体接口的目标是向上层提供访问内部层参数、配置和管理数据的机制。 1.1.4 ZigBee的安全性 安全机制由安全服务提供层提供。然而值得注意的是,系统的整体安全性是在模板级定义的,这意味着模板应该定义某一特定网络中应该实现何种类型的安全。 每一层(MAC、网络或应用层)都能被保护,为了降低存储要求,它们可以分享安全钥匙。SSP是通过ZD0进行初始化和配置的,要求实现高级加密标准(AES)。ZigBee规范定义了信任中心的用

7号信令协议栈

SS7信令系统协议简介 SS7信令协议栈,MTP1,MTP2,MTP3,SCCP,TCAP,ISUP,TUP 3.1 SS7信令协议栈 协议是通过网络传送数据的规则集合。 协议栈也就是协议的分层结构,协议分层的目的是为了使各层相对独立,或使各层具有不同的职能。SS7协议一开始就是按分层结构的思想设计的,但SS7协议 在开始发展时,主要是考虑在数字电话网和采用电路交换方式的数据通信网中传送各种与电路有关的信息,所以CCITT在80年代提出的SS7技术规范黄皮书 中对SS7协议的分层方法没有和OSI七层模型取得一致,对SS7协议只提出了4个功能层的要求。这4个功能层如下: 物理层:就是底层,具体是DS0或V.35。 数据链路层:在两节点间提供可靠的通信。 网络层:提供消息发送的路由选择.。 用户部份/应用部份:就是数据库事务处理,呼叫建立和释放。 但随着综合业务数字网(ISDN)和智能网的发展,不仅需要传送与电路有关的消息,而且需要传送与电路无关的端到端的消息,原来的四层结构已不 能满足要求。在1984年和1988年的红皮书和蓝皮书建议中,CCITT作了大量的努力,使SS7协议的分层结构尽量向OSI的七层模型靠近。 下图图示了SS7信令协议栈: MTP1(消息传递部分第一层):即物理层。 MTP1(消息传递部分第二层):即数据链路层。 MTP1(消息传递部分第三层):即网络层。

SCCP(信令连接控制部分) TCAP(事务处理应用部分) ISUP(ISDN用户部分) TUP(电话用户部分) MTP1 MTP1是SS7协议栈中的最底层,对应于OSI模型中的物理层,这一层定义了数字链路在物理上,电气上及功能上的特性。物理接口的定义包括:E-1,T-1,DS -1,V.35,DS-0,DS -0A(56K)。 MTP2 MTP2确保消息在链路上实现精确的端到端传送。MTP2提供流控制,消息序号,差错检查等功能。当传送出错时,出错的消息会被重发。MTP2对应OSI模型中的数据链路层。 MTP3 MTP3在SS7信令网中提供两个信令点间消息的路由选择功能,消息在依次通过MTP1,MTP2,MTP3层之后,可能会 被发送回MTP2再传向别的信令点,也可能会传递给某个应用层,如:SCCP或ISUP 层。MTP3还提供一些网管功能的支持,包括:流量控制,路由选择 和链路管理。MTP3对应OSI模型中的网络层。 SCCP(信令连接控制部分) SCCP位于MTP之上,为MTP提供附加功能,以便通过SS7信令网在信令点之间传递电路相关和非电 路相关的消息,提供两类无连接业务和两类面向连接的业务。 无连接业务是指在两个应用实体间,不需要建立逻辑连接就可以传递信令数据。面向连接的业务在数据传递之前应用实体之间必须先建立连接,可以是一般性的连

TI_Z-stack协议栈开发环境和工作流程

TI Z-stack协议栈开发环境和工作流程 系统软件设计是在硬件设计的基础上进行的,良好的软件设计是实现系统功能的重要环节,也是提高系统性能的关键所在。节点设计基于通用性及便于开发的考虑,移植了TI公司的Z-Stack协议栈,其主要特点就是其兼容性,完全支持IEEE 802. 15. 4/ZigBee的CC2430片上系统解决方案。Z-Stack还支持丰富的新特性,如无线下载,可通过ZigBee网状网络(Mesh Network)下载节点更新。 图 ZigBee节点开发环境 TI的Z-Stack装载在一个基于IAR开发环境的工程里。强大的IAR Embed ded Workbench除了提供编译下载功能外,还可以结合编程器进行单步跟踪调试和监测片上寄存器、Flash数据等。Z-Stack根据IEEE 802. 15.4和ZigBee标准分为以下几层:API(Application Programming Interface),HAL (Hardw are Abstract Layer),MAC(Media Access Control), NWK(Zigbee Networ k Layer),OSAL(Operating System Abstract System),Security,Servic e,ZDO(Zigbee Device Objects)。使用IAR打开工程文件SampleApp.eww后,即可查看到整个协议栈从HAL层到APP层的文件夹分布。该协议栈可以实现复杂的网络链接,在协调器节点中实现对路由表和绑定表的非易失性存储,因此网络具有一定的记忆功能。 Z-Stack采用操作系统的思想来构建,采用事件轮循机制,当各层初始化之后,系统进入低功耗模式,当事件发生时,唤醒系统,开始进入中断处理事件,

arp协议栈

竭诚为您提供优质文档/双击可除 arp协议栈 篇一:实验2地址解析协议aRp 实验2地址解析协议(aRp) 【实验目的】 1.掌握aRp协议的报文格式 2.掌握aRp协议的工作原理 3.理解aRp高速缓存的作用 4.掌握aRp请求和应答的实现方法 5.掌握aRp缓存表的维护过程 【学时分配】 2学时 【实验环境】 该实验采用网络结构二 【实验原理】 一、物理地址与逻辑地址 1.物理地址 物理地址是节点的地址,由它所在的局域网或广域网定义。物理地址包含在数据链路层的帧中。物理地址是最低一

级的地址。 物理地址的长度和格式是可变的,取决于具体的网络。以太网使用写在网络接口卡(nic)上的6字节的标识作为 物理地址。 物理地址可以是单播地址(一个接收者)、多播地址(一组接收者)或广播地址(由网络中的所有主机接收)。有些 网络不支持多播或广播地址,当需要把帧发送给一组主机或所有主机时,多播地址或广播地址就需要用单播地址来模拟。 2.逻辑地址 在互联网的环境中仅使用物理地址是不合适的,因为不同网络可以使用不同的地址格式。因此,需要一种通用的编址系统,用来惟一地标识每一台主机,而不管底层使用什么样的物理网络。 逻辑地址就是为此目的而设计的。目前internet上的 逻辑地址是32位地址,通常称为ip地址,可以用来标识连接在internet上的每一台主机。在internet上没有两个主机具有同样的ip地址。 逻辑地址可以是单播地址、多播地址和广播地址。其中广播地址有一些局限性。在实验三中将详细介绍这三种类型的地址。 二、aRp协议简介 internet是由各种各样的物理网络通过使用诸如路由

从Zigbee协议栈底层添加自己的按键配置

本实验是基于ZStack-CC2530-2.5.1a版本的协议栈来进行实验的,整个实验需要改动 hal_board_cfg.h、hal_board_cfg.h、hal_key.c、hal_key.h和自己定义的Coordinator.c这5个文件。 注意:添加自己的按键时尽量不要修改协议栈里面的按键程序,自己另行添加即可。 1、hal_key.h 在/* Switches (keys) */下面添加自己的按键定义 #define HAL_KEY_SW_8 0x80 图1: ---------------------------------------------------------------------------------------- 2、hal_board_cfg.h 在/* S6 */ #define PUSH1_BV BV(1) #define PUSH1_SBIT P0_1 #if defined (HAL_BOARD_CC2530EB_REV17) #define PUSH1_POLARITY ACTIVE_LOW #elif defined (HAL_BOARD_CC2530EB_REV13) #define PUSH1_POLARITY ACTIVE_LOW #else #error Unknown Board Indentifier #endif 下面模仿/* S6 */下的程序定义自己的按键值: /* S8 */ #define PUSH8_BV BV(4)//修改 #define PUSH8_SBIT P0_4//修改 #if defined (HAL_BOARD_CC2530EB_REV17)

CI 协议栈简介

DVB / ETSI EN-50221 Common Interface Stack The GkWare Common Interface Stack already enables PayTV on thousands of DVB Setttop boxes worldwide, including single-slot and dual-slot systems and little and big-endian CPUs. The ANSI-C sourcecode is portable and only a small lowlevel PCMCIA I/O driver has to be developed for new platform integrations. Compatibility for all modules available to the general public is guaranteed. FEATURES Support for SCM CiMax, I&C StarCI and direct GPIO connections Simple Integration of custom Resources Flexible PMT => CAPMT converter PCMCIA Card-Info-Structure decoder included Full ETSI R206-001 profile level 1 implementation PVR / Headend descrambling mode, including support for Aston Professional CAM series Supports friendly coexistence with other PCMCIA drivers (e.g. Compact Flash, Network Interface or Bluetooth) SUPPORTED EN50221 RESOURCES Resource Manager Application Information Version 1 and 2 MMI DateTime CA Support Host Control LowSpeed Communication SUPPORTED PLATFORMS ARM7 (Thumb) ARM9 MIPS ST (OS20) x86 REQUIREMENTS approximately 32kb RAM + 16kb per Slot Multitasking OS recommended (but not required) (existing ports for Nucleus+, uCOS, pSoS, Win32) SUPPORTED CHIPSETS Conexant CX2249x, CX241xx, CX2417x ST 5105, 5519 Philips LPC 2214 NEC EMMA Series TI AV711x Technotrend DVB-PCI Budget series (including clones) KNC-One TV-Station Cineview slot (including clones) Whatever CI module you have... we make it work ! MMI Menu Sample Various licensing models are available, including low-volume closed-source and royalty-free with a limited sourcecode redistribution license. GkWare e.K. - Humboldtstrasse 177 - 45149 Essen - Germany https://www.360docs.net/doc/6c5995961.html, - support@https://www.360docs.net/doc/6c5995961.html, - +49 174 5208026

TI_zigbee协议栈结构分析应用

无线盛世《快速进入ZB世界》
Ver:1

进入Zigbee世界的准备工作
§ 首先,我们需具备一些硬件设备及平台。以下 我就罗列一下Zigbee开发基本工具: § 计算机:不管是设计电路还是编程开发都是离 不开它的。 § Zigbee开发板:对于初学者来说,Zigbee开发 板无疑是最佳选择。有了开发板,你可以在我 们成熟设计的基础上学习或者做自己的设计。 § Zigbee模块:集MCU,RF,天线设计于一体 的Zigbee模块。使用它,我们可省去设计天线 及IC周边电路设计的复杂工作。

进入Zigbee世界的准备工作
§ Zigbee仿真器:是集烧写程序、在线编程和在线仿真 功能于一身的开发过程工作中必不可少的开发工具。 编程器既能对CC243x芯片(其实包括TI产品中的CC 系列的大部分芯片)进行烧写程序(hex标准文件程序 ),也能对CC243x芯片进行在线编程和仿真,让我们 能方便地在线调试开发,从而大大地提高了开发效率 。 § Zigbee协议分析仪:ZigBee的设计开发者必不可少的 工具!ZigBee协议分析仪具有广泛的功能,包括:分 析以及解码在PHY、MAC、NETWORK/SECURITY、 APPLICATION FRAMEWORK、和APPLICATION PROFICES等各层协议上的信息包;显示出错的包以 及接入错误;指示触发包;在接收和登记过程中可连 续显示包。

进入Zigbee世界的准备工作
§ 再次,我们需要在将用于开发Zigbee的计 算机平台上安装这些软件: § Zigbee协议分析软件(sniffer) § 程序烧写软件(Flash Programmer) § IAR公司的EW8051 version 7.20I/W32 。

zigbee协议栈代码主要名词解释

zigbee协议重要名词解释及英文缩写(转载)网络层功能: 1. 加入和退出网络 2. 申请安全结构 3. 路由管理 4. 在设备之间发现和维护路由 5. 发现邻设备 6. 储存邻设备信息 当适当的重新分配地址联合其他设备,ZIGBEE2006可以依赖于网络协调者建立一个新网络. ZIGBEE应用层由APS(应用支持)、AF(应用结构)、ZDO(ZIGBEE设备对象)和厂商自定义应用对象组成。 APS功能 1. 绑定维持工作台,定义一个两个合拢的设备进行比较建立他们的需要和服务。 2. 促进信息在设备之间的限制 3. 组地址定义,移除和过滤组地址消息 4. 地址映射来自于64位IEEE地址和16位网络地址 5. 分裂、重新组装和可靠数据传输 ZDO功能 1. 定义设备内部网络(ZigBee协调者和终端接点) 2. 开始和/或回答绑定请求 3. 在网络设备中建立一个网络安全关系 4. 在网络中发现设备和决定供给哪个应用服务 ZDO同样有责任在网络中发现设备和为他们提供应用服务。 1.1.4 网络拓扑 ZIGBEE网络层支持星状、树状和网状拓扑。在星状拓扑中网络受约束与单个设备,呼叫COORD。COORD有责任建立和维持在网络中发现的设备和其他所有设备,都知道的终端接点直接和COORD 通信。在网状和树状拓扑中,COORD有责任建立一个网络和选择几个关键网络参数,但是网络有有可能直接应用于ZigBee路由器。在树状网络中,利用分等级路由策略完成路由传输数据和控制消息直通网络。树状网络在802.15.4-2003中可以采用信标引导通信。网状网络将允许所有对等网络通信。ZIGBEE 路又将不能在网状网络中发射规则的IEEE802.15.4-2003信标。

zigbee协议栈源码

竭诚为您提供优质文档/双击可除 zigbee协议栈源码 篇一:zigbeez-stack协议栈构架 zstack基础 1、zstack协议栈构架 zigbee协议栈就是将各个层定义的协议都集合在一起,以函数的形式实现,并给用户提供一些应用层api,供用户调用。协议栈体系分层架构与协议栈代码文件夹对应表如下:整个协议栈的构架,如图所示 app:应用层目录,这是用户创建各种不同工程的区域,在这个目录中包含了应用层的内容和这个项目的主要内容,在协议栈里面一般是以操作系统的任务实现的。 hal:硬件层目录,包含有与硬件相关的配置和驱动及操作函数。 mac:mac层目录,包含了mac层的参数配置文件及其mac的lib库的函数接口文件。 mt:监控调试层,主要用于调试目的,即实现通过串口调试各层,与各层进行直接交互。nwk:网络层目录,含网络层配置参数文件及网络层库的函数接口文件,aps层库的

函数接口。 osal:协议栈的操作系统。 profile:aF层目录,包含aF层处理函数文件。 security:安全层目录,安全层处理函数接口文件,比如加密函数等。 services:地址处理函数目录,包括着地址模式的定义及地址处理函数。 tools:工程配置目录,包括空间划分及zstack相关配置信息。 zdo:zdo目录。 zmac:mac层目录,包括mac层参数配置及mac层lib 库函数回调处理函数。zmain:主函数目录,包括入口函数main()及硬件配置文件。 output:输出文件目录,这个ew8051ide自动生成的。 2、zigbee20xx协议栈源码库结构分析 了解了zigbee20xx协议栈整个构架后,再来看看协议栈源码库结构是什么样的,各层的具体文件是什么,建立不同的项目、添加自己的应用层任务及处理函数需要修改什么文件。zigbee20xx协议栈zstack-1.4.2文件目录及说明如下: 打开smapleapp项目工程 先看app层:

协议栈工作原理介绍

协议栈工作原理介绍 CC2540集成了增强型的8051内核,TI为BLE协议栈搭建了一个简单的操作系统,即一种任务轮询机制。帮你做好了底层和蓝牙协议深层的内容,将复杂部分屏蔽掉。让用户通过API函数就可以轻易用蓝牙4.0,是开发起来更加方便,开发周期也可以相应缩短。 1.1.1工程文件介绍 安装完BLE协议栈之后,会在安装目录下看到以下文件结构: 图 3.2BLE栈目录

可看到Projects文件夹里面有很多工程,我们主要介绍SimpleBLECentral和SimpleBLEPeripheral。 ble文件夹中有很多工程文件,有些是具体的应用,例如 BloodPressure、GlucoseCollector、GlucoseSensor、HeartRate、HIDEmuKbd等都为传感器的实际应用,有相应标准的Profile(即通用的协议)。 其中还有4中角色:SimpleBLEBroadcaster、SimpleBLECentral、SimpleBLEObserver、SimpleBLEPeripheral。 他们都有自己的特点。 ?Broadcaster广播员——非连接性的信号装置 ?Observer观察者——扫描得到,但不能链接 ?Peripheral从机——可链接,在单个链路层链接中作为从机?Central主机——扫描设备并发起链接,在单链路层或多链路层 中作为主机。 最后的BTool文件夹为BLE设备PC端的使用工具。 1.1.2OSAL介绍 协议栈是一个小操作系统。大家不要听到是操作系统就感觉到很复杂。回想

我们当初学习51单片机时候是不是会用到定时器的功能?嗯,我们会利用定时器计时,令LED一秒改变一次状态。好,现在进一步,我们利用同一个定时器计时,令LED1一秒闪烁一次,LED2二秒闪烁一次。这样就有2个任务了。再进一步…有n个LED,就有n个任务执行了。协议栈的最终工作原理也一样。从它工作开始,定时器周而复始地计时,有发送、接收…等任务要执行时就执行。这个方式称为任务轮询。 图 3.3任务轮询 现在我们直接打开协议栈,直接拿他们的东西来解剖!我们打开协议栈文件夹Texas Instruments\BLE-CC254x-1.2.1\Projects \ble\SimpleBLEPeripheral\CC2540DB里面的工程文件SampleApp.eww。

一文读懂zigbee技术的协议原理

一文读懂zigbee技术的协议原理 一.前言 从今天开始,我们要正式开始进行zigbee相关的通信实验了,我所使用的协议栈是ZStack 是TI ZStack-CC2530-2.3.0-1.4.0版本,大家也可以从TI的官网上直接下载TI公司为cc2530写的协议栈代码,毕竟,我们作为初学者,应该先不要去深究协议栈是怎么用代码编写的,毕竟zigbee已经相当成熟了,我们应该先学会使用zigbee协议栈进行通信,并能应用于实际项目中,比如说智能家具,不知道大家是不是有同感,所以下面我就先给大家介绍一下zigbee通信的原理以及体系架构。 二.ZStack 体系架构 ZStack 的体系结构由称为层的各模块组成。每一层为其上层提供特定的服务:即由数据服务实体提供数据传输服务;管理实体提供所有的其他管理服务。每个服务实体通过相应的服务接入点(SAP) 为其上层提供一个接口,每个服务接入点通过服务原语来完成所对应的功能。 ZStack 根据IEEE 802.15.4 和ZigBee 标准分为物理层,介质接入控制层,网络层,应用层。物理层提供了基础的服务,数据传输和接收,网络层提供了各个节点连入的服务,是zigbee网络通信的关键,应用层是我们关注的重点,提供了应用的框架和ZDO。大家如果想了解体系结构的具体内容,可以自己去看说明文档,下面我给大家介绍一下zigbee 工作原理。 ZStack 采用操作系统的思想来构建,采用事件轮循机制,而且有一个专门的Timer2 来负责定时。从CC2530 工作开始,Timer2 周而复始地计时,有采集、发送、接收、显示…等任务要执行时就执行。当各层初始化之后,系统进入低功耗模式,当事件发生时,唤醒系统,开始进入中断处理事件,结束后继续进入低功耗模式。如果同时有几个事件发生,判断优先级,逐次处理事件。这种软件构架可以极大地降级系统的功耗。 整个ZStack 的主要工作流程,如图所示,大致分为以下6 步:(1) 关闭所有中断;(2) 芯

TIZstack协议栈开发环境和工作流程

TIZstack协议栈开发环境和工作流程

TI Z-stack协议栈开发环境和工作流程 By KuangJunBin KuangJunBin: 如您对本项目感兴趣或者有任何疑问, 欢迎与我一起探讨: 。谢谢您的阅读! 系统软件设计是在硬件设计的基础上进行的, 良好的软件设计是实现系统功能的重要环节, 也是提高系统性能的关键所在。节点设计基于通用性及便于开发的考虑, 移植了TI公司的Z-Stack协议栈, 其主要特点就是其兼容性, 完全支持IEEE 802. 15. 4/ZigBee的CC2430片上系统解决方案。Z-Stack还支持丰富的新特性, 如无线下载, 可经过ZigBee网状网络( Mesh Network) 下载节点更新。 图 ZigBee节点开发环境

TI的Z-Stack装载在一个基于IAR开发环境的工程里。强大的IAR Embedded Workbench除了提供编译下载功能外, 还能够结合编程器进行单步跟踪调试和监测片上寄存器、 Flash数据等。Z-Stack根据IEEE 802. 15.4和ZigBee标准分为以下几层: API( Appli cation Programming Interface) , HAL ( Hardware Abstract Layer) , M AC( Media Access Control), NWK( Zigbee Network Layer) , OSAL( Operating System Abstract System) , Security, Service, ZDO( Zigbee Device Objects) 。使用IAR打开工程文件SampleApp.eww后, 即可查看到整个协议栈从HAL层到APP层的文件夹分布。该协议栈能够实现复杂的网络链接, 在协调器节点中实现对路由表和绑定表的非易失性存储, 因此网络具有一定的记忆功能。 Z-Stack采用操作系统的思想来构建, 采用事件轮循机制, 当各层初始化之后, 系统进入低功耗模式, 当事件发生时, 唤醒系统, 开始进入中断处理事件, 结束后继续进入低功耗模式。如果同时有几个事件发生, 判断优先级, 逐次处理事件。这种软件构架能够极大地降级系统的功耗。 整个Z-stack的主要工作流程, 大致分为系统启动, 驱动初始化, OSAL初始化和启动, 进入任务轮循几个阶段, 下面将逐一详细分析。

ZStack协议栈结构的初步解析

int main( void ) { // Turn off interrupts(关中断) osal_int_disable( INTS_ALL ); // Initialization for board related stuff such as LEDs(初始化板上组件,如LED) HAL_BOARD_INIT(); // Make sure supply voltage is high enough to run(电压检查) zmain_vdd_check(); // Initialize board I/O(初始化I/O接口) InitBoard( OB_COLD ); // Initialze HAL drivers(初始化HAL设备,在hal_drivers.c中实现) HalDriverInit(); // Initialize NV System(初始化NV系统,即非易失设备,如Flash) osal_nv_init( NULL ); // Initialize the MAC(初始化MAC) ZMacInit(); // Determine the extended address(确定设备的长地址) zmain_ext_addr(); // Initialize basic NV items(初始化ZStack的全局变量,如果在NV内存中不存在,则写入缺省值) zgInit(); #ifndef NONWK // Since the AF isn't a task, call it's initialization routine afInit(); #endif // Initialize the operating system(初始化操作系统) osal_init_system(); // Allow interrupts(开中断) osal_int_enable( INTS_ALL ); // Final board initialization(最后初始化板)

OMCI协议 介绍 中文版

OMCI协议(1) 1、OMCI协议栈的结构 GPON 系统的协议栈,主要由物理媒质相关(PMD)层和GPON 传输汇聚(GTC)层组成。GTC 层从结构层次来分可以分成两个子层:GTC 成帧子层和TC 适配子层。从功能层次可以分为C/M平面和U平面。GTC 层可分为两种封装模式:ATM 模式和GEM 模式,目前GPON 设备基本都采用GEM 模式。GEM 模式的GTC 层可为其客户层提供3 种类型的接口:ATM 客户接口、GEM客户接口和ONT 管理和控制接口(OMCI) 2、PMD层 GPON 的PMD 层对应于OLT 和ONU 之间的光传输接口(也称为PON 接口),其具体参数值决定了GPON 系统的最大传输距离和最大分路比。OLT 和ONU 的发送光功率、接收机灵敏度等关键参数主要根据系统支持的ODN 类型来进行划分。根据允许衰减范围的不同,ODN 类型主要分为A、B、C 三大类,结合目前实际应用需求和光收发模块的实际能力工业界还定义了B+类,扩展了GPON 系统支持 1244.16 Mbit/s/155.52 Mbit/s; 1244.16 Mbit/s/622.08 Mbit/s; 1244.16 Mbit/s/1244.16 Mbit/s; 2488.32 Mbit/s/155.52 Mbit/s; 2488.32 Mbit/s/622.08 Mbit/s; 2488.32 Mbit/s/1244.16 Mbit/s; 2488.32 Mbit/s/2488.32 Mbit/s。 目前主流厂家的GPON 产品均支持2488.32Mbit/s/1244.16Mbit/s,并且在20km 传输距离下支持1:64 分路比。 OMCI协议(2) 1、GTC层 TC 层(也称为GTC 层)是GPON 的核心层,主要完成上行业务流的媒质接入控制和ONU 注册这两个关键功能。GTC 层包括两个子层:GTC 成帧子层和TC 适配子层。 1)GTC帧子层 GTC 成帧子层包括3个功能: 复用和解复用。PLOAM 和GEM 部分根据帧头指示的边界信息复用到下行TC 帧中,并可以根据帧头指示从上行TC 帧中提取出PLOAM 和GEM 部分。 帧头生成和解码。下行帧的TC 帧头按照格式要求生成,上行帧的帧头会被解码。此外还要完成嵌入式OAM。

相关文档
最新文档