延时子程序

延时子程序
延时子程序

汇编延时程序大集合

2009-05-31 19:24

各种汇编延时程序大集合

;513微秒延时程序

DELAY: MOV R2,#0FEH

DELAY1: DJNZ R2,DELAY1

RET

;10毫秒延时程序

DL10MS: MOV R3,#14H

DL10MS1:LCALL DELAY

DJNZ R3,DL10MS1

RET

;0.1s延时程序12mhz

DELAY: MOV R6,#250

DL1: MOV R7,#200

DL2: DJNZ R6,DL2

DJNZ R7,DL1

RET

;延时1046549微秒(12mhz)

;具体的计算公式是:

;((((r7*2+1)+2)*r6+1)+2)*r5+1+4 = ((r7*2+3)*r6+3)

*r5+5

DEL : MOV R5,#08H

DEL1: MOV R6,#0FFH

DEL2: MOV R7,#0FFH

DJNZ R7,$

DJNZ R6,DEL2

DJNZ R5,DEL1

RET

;1秒延时子程序是以12MHz晶振

Delay1S:mov r1,#50

del0: mov r2,#91

del1: mov r3,#100

djnz r3,$

djnz r2,del1

djnz r1,del0

Ret

;1秒延时子程序是以12MHz晶振为例算指令周期耗时

KK: MOV R5,#10 ;1指令周期1

K1: MOV R6,#0FFH ;1指令周期10

K2: MOV R7,#80H ;1指令周期256*10=2560

K3: NOP ;1指令周期

128*256*10=327680

DJNZ R7,K3 ;2指令周期

2*128*256*10=655360

DJNZ R6,K2 ;2指令周期

2*256*10=5120

DJNZ R5,K1 ;2指令周期2*10=20

RET

;2指令周期21+10+2560+327680+655360+5120+20+2=990753 ;约等于1秒1秒=1000000微秒

;这个算下来也只有0.998抄

T_0: MOV R7,#10;

D1: MOV R6,#200;

D2: MOV R5,#248;

DJNZ R5,$

DJNZ R6,D2;

DJNZ R7,D1;

RET

;这样算下来应该是1.000011秒

T_0: MOV R7,#10;

D1: MOV R6,#200;

D2: NOP

MOV R5,#248;

DJNZ R5,$

DJNZ R6,D2;

DJNZ R7,D1;

RET

DELAY_2S: ;10MS(11.0592mhz)

MOV R3,#200

JMP DELAY10MS

DELAY_100MS: ;100MS(11.0592mhz)

MOV R3,#10

JMP DELAY10MS

DELAY_10MS:

MOV R3,#1

DELAY10MS: ;去抖动10MS

(11.0592mhz)

MOV R4,#20

DELAY10MSA:

MOV R5,#247

DJNZ R5,$

DJNZ R4,DELAY10MSA

DJNZ R3,DELAY10MS

RET

DELAY_500MS: ;500500MS MOV R2,#208

JMP DELAY_MS

DELAY_175MS: ;175MS

MOV R2,#73

JMP DELAY_MS

delaY_120MS: ;120MS

MOV R2,#50

JMP DELAY_MS

delay_60ms: ;60ms

MOV R2,#25

JMP DELAY_MS

delay_30ms: ;30ms

MOV R2,#12

JMP DELAY_MS

DELAY_5MS: ;5MS

MOV R2,#2

;=================================== DELAY_MS:

CALL DELAY2400

DJNZ R2,DELAY_MS

RET

;=================================== DELAY2400: ;10x244+4=2447

/1.024=2390

MOV R0,#244 ;1

DELAY24001:

MUL AB ;4

MUL AB ;4

DJNZ R0,DELAY24001 ;2

RET

DELAY: ;延时子程序(1秒)

MOV R0,#0AH

DELAY1: MOV R1,#00H

DELAY2: MOV R2,#0B2H

DJNZ R2,$

DJNZ R1,DELAY2

DJNZ R0,DELAY1

RET

MOV R2,#10 ;延时1秒

LCALL DELAY

MOV R2,#50 ;延时5秒

LCALL DELAY

DELAY: ;延时子程序

PUSH R2

PUSH R1

PUSH R0

DELAY1: MOV R1,#00H

DELAY2: MOV R0,#0B2H

DJNZ R0,$

DJNZ R1,DELAY2 ;延时 100 mS

DJNZ R2,DELAY1

POP R0

POP R1

POP R2

RET

1:DEL: MOV R7, #200

DEL1: MOV R6, #123

NOP

DEL2: DJNZ R6, DEL2

DJNZ R7, DEL1

RET

是50.001ms 算法是:

0.001ms+200*0.001ms+200*0.001ms+200*123*0.002ms+200*0.002ms ;(123*2+4)*200+1

2: DEL: MOV R7, #200

DEL1: MOV R6, #123

DEL2:NOP

DJNZ R6,DEL2

DJNZ R7,DEL1

RET

D500MS:

PUSH PSW

SETB RS0

MOV R7,#200

D51: MOV R6,#250

D52: NOP

NOP

NOP

NOP

DJNZ R6,D52

DJNZ R7,D51

POP PSW

RET

DELAY: ;延时1毫秒

PUSH PSW

SETB RS0

MOV R7,#50

D1: MOV R6,#10

D2: DJNZ R6,$

DJNZ R7,D1

POP PSW

RET

ORG 0

LJMP MAIN

ORG 000BH LJMP CTC0

MAIN: MOV SP, #50H CLR EA

MOV TMOD, #01H MOV TH0,#3CH MOV TL0,#0B0H MOV R4, #10 SETB ET0

SETB EA

SETB TR0

SJMP $ ; CTC0: MOV TH0, #3CH MOV TL0, #0B0H DJNZ R4, LP

CPL P1.0

MOV R4, #10 LP: RETI

END

..................................................................... ..........................................

延时5秒左右

DELAY5S:PUSH 04H

PUSH 05H

PUSH 06H

MOV R4,#50

DELAY5S_0:MOV R5,#200

DELAY5S_1:MOV R6,#245

DJNZ R6,$

DJNZ R5,DELAY5S_1

DJNZ R4,DELAY5S_0

POP 06H

POP 05H

POP 04H

RET

指令周期、机器周期与时钟周期

指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。

时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。

MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。

MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。

程序分析

例1 50ms 延时子程序:

DEL:MOV R7,#200 ①

DEL1:MOV R6,#125 ②

DEL2:DJNZ R6,DEL2 ③

DJNZ R7,DEL1 ④

RET ⑤

精确延时时间为:1+(1*200)+(2*125*200)+(2*200)+2 =(2*125+3)*200+3 ⑥

=50603μs

≈50ms

由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环

+3 ⑦

详解:DEL这个子程序共有五条指令,现在分别就每一条指令被执行的次数和所耗时间进行分析。

第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期指令,所以耗时1μs

第二句:MOV R6,#125 从②看到④只要R7-1不为0,就会返回到这句,共执行了R7次,共耗时200μs

第三句:DJNZ R6,DEL2 只要R6-1不为0,就反复执行此句(内循环R6次),又受外循环R7控制,所以共执行R6*R7次,因是双周期指令,所以耗时2*R6*R7μs。

例2 1秒延时子程序:

DEL:MOV R7,#10 ①

DEL1:MOV R6,#200 ②

DEL2:MOV R5,#248 ③

DJNZ R5,$ ④

DJNZ R6,DEL2 ⑤

DJNZ R7,DEL1 ⑥

RET ⑦

对每条指令进行计算得出精确延时时间为:

1+(1*10)+(1*200*10)+(2*248*200*10)+(2*200*10)+(2*10)+2

=[(2*248+3)*200+3]*10+3 ⑧

=998033μs≈1s

由⑧整理得:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑨此式适用三层循环以内的程序,也验证了例1中式⑦(第三层循环相当于1)的成立。

注意,要实现较长时间的延时,一般采用多重循环,有时会在程式序里加入NOP指令,这时公式⑨不再适用,下面举例分析。

例3仍以1秒延时为例

DEL:MOV R7,#10 1指令周期1

DEL1:MOV R6,#0FFH 1指令周期10

DEL2:MOV R5,#80H 1指令周期255*10=2550

KONG:NOP 1指令周期128*255*10=326400

DJNZ R5,$ 2指令周期2*128*255*10=652800

DJNZ R6,DEL2 2指令周期2*255*10=5110

DJNZ R7,DEL1 2指令周期2*10=20

RET 2

延时时间=1+10+2550+326400+652800+5110+20+2

=986893μs约为1s

整理得:延时时间=[(3*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑩

结论:论文针对初学者的困惑,对汇编程序的延时算法进行了分步讲解,并就几种不同写法分别总结出相应的计算公式,只要仔细阅读例1中的详解,并用例2、例3来加深理解,一定会掌握各种类型程序的算法并加以运用。

C语言延时程序

C51精确延时程序 一、、看了网上延时程序的帖子挺多,我也说点。 用keil调试, void yanshi( uint n ) { uchar data i="0"; for(i=0;i<N;I++); return; } 延时时间=12*(n*12+17)/fosc 用keil测时功能很容易得到这个关系,很精确,偏差不过几us. 可以自己编一些延时程序,也可以很方便的得到关系式,只是系数不同. 二、、//我看到的地方也是从别的地方转贴,所以我不知道原作者是谁,但相信这么成熟的东西转一下他也不会见意。看到了个好帖,我在此在它得基础上再抛抛砖! 有个好帖,从精度考虑,它得研究结果是: void delay2(unsigned char i) { while(--i); } 为最佳方法。 分析:假设外挂12M(之后都是在这基础上讨论) 我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据: delay2(0):延时518us 518-2*256=6 delay2(1):延时7us(原帖写“5us”是错的,^_^) delay2(10):延时25us 25-20=5 delay2(20):延时45us 45-40=5 delay2(100):延时205us 205-200=5 delay2(200):延时405us 405-400=5 见上可得可调度为2us,而最大误差为6us。 精度是很高了! 但这个程序的最大延时是为518us 显然不 能满足实际需要,因为很多时候需要延迟比较长的时间。 那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。

STC12系列单片机C语言的延时程序

STC12系列单片机C语言的延时程序 本举例所用CPU 为STC12C5412 系列12 倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。共有三条延时函数说明如下:函数调用 分两级:一级是小于10US 的延时,二级是大于10US 的延时 //====================小于10US 的【用1US 级延时】 ====================//----------微秒级延时---------for(i=X;i>X;i--) 延时时间 =(3+5*X)/12 提示(单位us, X 不能大于255)//================大于10US0;Ms--)for(i=26;i>0;i--);}i=[(延时值-1.75)*12/Ms-15]/4 如想延时60US 则 i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i 的值=26,再调用上面的【10US 级延时函数】Delay10us(6); 则就精确延时60US;如果想延时64US 可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US//============== 对于大于20Ms 的可用中断来实现程序运行比较好===============中断用定 时器0, 1Ms 中断:void timer0(void) interrupt 1{ TL0=(0xffff-1000+2)% 0x100;TH0=(0xffff-1000+2)/0x100; //每毫秒执行一次if(DelayMs_1>0) DelayMs_1--;//大于20Ms 延时程序}函数调用void DelayMs(uint a)//延时 a 乘以1(ms)的时间。{ DelayMs_1=a; while(DelayMs_1);}如果延时50Ms 则函数值为DelayMs(50)tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

软件延时

2软件延时 在对数字温度传感器DS18820操作中,用到延时有:15 μs、90μs、270 μs、540 μs等。这些延时短暂,占用CPU时间不是太多,所以比较适合软件延时方法。通过汇编语言编写程序,很容易控制时间,我们知道每条语句执行时间,每段宏执行时间及每段子程序加调用语句所消耗时间。因此,要用C语言编制出较为精确延时程序,就必须研究该段C程序生成汇编代码。 循环结构延时:延时时间等于指令执行时间与指令循环次数乘积,举例来讲,对如下延时程序进行实验分析。 void delay(unsigned int time){ while(time一一){}; 在main()中调用延时函数delayr(n);得到延时时间是多少,需要在MSP430单片机集成编译环境IAR Em—bedded Wclrkbeneh IDE 3.10A中编制测试。 使用C430写好一段可执行代码,在其中加入延时函数,并在主函数中调用,以delay(1OO)为例。设置工程选项Options,在Debugger栏中将Drivet选为Simulator,进行软件仿真。在仿真环境C—SPY Debugger中,从菜单View中调出Disassembly和Register窗口,前者显示编程软件根据C语言程序编译生成汇编程序,在后者窗口中打开CPU Register子窗体,观察指令周期计数器CYCLE —COUNTER。可以看到,delay()编译得到如下代码段: delav: 001112 OF4C mov.w R12,R15 OOlll4 0C4F mov.w R15.R12 001116 3C53 add.w #0xFFFF.R12 001118 0F93 tst.w R15 00111A FB23 jne deIay 单步执行,观察CYCI正COUNTER,发现每执行一条指令,CYCLECOUNTER值加1,说明这5条指令各占用1个指令周期,循环体while()每执行一次需要5个指令周期,加上函数调用和函数返回各占用3个指令周期,delay(100)延时了5×100 6—506个指令周期。只要知道指令周期,就能容易计算出延时时长了。延时函数因循环语句和编译器不同,执行时间也有所不同,依照上述方法具体分析,可以达到灵活编程目。 MSP430指令执行速度即指令所用周期数,这里时钟周期指主系统时钟MCLK周期。单片机上电后,如果不对时钟系统进行设置,默认800 kHzDCOCLK为MCLK和SMCLK 时钟源,LFXTl接32768 Hz晶体,工作在低频模式(XTS=O)作为ACLK时钟源。CPU指令周期由MCLK决定,所以默认指令周期就是1/800 kHz=1.25μs。要得到lμs指令周期需要调整DCO频率,即MCLK=1 MHz,只需进行如下设置:BCSCTLl=XT20FF RSEL2; //关闭XT2振荡器,设定DCO频率为1 MHz DCOCTL=DCO2 //使得单指令周期为lμs

KeilC51程序设计中几种精确延时方法

Keil C51程序设计中几种精确延时方法 2008-04-03 08:48 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs 的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ) _NOP_( );

51单片机的几种精确延时

51单片机的几种精确延时实现延时 51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC 语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); } Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。可以把这一函数

基于51单片机的精确延时(微秒级)

声明: *此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。 *此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。但是延时任意微秒函数乃作者原创且亲测无误。欢迎转载。 *此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。 *作者:Qtel *2012.4.14 *QQ:97642651 ----------------------------------------------------------------------------------------------------------------------序: 对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。下面具体阐述一下。 ----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。例如: #include #include void main(void){ P1=0x0; _nop_();//延时1us P1=0xff; } ----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数: delay_5us(){ #pragma asm nop #pragma endasm } 这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。或许有人会问,只有一个NOP指令,怎么是延时5us呢? 答案是:在调用此函数时,需要一个调用指令,此指令消耗2个周期(即2us);函数执行完毕时要返回主调函数,需要一个返回指令,此指令消耗2个周期(2us)。调用和返回消耗了2us+2us=4us。然后再加上一个NOP指令消耗1us,不就是5us吗。

Keil纯软件延时程序

keil调试延时程序 2007-11-25 22:20 时间的单位换算 1秒=1000毫秒(ms) 1毫秒=1/1,000秒(s) 1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s) 1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s) 1秒=1,000,000,000,000 皮秒(ps) 1皮秒=1/1,000,000,000,000秒(s) 参考资料:资料 用定时器延时,有时候显得有点麻烦,我们不如考虑软件精确延时,软件延时无非就是利用for或while多重循环。以前用到延时函数时,都是从网上下载别人写好的延时子程序。延时5ms,400ms,1s,……,这些延时函数的函数名中都清清楚楚地标明了延时的时间,可我一直不知道这些函数是如何编写的,确切地说,是如果根据延时时间来确定循环次数的。如果是纳秒级的延时,可以通过示波器来观察波形,或者反汇编一下,计算一下指令执行时间,但如果延时时间相对较长,示波器便无能为力了。这几天好好看了一下Keil调试,发现Keil 的功能实在是太强大了。利用Keil uVersion的调试就可以写出精确的软件延时程序。以下是我的简单小结,文中所有程序都是在Xtal=11.0592MHZ下测试。 比如我需要一个400ms的延时,随便写了个两重循环,外层循环5次,内层循环暂且设为5000: void Delay400Ms(void){ uchar i=5; unint j; while(i--){ j=5000; //通过keil调试来确定循环次数 while(j--); } } 在main函数中调用Delay400Ms(): void main() {

单片机一些常用的延时与中断问题及解决方法

单片机一些常用的延时与中断问题及解决方法 延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊

51单片机精确延时源程序

51单片机精确延时源程序 一、晶振为 11.0592MHz,12T 1、延时 1ms: (1)汇编语言: 代码如下: DELAY1MS: ;误差 -0.651041666667us MOV R6,#04H DL0: MOV R5,#71H DJNZ R5,$ DJNZ R6,DL0 RET (2)C语言: void delay1ms(void) //误差 -0.651041666667us { unsigned char a,b; for(b=4;b>0;b--) for(a=113;a>0;a--); } 2、延时 10MS: (1)汇编语言: DELAY10MS: ;误差 -0.000000000002us MOV R6,#97H DL0: MOV R5,#1DH DJNZ R5,$ DJNZ R6,DL0

RET (2)C语言: void delay10ms(void) //误差 -0.000000000002us { unsigned char a,b; for(b=151;b>0;b--) for(a=29;a>0;a--); } 3、延时 100MS: (1)汇编语言: DELAY100MS: ;误差 -0.000000000021us MOV R7,#23H DL1: MOV R6,#0AH I

棋影淘宝店:https://www.360docs.net/doc/6d3041822.html,QQ:149034219 DL0: MOV R5,#82H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay100ms(void) //误差 -0.000000000021us { unsigned char a,b,c; for(c=35;c>0;c--) for(b=10;b>0;b--) for(a=130;a>0;a--); } 4、延时 1S: (1)汇编语言: DELAY1S: ;误差 -0.00000000024us MOV R7,#5FH DL1: MOV R6,#1AH DL0: MOV R5,#0B9H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay1s(void) //误差 -0.00000000024us { unsigned char a,b,c; for(c=95;c>0;c--) for(b=26;b>0;b--)

单片机延时程序分析

上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。 DELAY:MOV R7,#250 ;(6) D1:MOV R6,#250 ;(7) D2:DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) 〈单片机延时程序〉 MOV:这是一条指令,意思是传递数据。说到传递,我们都很清楚,传东西要从一本人的手上传到另一本人的手上,也就是说要有一个接受者,一个传递者和一样东西。从指令MO V R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。那么MOV R6,#250是什么意思,应当不用分析了吧。 DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。D2在本行的前面,我们已学过,这称之为标号。标号的用途是什么呢?就是给本行起一个名字。DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。本条指令的最终执行结果就是,在原地转圈250次。

C51精确延时

C51中精确延时 C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk,写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.) 在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响. 一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 产生的汇编: C:0x0800 7F0F MOV R7,#0x0F C:0x0802 7ECA MOV R6,#0xCA C:0x0804 7D51 MOV R5,#0x51 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--)

用单片机实现延时(自己经验及网上搜集).

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。 在keil C51中,直接调用库函数: #include // 声明了void _nop_(void; _nop_(; // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。 在选择C51中循环语句时,要注意以下几个问题 第一、定义的C51中循环变量,尽量采用无符号字符型变量。 第二、在FOR循环语句中,尽量采用变量减减来做循环。 第三、在do…while,while语句中,循环体内变量也采用减减方法。 这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。 下面举例说明: unsigned char i; for(i=0;i<255;i++; unsigned char i; for(i=255;i>0;i--;

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,#0FFH LOOP: DJNZ 09H,LOOP 指令相当简洁,也很好计算精确的延时时间。 同样对do…while,while循环语句中,也是如此 例: unsigned char n; n=255; do{n--} while(n; 或 n=255; while(n {n--}; 这两个循环语句经过C51编译之后,形成DJNZ来完成的方法, 故其精确时间的计算也很方便。 其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。 unsigned char i,j for(i=255;i>0;i--

单片机精确毫秒延时函数

单片机精确毫秒延时函数 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。今天主要介绍软件延时以及单片机精确毫秒延时函数。 单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。 指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。 机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。 机器周期=6个状态周期=12个时钟周期。 51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。常用单片机的晶振为11.0592MHz,12MHz,24MHz。其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。 单片机精确毫秒延时函数对于需要精确延时的应用场合,需要精确知道延时函数的具体延

51单片机延时模块程序

51单片机独立模块 一、延时模块 1、for循环延时 void delayms(UINT8 ms) { UINT8 x,y; for(x=ms;x>0;x--) for(y=112;y>0;y--); } 2、while循环延时 void delayms(UINT8 ms) { UINT8 x; while(ms--) for(x=112;x>0;x--); } 3、精确的单片机常用延时函数:(c代码误差0us 12M)(1)、延时0.5ms void delay0.5ms(void) //误差 0us { unsigned char a,b; for(b=71;b>0;b--) for(a=2;a>0;a--); } (2)、延时1ms void delay1ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } (3)、延时2ms void delay2ms(void) //误差 0us { unsigned char a,b; for(b=4;b>0;b--) for(a=248;a>0;a--); _nop_; //if Keil,require use intrins.h } (4)、延时3ms void delay3ms(void) //误差 0us

{ unsigned char a,b; for(b=111;b>0;b--) for(a=12;a>0;a--); } (5)、延时4ms void delay4ms(void) //误差 0us { unsigned char a,b,c; for(c=7;c>0;c--) for(b=8;b>0;b--) for(a=34;a>0;a--); } (6)、延时5ms void delay5ms(void) //误差 0us { unsigned char a,b; for(b=19;b>0;b--) for(a=130;a>0;a--); } (7)、延时10ms void delay10ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=38;b>0;b--) for(a=130;a>0;a--); } (8)、延时15ms void delay15ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=238;b>0;b--) for(a=30;a>0;a--); } (9)、延时20ms void delay20ms(void) //误差 0us { unsigned char a,b; for(b=215;b>0;b--) for(a=45;a>0;a--); _nop_; //if Keil,require use intrins.h

51单片机延时函数

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char 作为延时变量。以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。 一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 》 计算分析: 程序共有三层循环

一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: ( void delay200ms(void) {

unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序程序: void delay10ms(void) $ { unsigned char i,j,k; for(i=5;i>0;i--)

单片机写延时程序的几种方法

单片机写延时程序的几种方法 1)空操作延時(12MHz) void delay10us() { _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); } 2)循環延時 (12MHz) Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); }

延時總時間=[(k*2+3)*j+3]*i+5 k*2+3=165 us 165*j+3=33333 us 33333*i+5=500000 us=500 ms 3)計時器中斷延時(工作方式2) (12MHz) #include; sbit led=P1^0; unsigned int num=0; void main() { TMOD=0x02; TH0=6; TL0=6; EA=1; ET0=1; TR0=1; while(1) { if(num==4000) { num=0;

led=~led; } } } void T0_time() interrupt 1 { num++; } 4)C程序嵌入組合語言延時 #pragma asm …… 組合語言程序段 …… #pragma endasm KEIL軟件仿真測量延時程序延時時間

這是前段事件總結之延時程序、由於不懂組合語言,故NO.4無程序。希望對你有幫助!!! 對於12MHz晶振,機器周期為1uS,在執行該for循環延時程式的時候 Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); } 賦值需要1個機器周期,跳轉需要2個機器周期,執行一次for循環的空操作需要2個機器周期,那么,對於第三階循環 for(k=81;k>;0;k--);,從第二階跳轉到第三階需要2機器周期,賦值需要1個機器周期,執行81次則需要2*81個機器周期,執行一次二階for循環的事件為81*2+1+2;執行了220次,則(81*2+3)*220+3,執行15次一階循環,則 [(81*2+3)*220+3]*15,由於不需要從上階跳往下階,則只加賦值的一個機器周期,另外進入該延時子函數和跳出該函數均需要2個機器周期,故

c语言中的精确延时程序举例

c语言中的精确延时程序举例 我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk 写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点 延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12 MHz,一个机器周期1us.) 一. 500ms延时子程序程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0; j--) for(k=81;k>0;k--); } 产生的汇编: C:0x0800 7F0F MOV R7,#0x0F C:0x0802 7ECA MOV R6,#0xCA C:0x0804 7D51 MOV R5,#0x51 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET 计算分析: 程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m: R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m +3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间= [(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 产生的汇编

单片机延时程序

实验一单片机延时程序实验 一、实验目的与要求: 在使用4MH在外部晶体振荡器的PIC16F877A上用软件设计一个20ms的软件延时子程序。另外,还要求用MPLAB的软件模拟器及其附带的软件工具窗口stopwatch观测延时程序执行的时间。 二、实验内容: 1.硬件电路设计: 本实验中用的是软件延时,利用循环来实现延时功能。电路就用了单片机的原本电路。没有用到其他的功能模块,单片机与ICD3相连接。 2.软件设计思路: 单片机软件延时的前提和基础是每条指令的执行时间是固定的,且大部分指令的执行时间是相同的。这要求对每条指令所花费的指令周期(Tcy)做到心中有数。指令集中5条无条件跳转指令GOTO,CALL.RETURN,RETLW和RETFIE,由于它们必然引起程序跳转,造成流水线中断,因此肯定将占用2个指令周期。而其他4条有可能引起程序跳转的条件跳转指令DECFSZ,INCFSZ,BTFSC和,BTFSS的执行时间,需要占用2个指令周期,当条件为假不发生跳转时,仅占用1个指令周期。其余所有指令都只用1个指令周期。

每个指令周期Tcy的时间长度,计算方法:如果采用4MHz 的外部晶体(fosc=4 MHz),则PIC中档单片机的指令周期Tcy 为1us,这是一个整数。而采用其他频率的外部晶体时,指令周期时间将反比于外部晶体频率。 至于软件延时的结构和实现方法,其实可以采用任何指令和结构,因为只是通过执行指令耗费时间。但通常情况下有两个选择延时程序结构的原则: (1)执行指令周期数计算方便。如果含有太多复杂的条件跳转循环等结构势必会造成指令周期的计算困难,甚至可 能造成执行所造成的软件延时时间不等。 (2)不能占用太多的程序空间。试想用20000个NOP指令来实现20ms的延时,显然是可以的,但是这样做浪费了 整整一个页的程序存储器,得不偿失,而通过适当的循 环结构,重复执行某些相同的程序是比较合理的方法。 因此,软件延时程序一般采用下列方法:如果延时时间 短(微妙级别),可以连续插入几条NOP指令;如果延 时时间长(几个毫秒级别),则可以使用双嵌套循环的 方法来实现。 实验的流程图:

Keilc51程序中几种精确延时的方法

Keilc51程序中几种精确延时的方法 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( );

相关文档
最新文档