基于强度不同退化方式下的应力_强度干涉模型

基于强度不同退化方式下的应力_强度干涉模型
基于强度不同退化方式下的应力_强度干涉模型

极坐标公式和三角函数万能公式

极坐标与参数方程综合复习 一 基础知识: 1 极坐标),(θρ。逆时针旋转而成的角为正角,顺时针旋转而成的角为负角。 点),(θρP 与点),(1θρ-P 关于极点中心对称。 点),(θρP 与点),(2πθ ρ+-P 是同一个点。 2 直角坐标化为极坐标的公式:.sin ;cos θρθρ==y x 极坐标化为直角坐标的公式:x y y x = +=θρtan ;222 注意:1 πθρ 20,0<≤> 2 注意θ的象限。 3圆锥曲线的极坐标方程的统一形式: 间的距离。 是对应的焦点与准线之是离心率,p e 时表示双曲线。时表示抛物线;时表示椭圆;1110>=<?='>?='为参数) t t y y t x x (sin cos { 00α α +=+=2202000)()()(sin cos {r y y x x r y y r x x =-+-+=+=对应的普通方程为为参数θθθ。轴上的椭圆的参数方程,焦点在这是中心在原点为参数的一个参数方程为椭圆x O b y a x b a b y a x )(sin cos {)0(12222???==>>=+程。轴上的双曲线的参数方,焦点在这是中心在原点为参数,的一个参数方程为,双曲线x O b y a x b a b y a x )2,20(tan sec {)00(122 22π?π????≠<≤==>>=-参数方程。 轴正半轴上的抛物线的,焦点在这是中心在原点为参数)的一个参数方程为抛物线x O t pt y pt x p px y (22{)0(222 ==>=

试按第三和第四强度理论计算单元体的相当应力。图中应力

一、从低碳钢零件中某点取出一单元体,其应力状态如图所示,试按第三和第四强度理论计算单元体的相当应力。图中应力单位是MPa 。 (1)、40=ασ,40090=+ασ,60=ατ (2)、60=ασ,80090-=+ασ,40-=ατ (1) max min 123r313r41004040MPa 202σ=100MPa,σ=0MPa,σ=-20MPa σσσ120MPa σ111.3MPa σ+= ±=-=-== (2) max min 123r313r470.66080MPa 90.6σ=70.6MPa,σ=0MPa,σ=-90.6MPa σσσ161.2MPa σ140.0MPa σ=-±=-=-== 二、上题中若材料为铸铁,试按第一和第二强度理论计算单元体的相当应力。图中应力单位是MPa ,泊松比3.0=μ。 (1) r11r2123σσ100MPa σσ(σσ)106.0MPa μ===-+= (2) r11r2123σσ70.6MPa σσ(σσ)97.8MPa μ===-+= α σ

三、图示短柱受载荷kN 251=F 和kN 52=F 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。 121i 33 121260025100150150100101012121.66106.750F F y F z Z y z σ---??=++????=-++ 1.668.0 2.58.84MPa 1.668.0 2.5 3.84MPa 1.668.0 2.512.16MPa 1.668.0 2.57.16MPa A B C D σσσσ=-++==-+-==---=-=--+=- -1.66+106.7y +50z =0 当z =0时,31.66 1015.5mm 106.70y -=?= 当y =0时,31.66 1033.3mm 50 y -=?=

练习题四——强度理论

第四部分 应力分析和强度理论 一 选择题 1、所谓一点处的应力状态是指( ) A 、受力构件横截面上各点的应力情况; B 、受力构件各点横截面上的应力情况; C 、构件未受力之前,各质点之间的相互作用情况; D 、受力构件中某一点在不同方向截面上的应力情况。 2、对于图示各点应力状态,属于单向应力状态的是( ) A 、a 点 B 、b 点 C 、c 点 D 、d 点 3、对于单元体中max ,正确的答案是( ) A 、100MPa B 、0 MPa C 、50MPa D 、200 MPa 4、关于图示梁上a 点的应力状态,正确的是( ) 5、关于图示单元体属于哪种应力状态,正确的是( ) A 、单向应力状态 B 、二向应力状态 C 、三向应力状态 D 、纯剪切应力状态

6、对于图示悬臂梁中,A 点的应力状态正确的是( ) 7、单元体的应力状态如图,关于其主应力,正确的是( ) A 、1230,0σσσ>>= B 、321,0σσσ<<= C 、123130,0,0,||||σσσσσ>=<< D 、123130,0,0,||||σσσσσ>=<> 8、对于图示三种应力状态(a )、(b )、(c )之间的关系,正确的是( ) A 、三种应力状态均相同; B 、三种应力状态均不同 C 、(b )和(c )相同; D 、(a )和(c )相同 9、已知某点平面应力状态如图,1σ和2σ为主应力, 在下列关系正确的是( ) A 、12x y σσσσ+>+ B 、12x y σσσσ+=+ C 、12x y σσσσ+<+ D 、12x y σσσσ-=-

材料力学B试题7应力状态_强度理论.

应力状态 强度理论 1. 图示单元体,试求 (1) 指定斜截面上的应力; (2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσαx y x y x M P a 7.322cos 2sin 2 -=+-= ατασστα x y x (2) 2 2min max )2(2xy y x y x τσσσσσσ+-±+=98 .12198.81-=MPa 98.811=σMPa ,02=σ,98.1213-=σ 35.3940 200 arctan 21)2arctan(210==--=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ 由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?=x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

应力—强度干涉模型在产品可靠性分析中的应用

龙源期刊网 https://www.360docs.net/doc/6d6680938.html, 应力—强度干涉模型在产品可靠性分析中的应用 作者:高洋牛耕 来源:《科学与财富》2017年第24期 摘要:根据机械零部件设计的目标是危险断面上的最小强度不低于最大应力的特点,建立应力—强度干涉模型对机械产品的可靠性进行预计。以某产品卡紧机构为例,在其应力和强度均服从正态分布的情况下对可靠性进行了预计,为可靠性预计在工程上的应用提供了手段。 关键词:可靠性预计;应力—强度干涉理论;正态分布 产品可靠性预计是根据组成产品的元件、部件及分组件的可靠性推测产品的可靠性,进行可靠性预计时应考虑到产品各组成部分的使用条件及环境、功能要求、设计水平、工艺条件等因素。通过可靠性预计结果与该产品要求的可靠性指标进行比较,审查是否达到产品设计任务中提出的可靠性指标和分配给各设备的可靠性指标,另外通过可靠性预计可以发现设计中的薄弱环节,并采取相应的措施加以改进,以提高产品的可靠性水平,同时可以为可靠性试验方案的选取提供依据。因此在产品方案研究和工程研制阶段,应及时地预计、分析系统或设备的可靠性,以利于比较不同设计方案的特点及可靠度,选择最佳设计方案,并实施“预计—改进设计”的循环,使产品达到规定的可靠性要求。 目前可靠性预计常见的方法有全概率法、相似产品预计法、数学模型法、故障率预计法等。这些方法往往精度不高,带有局限性。应力—强度干涉方法不仅综合考虑了应力和强度的均值及它们的变异性对可靠度的影响,而且还考虑了基本变量的概率分布类型,从而可以较全面地反映各种不确定因素的影响,提供较多的设计信息,实现将可靠度直接引入到零件的设计中,定量回答零件在运动中的安全与可靠的程度。 1 应力—强度干涉模型 机械零部件设计的基本目标是,在一定的可靠度下保证其危险断面上的最小强度(抗力)不低于最大的应力,否则,零件将由于未满足可靠度要求而导致失效。这里的应力和强度都不是一个确定的值,而是由若干随机变量组成的多元随机函数,它们具有一定的分布规律,随着时间的推移,由于环境、使用条件等因素的影响,材料强度退化,导致在某个时间应力与强度分布发生干涉(图中阴影部分),这时零部件可能发生失效。通常把这种干涉称为应力—强度干涉模型,如图1所示。 图1 应力—强度干涉模型

极坐标系与极坐标方程

一、坐标系 1、数轴 它使直线上任一点P 都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y )确定。 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z )确定。 二、平面直角坐标系的伸缩变换 定义:设P (x ,y )是平面直角坐标系中的任意一点,在变换???>=>=). 0(')0(,':μμλλφy y x x ④的作用下,点P (x ,y )对应到点P ’(x ’,y ’),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 三.例题讲解 例1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1)2x+3y=0; (2)x 2+y 2=1 三、极坐标系 1、极坐标系的建立: 在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O 称为极点,射线OX 称为极轴。) 2、极坐标系内一点的极坐标的规定 对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到 OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫 做M 的极坐标。 特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. 3、负极径的规定 在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。 M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 4、数学应用 例1 写出下图中各点的极坐标 A (4,0) B (2 ) C ( ) D ( ) E ( ) F ( ) G ( ) 规定:极点的极坐标是ρ=0,θ可以取任意角。 变式训练

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力 =165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,是主应力。显然,主应力对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力,为纯剪切状态,可知其最大和最小正应力绝对值均为,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

极坐标方程必背公式

极坐标方程必背公式 坐标系 1.极坐标系的概念 在平面上取一个定点O 叫做极点;自点O 引一条射线Ox 叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图). 设M 是平面上的任一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)称为点M 的极坐标,记作M (ρ,θ). 2.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则????? x =ρcos θ,y =ρsin θ或????? ρ2=x 2+y 2,tan θ=y x (x ≠0). 3.圆的极坐标方程 若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (a,0),半径为a :ρ=2a cos θ; (3)当圆心位于π(,)2 M a ,半径为a :ρ=2a sin θ. 4.直线的极坐标方程 若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin

(θ0-α). 几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=θ0和θ=π-θ0; (2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过π(,)2 M b 且平行于极轴:ρsin θ=b . 方法总结:进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x (x ≠0). 练习、在直角坐标系xOy 中,直线l 的参数方程为???-=+-=t y t x 32(t 为参数),以O 为极点, x 轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ. 把曲线C 的极坐标方程化为普通方程;

轴向拉伸与压缩的应力及强度计算条件.

《机械设计基础》课程单元教学设计 单元标题:轴向拉伸与压缩的应力 及强度计算条件 单元教学学时 2 在整体设计中的位置第10次 授课班级上课地点 教学目标 能力目标知识目标素质目标 1.能求轴向拉伸与压缩横截面 上应力; 2.能利用胡克定律求变形。 3.能利用强度计算条件解决三 类问题 1.理解应力的概念; 2.掌握拉压杆正应力计 算; 3.理解应变的概念; 4.掌握胡克定律的第一 第二表达式; 5.掌握强度计算条件 1.培养学生热爱本专业、爱 学、会学的思想意识。 2.培养学生应用理论知识分 析和解决实际问题的能力; 3.培养学生的团队合作意 识; 4.培养学生仔细、认真、严 谨的工作态度。 能力训 练任务及案例任务1:计算拉压杆的应力;任务2:计算拉压杆的变形; 教学材料1.教材; 2.使用多媒体辅助教学。

单元教学进度 步骤教学内容教学方法学生活动工具 手段 时间 分配 1复习、导 入复习:拉压杆的受力变形特点、截面法求轴 力直接法求轴力 导入:在求轴力时,我们已经知道轴力的大 小不能代表一个杆件的受力强弱,那谁能代 表呢? 提问 讲授 讨论 回答 黑板 课件 视频 5 分钟 2提出任务如图(a)所示的三角形托架,P=75kN,AB杆 为圆形截面钢杆,其[σ1]=160MPa;BC杆为 正方形截面木杆,其[σ2]=10MPa,试确定 AB杆的直径d和BC杆的边长a。 情景教 问题探究 问题引领 听讲 思考 黑 板、 ppt 5 分钟 一.应力 应力:内力在截面上某点处的分布集 度,称为该点的应力。 在拉(压)杆横截面上,与轴力N相对 应的是正应力,一般用σ表示。 N A σ= 案例应用1: 一变截面圆钢杆ABCD如图5-6(a)所 示,已知F1=20kN,F2=35kN,F3=35kN, d1=12mm,d2=16mm,d3=24mm。试求: (1)各截面上的轴力,并作轴力图。 (2)杆的最大正应力。 15分 钟

论述实测应力强度因子的方法

第二章应力强度因子的计算 K--应力、位移场的度量 K的计算很重要,计算K值的几种方法: 1.数学分析法:复变函数法、积分变换; 2.近似计算法:边界配置法、有限元法; 3.实验标定法:柔度标定法; 4.实验应力分析法:光弹性法. 论述实测应力强度因子的方法 应力强度因子是反映裂纹尖端弹性应力场强弱的物理量。它和裂纹大小、构件几何尺寸以及外应力有关。应力在裂纹尖端有奇异性,而应力强度因子在裂纹尖端为有限值。 网格法是以网格为制图单元,反映制图对象特征的一种地图表示方法。其制图精度取决于网眼大小,网眼越小,精度越高。网眼大小的确定,取决于制图目的、比例尺和掌握制图资料的详细程度等。网格法既可表示制图对象的数量特征,也可表示其质量特征。使用该法编图时,首先把制图区域按照一定原则,用规定的网眼尺寸画出格网,然后根据掌握的制图资料、野外考察得到的制图对象的分布特征,分别用每个网眼赋值。当表示数量差异时,填入分级级别;表示质量特征时,填入类型代码等。最后用色彩或面状网线符号区分它们。这种方法在计算机辅助制图、统计制图中得到广泛应用。实验应力分析方法的一种。网格法是在试件表面印制或刻划网格,则当试件受载而发生变形时,网格随之变形,通过测量网格因变形而引起的位移,以确定试件的位移场或应变场。它适用于测量5%以上的大应变,而用于测量较小的应变时,精度很低。此法于20世纪40年代开始应用,后来在较大程度上被云纹法所取代。 光弹性法应用光学原理研究弹性力学问题的一种[[实验应力分析]]方法。将具有双折射效应的透明塑料制成的结构模型置于偏振光场中,当给模型加上载荷时,即可看到模型上产生的干涉条纹图。测量此干涉条纹,通过计算,就能确定结构模型在受载情况下的应力状态。 20世纪初,E.G.科克尔和L.N.G.菲伦用光弹性法研究桥梁结构等的应力分布。40年代,M.M. 弗罗赫特对光弹性的基本原理、测量方法和模型制造等方面的问题,作了全面系统的总结,从而使光弹性法在工程上获得广泛的应用。 利用光弹性法,可以研究几何形状和载荷条件都比较复杂的工程构件的应力分布状态,特别是应力集中的区域和三维内部应力问题。对于断裂力学、岩石力学、生物力学、粘弹性理论、复合材料力学等,也可用光弹性法验证其所提出的新理论、新假设的合理性和有效性,为发展新理论提供科学依据。 在偏振光场中,各向同性的光弹性模型在载荷作用下会产生暂时双折射效应,其在光弹性实验中,通常出现两组干涉条纹:等差线和等倾线。 从光弹性实验可以直接获得主应力差和主应力方向。为了确定单独的应力分量,还须借助于其他实验方法或计算方法。 对于二维应力问题,确定主应力或正应力分量的实验方法,有侧向变形法、电比拟法、云纹法、光弹性斜射法、全息光弹性法和全息干涉法等。 三维应力分析大多数工程结构在载荷作用下常处于三维应力状态。应用三维光弹性实验法能有效地确定工程结构内部的三维应力状态。三维光弹性实验法包

常见曲线的极坐标方程1

常见曲线的极坐标方程(1) 学习目标: 1、能在极坐标系中给出简单图形(过极点的直线)的方程; 2、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形 时选择适当坐标系的意义; 3、理解极坐标系中直线的方程。 活动过程: 活动一:知识回顾 1、曲线的极坐标方程的意义。 2、(1)直线x y 1的极坐标方程是__________________________________ ; (2)曲线COS 1的直角坐标方程是____________________________ 。 活动二:直线的极坐标方程 探究:若直线l经过M (0,0),且直线I的倾斜角为,求直线I的极坐标方程。 (这里,直线I的倾斜角是指极轴与直线I向上的方向所成的角。) 小结:一些特殊位置的直线的极坐标方程: (1)当直线I过极点时,直线I的极坐标方程是:______________________________ ; (2) 当直线I过点M(a,0)且垂直于极轴时,直线I的极坐标方程是: _________________ (3)当直线I过点M(b,7)且平行于极轴时,直线I的极坐标方程是: _______________

活动三:直线的极坐标方程的求解 例1按下列条件写出直线的极坐标方程: (1)经过极点和点A(6,g)的直线;(2)经过点B(5,),且垂直于极轴的直线; (3)经过点C(8,6),且平行于极轴的直线; (4)经过点D(2.. 3,0),且倾斜角为务的直线。 例2:分析极坐标方程cos 6,sin 6的特点,说明他们分别表示什么曲线? 例3:求曲线cos 1 0关于直线7对称的曲线方程。

第八章应力状态强度理论

第八章 应力状态 强度理论 1 基本概念及知识要点 1.1 基本概念 点的应力状态、 应力圆、 主平面、 主应力、 主方向、 最大剪应力。 以上概念是进行应力应变分析以及强度计算的基础,应准确掌握和理解这些基本概念。 1.2 二向应力状态的解析法与图解法 实际工程中的许多问题,可以简化成二向应力状态问题,建议熟练掌握二向应力状态解析法和图解法。在学习该知识点时,应注意以下几点: (1) 单元体平衡,则单元体中任取出的一部分在所有力的作用下也平衡; (2) 过一点相互垂直两平面上有 y x σσσσαα+=90++ 90+ααττ-= 主应力和最大剪应力间 2 min max min max σστ-± = 01045±αα= 请注意理解以上各式所代表的物理意义。 (3) 主要公式:任意斜截面应力、主应力、主平面、最大剪应力及其作用平面,详见教材。上述公式建议熟记。 (4) 应用图解法时注意以下对应关系 应力:圆上一点,体上一面;直径两端,垂直两面。 夹角:圆上半径,体上法线;转向一致,转角两倍。 1.3 三向应力状态的最大剪应力 无论是三向应力状态,还是做为特例的二向应力状态或单向应力状态,都是用如下公式计算最大剪应力 2 3 1max σστ-= 在二向应力状态下,垂直于主应力为零的主平面的那一组平面中,剪应力的最大值,称为面内最大剪应力。可用公式 2 2 min max 2xy y x τσστ+??? ? ? ?-±=计算。 1.4 广义胡克定律 在比例极限范围内,变形非常小。线应变只与正应力有关,与剪应力无关;剪应变只与剪应力有关,与正应力无关。换言之,正应力与剪应力、线应变与剪应变,彼此间互不影响。 1.5 常用的四种强度理论及其应用

高中数学-公式-极坐标

极坐标、参数方程 1、经过点),(000y x P 的直线参数方程的一般形式是:? ??+=+=)(00是参数t bt y y at x x 。 2、若直线l 经过点α,倾斜角为),(000y x P ,则直线参数方程的标准形式是:???+=+=)(sin cos 00是参数t t y y t x x α α。 其中点P 对应的参数t 的几何意义是:有向线段P P 0的数量。 若点P 1、P 2、P 是直线l 上的点,它们在上述参数方程中对应的参数分别是,和、t t t 21则:2121t t P P -=;当点P 分有向线段λ成定比21P P 时,λ λ++= 121t t t ;当点P 是线段P 1P 2的中点时,221t t t +=。 3、圆心在点)(b a C ,,半径为r 的圆的参数方程是:? ??+=+=)(sin cos 是参数αααr b y r a x 。 4、若以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系,点P 的极坐标为,),(θρ直角坐标为),(y x , 则=x θρcos ,=y θρsin ,x y tg y x =+=θρ,22。 5、 经过极点,倾斜角为α的直线的极坐标方程是:απθαθ+==或, 经过点)0(,a ,且垂直于极轴的直线的极坐标方程是:a =θρcos , 经过点)2 (π ,a 且平行于极轴的直线的极坐标方程是:a =θρsin , 经过点)(00θρ,且倾斜角为α的直线的极坐标方程是:)sin()sin(00αθραθρ-=-。 6、 圆心在极点,半径为r 的圆的极坐标方程是r =ρ; 圆心在点a a ,半径为, )0(的圆的极坐标方程是θρcos 2a =; 圆心在点a a ,半径为,)2 (π 的圆的极坐标方程是θρsin 2a =; 圆心在点)(00θρ,,半径为r 的圆的极坐标方程是200202)cos( 2r =--+θθρρρρ。 7、若点M )(11θρ,、N )(22θρ,,则=MN )cos(221212221θθρρρρ--+。

工程力学 第九章 梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

教学过程: 复习:1、复习刚架的组成及特点。 2、复习平面静定刚架内力图的绘制过程。 新课: 第九章梁的应力及强度计算 第一节纯弯曲梁横截面上的正应力 一、纯弯曲横梁截面上的正应力计算公式 平面弯曲时,如果某段梁的横截面上只有弯矩M,而无剪力Q = 0,这种弯曲称为纯弯曲。 1、矩形截面梁纯弯曲时的变形观察 现象: (1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角; (2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。 2、假设

(1)平面假设:梁变形后,横截面仍保持为平面,只是绕某一轴旋转了一个角度,且仍与变形后的梁轴曲线垂直。 中性层:梁纯弯曲变形后,在凸边的纤维伸长,凹边的纤维缩短,纤维层中必有一层既不伸长也不缩短,这一纤维层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 中性轴将横截面分为两个区域——拉伸区和压缩区。 注意:中性层是对整个梁而言的; 中性轴是对某个横截面而言的。 中性轴通过横截面的形心,是截面的形心主惯性轴。 (2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维之间无挤压。各纵向纤维只产生单向的拉伸或压缩。 3、推理 纯弯曲梁横截面上只存在正应力,不存在剪应力。 二、纯弯曲横梁截面上正应力分布规律 由于各纵向纤维只承受轴向拉伸或压缩,于是在正应力不超过比例极限时,由胡克定律可知 ρ εσy E E =?= 通过上式可知横截面上正应力的分布规律,即横截面上任意一点的正应力与该点到中性轴之间的距离成正比,也就是正应力沿截面高度呈线性分布,而中性轴上各点的正应力为零。

(完整word版)参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: )0(tan ≠= x x y θ? ?? y 图1

相关文档
最新文档