流态化浮选技术概述

流态化浮选技术概述
流态化浮选技术概述

移动通信技术1G~4G发展史

第1章移动通信现状问题与基本解决方法 1.1移动通信1G—4G简述 现在,人们普遍认为1897年是人类移动通信的元年。这一年意大利人.马可尼在相距18海里的固定站与拖船之间完成了一项无线电通信实验,实现了在英吉利海峡行驶的船只之间保持持续的通信,从而标志着移动通信的诞生,也由此揭开了世界移动通信辉煌发展的序幕错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。 现代意义上的移动通信系统起源于20世纪20年代,距今已有90余年的历史。本文主要简述移动通信技术从1G到4G的发展。移动通信大发展的原因,除了用户需求的迅猛增加这一主要推动力外,还有技术进展所提供的条件,如微电子技术的发展、移动通信小区制的形成、大规模集成电路的发展、计算机技术的发展、通信网络技术的发展、通信调制编码技术的发展等。1.1.1第一代移动通信系统(1G) 20世纪70年代中期至80年代中期是第一代蜂窝网络移动通信系统发展阶段。第一代蜂窝网络移动通信系统(1G)是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约s错误!未找到引用源。。 1978年底,美国贝尔实验室成功研制了先进移动电话系统(Advanced Mobile Phone System, AMPS),建成了蜂窝状移动通信网,这是第一种真正意义上的具有随时随地通信的大容量的蜂窝状移动通信系统。蜂窝状移动通信系统是基于带宽或干扰受限,它通过小区分裂,有效地控制干扰,在相隔一定距离的基站,重复使用相同的频率,从而实现频率复用,大大提高了频谱的利用率,有效地提高了系统的容量错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。

高速流态化技术在21世纪的工程应用前景

化工进展980101 化 工 进 展 科技期刊 Chemical Industry and Engineering Progress 1998年 第1期 No.1 1998 专论与综述 高速流态化技术在21世纪的工程应用前景 胡永琪 金 涌 (清华大学化学工程系,北京,100084) 提要 通过与低速流态化的比较,概述了高速流态化独特的两相流流动结构、优异的操作 特性和应用于工业过程时的优缺点。综述了已工业化或正在研究开发的高速流态化过程,对 其用于这些过程的优势和将在下个世纪的工程应用前景进行了分析和探讨。 关键词 流态化,高速,应用,工程 作为研究颗粒与流体相互作用规律的学科,流态化技术自40年代初对石油流态化催化裂化 工艺开发成功以来,其应用研究受到了普遍的重视,并取得了重大的进展,已经成为颗粒和 粉体的制备、加工、改性和输送以及改善催化反应的有效手段。回顾半个世纪的发展历史, 流态化技术经历了由低操作气速向高操作气速的发展过程。 在流体速度大于临界流化速度后,即进入鼓泡流态化阶段。最早的工程应用多在低速鼓泡 流化域中操作,而近年来则倾向在越来越高的流速下操作,像湍动流态化、快速流态化和稀 相输送状态等。这是由于在高速下,流-固系统将显示出更为优异的行为:随着流体通过设备 的绝对速度成倍或几十倍的增大,流体与固体之间的相对速度(即滑落速度)也随之增加 (图1)[1],所以在很大的流体速度范围内床内都能保持有较高的粉体浓度,从而加强了流 体与粉体之间的传热和传质。流固两相流动体系的这一特性是向高速流态化技术发展的基础。 随着操作流速的提高,流体与颗粒两相流的结构和流型将发生较大的变化,对不同流速下的file:///E|/qk/hgjz/980101.htm(第 1/9 页)2010-3-22 22:20:27

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

流态化技术

流态化技术 第一章 定义:流态化是一种使固体颗粒通过与气体或液体(流体)接触而转变成类似流体状态的操作。 一、流态化形成的过程 1.固定床阶段 气流对颗粒的曳力 + 气流对颗粒的浮力 < 颗粒受到的重力 床层体积固体颗粒总体积 床层体积空隙率-=ε 2.流态化床阶段 气流对颗粒的浮力 = 颗粒受到的重力 压降△P = 单位截面积上床层物料的重量 不变不变,但P L L U ?∴-↑↑→↑→)1(εε 3.气力输送阶段 (气流床) 气流对颗粒的曳力 + 气流对颗粒的浮力 > 颗粒受到的重力 Umf ——临界流化速度,是指刚刚能够使固体颗粒流化起来的气体空床流化速度,也称最小流化速度。 Ut ——带出速度,当气体速度超过这一数值时,固体颗粒就不能沉降下来,而被气流带走,此带出速度也称最大流化速度。 操作速度、表观流速(U )——是指假想流体通过流化床整个截面(不考虑堆积固体粒子)时的截面平均流速(也称空塔速度或空管速度),用U 表示。 注意P2图1.2两条线不重合的原因:该页第四段(非自然堆积) 二、形成流态化的条件 1.有固体颗粒存在 2.有流体介质存在3.固体与流体介质在特定条件下发生作用 三、流态化过程具有的特点 1.类似液体的特性(物性参数) 2.固体颗粒的剧烈运动与迅速混合 3. 强烈的碰撞与摩擦 4.颗粒比表面积大 5.气体与颗粒的接触时间不均匀 四、流态化过程中的不正常现象 1.沟流2.腾涌 3.分层 4.气泡 五、气-固流化床的一般性评价 1.良好的床层均温性 2.较高的传热传质速率 3.输送能力大 4.可利用或加工粉末状物料 流态化可以分为聚式流化态和散式流化态。 气泡相:就是内部几乎没有固体颗粒,仅在其边壁或 外表面 有固体颗粒环绕的运动空间 乳化相:指的是固体颗粒与气体介质的混合区域 第二章 A 类: 细 大多数工业流化床反应使用的催化剂属于此类。 B 类: 粗 鼓泡床大都用此颗粒 C 类: 极细 在气固催化反应中很少采用,但同相加工中采用较多,如明矾综合利用。 D 类:极粗 只适用于喷动床中,如谷物干燥和煤粒燃烧均属于此类 书上图2.4分析理想与实际的区别 (1)存在一个“驼峰”BCD ,原因:初始时颗粒排列紧密 (2)DE 线右端向上倾斜,原因:颗粒间碰撞和颗粒与器壁摩擦引起的损失 (3)有波动(气固系统),原因:气泡运动、破裂 积相等球体体积与实际颗粒体颗粒的表面积 球体的表面积)(=s φ 算术平均粒径最大 几何平均粒径次之 调和平均粒径最小 (会选择公式) 通常求临界流化速度的两种方法:实验和计算P19 例题 已知催化剂颗粒的平均直径为98um ,在20℃ 和0.1MPa (1atm )下用空气进行流化。有关物性参数如下:

现代通信技术的历史

现代通信技术的历史 所谓通信,最简单的理解,也是最基本的理解,就是人与人沟通的方法。无论是现在的电话,还是网络,解决的最基本的问题,实际还是人与人的沟通。现代通信技术,就是随着科技的不断发展,如何采用最新的技术来不断优化通信的各种方式,让人与人的沟通变得更为便捷,有效。这是一门系统的学科,目前炙手可热的3G就是其中的重要课题。 通信技术和通信产业20世纪80年代以来发展最快的领域之一。不论是在国际还是在国内都是如此。这是人类进入信息社会的重要标志之一。 通信就是互通信息。从这个意义上来说,通信在远古的时代就已存在。人之间的对话是通信,用手势表达情绪也可算是通信。以后用烽火传递战事情况是通信,快马与驿站传送文件当然也可是通信。现代的通信一般是指电信,国际上称为远程通信。 纵观同新的发展分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电通信阶段。1937年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。 而现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。 数字通信即传输数字信号的通信,,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。数字通信以其抗干扰能力强,便于存储,处理和交换等特点,已经成为现代通信网中的最主要的通信技术基础,广泛应用于现代通信网的各种通信系统。 程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。程控交换最初是由电话交换技术发展而来,由当初电话交换的人工转接,自动转接和电子转接发展到现在的程控转接技术,到后来,由于通信业务范围的不断扩大,交换的技术已经不仅仅用于电话交换,还能实现传真,数据,图像通信等交换。程控数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,便于改变交换机功能,便于建设智能网,向用户提供更多,更方便的电话服务。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分株的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。 信息传输技术主要包括光纤通信,数字微波通信,卫星通信,移动通信以及图像通信。 光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。 数字微波中继通信是指利用波长为1m~1mm范围内的电磁波通过中继站传输信号的一种通信方式。其主要特点为信号可以"再生";便于数字程控交换机的连接;便于采用大规模集成电路;保密性好;数字微波系统占用频带较宽等的优点,因此,虽然数字微波通信只有二十多年的历史,却与光纤通信,卫星通信一起被国际公认为最有发展前途的三大传输手段。 卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是:通信距离远,而投资费用和通信距离无关;工作频带宽,通信容量大,适用于多种业务的传输;通信线路稳定可靠;通信质量高等优点。

第五篇 流态化技术

第五篇 流态化技术

一、流态化的形成和转化 1.固定床、流化床及稀相输送 ①当气速较小时,催化剂堆紧,为固定床阶段; ②当气速增达到一定程度以后,床层开始膨胀,为膨胀床; ③当u=umf时,固体粒子被气流悬浮起来做不规则运动,为流化床阶段; ④继续增大气速至u=ut,催化剂开始被气流带走,为稀相输送阶段 因此,固体颗粒的流化可根据气速划分成三个阶段: ①固定床阶段,uut - 50 - 版权所有翻印必究

版权所有 翻印必究 - 50 - 在固定床阶段,气体通过固定床颗粒之间的空隙时,因有摩擦阻力而产生压降,摩擦阻力与气体流速的平方成正比,故u ↗,床层压降↗ 当床层所受压力达到平衡时,床层被悬浮起来而颗粒自由运动。床层受三个力作用:重力、摩擦力和浮力。对催化剂来说,其摩擦力与床层压降有关: ? 固体颗粒的重量为一定值,即V(1-ε)为一定值,因此当气速增大时,V ↗,ε↗,但 V(1-ε)不变,因此,△P.F 也不变 ? 随着气速上升,所受摩擦阻力增大,当u 达到ut 时,催化剂的浮力比重力大了,催化

剂也就被气体带走了 2.气-固流态化域 根据流化床中气体的表观气速不同,床层可以分为几种不同的流化状态:固定床、散式流化床、鼓泡流化床、湍动床、快速床和输送床 ①固定床 ②散式流化床 ③鼓泡流化床 ④湍动床 ⑤快速床 ⑥输送床 二、流化床的一些基本现象 1.散式流化 ?没有聚集现象,床层界面平稳,随着气速的增大,床层的空隙率增大,床层膨胀 ?可以用床高与起始流化时的床高之比LB/Lmf来表示床层的膨胀程度,亦称膨胀比?影响膨胀比的因素有固体颗粒的性质和粒径、气体的流速和性质、床径和床高等 ?在催化裂化装置中,催化剂的密相输送就是处于散式流化状态 2.鼓泡床的一些基本现象 ?鼓泡床的固体颗粒不是以单个而是以集团进行运动的 ?鼓泡床的床层包括气泡相和颗粒相两部分 ①气泡的形状 ②气体返混和固体返混 ③气泡的形成 ④气节和沟流 ⑤密相床和稀相

第五节 固体流态化

第五节固体流态化 §3.5.1、概述 将大量固体颗粒悬浮于运动的流体中,使颗粒具有类似于流体的某些特性,这种流固接触状态称为固体流态化。 化工中使用固体流态化技术的例子很多,如催化流化床反应器、流化床干燥器、沸腾床焙烧炉及颗粒的输送。催化流化床反应器所用的催化剂颗粒要比固定床的小得多,颗粒的比表面积大,这样流体与固体之间的传热,传质速率就比固定床的高;对于流化床干燥器沸腾床焙烧炉也有类似的特点。 §3.5.2、流化床的基本概念 现在让我们一起来观察流体通过均匀颗粒时所出现的床层现象。 一、固定床阶段 当空床速度(表观速度)较低,此时

即颗粒间空隙中流体的实际流速 小于颗粒的沉降速度 ,床层现象为颗 粒基本静止不动,颗粒层为固定床。颗粒床层高度为 ,此时流体通过颗粒床 层的压降为: ,可以用康采尼方程来估算; 在较大的 范围内,可以用欧根方程来估算,一般误差不超过 25%。 保持固定床的最大表观速度 二、流化床阶段 流化床阶段为表观速度增大至一定程度, 时,此时 , 颗粒开始松动,颗粒位置可以在一定的区间内进行调整,床层略有膨胀,当 颗粒仍不能自由运动,这时床层处于初始或临界化状态,床层高度增至 ,如 左图所示,而当继续增加,即

此时床内全部颗粒将“浮起”,颗粒层将更膨胀,床层高度增大至L,床层内颗粒可以在流体中作随机运动,并同时发生固体颗粒沿不同的回路作上下运动,固体颗粒的这种运动就好象液体沸腾,故流化床也称为沸腾床。流化床内颗 粒与流体之间的摩擦力恰好与颗粒的净重力 相平衡,且 ,但 基本不变。 三、颗粒输送阶段 若继续增大,且 ,则颗粒将获得向 上上升的速度,其大小为 , 此时,颗粒将带出容器外,这一阶段称为颗粒输送阶段。§3.5.3、两种不同流化形式

流态化点火技术工艺的探索与实践(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 流态化点火技术工艺的探索与 实践(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

流态化点火技术工艺的探索与实践(标准 版) 沸腾炉发电技术优点是燃用低热质燃料,成本低,效益高。但也存在许多缺点,如热效低,磨损大,点火难等,这些问题目前在国际上尚未得到彻底解决。永荣发电厂曾对沸腾锅炉启动点火不断进行的探索,相继探讨过“固定床、亚临界、流态化、热启动”等点火方式,使点火成功率大大提高。 一、沸腾炉点火失败的原因 永荣发电厂2000年前三年点火成败情况统计如下: 1.对点火失败的原因分析 上表统计表明,2000年前三年的点火成功率在80%左右,失败率约20%。从设备因素、准备因素、操作因素等三个方面对失败的原因作进一步分析,统计结果如下:

从上表看出,因操作不当造成点火失败,1997年占84%,1998年占80%,1999年占87.5%,设备障碍和准备不充分影响点火失败占百分之十几,因此,操作不当是造成沸腾炉点火失败的主要原因。具体分析如下: (1)操作因素。主要表现:一是点火启动时送风小底料和引子煤没有充分混合,底料预热时间不够,司炉人员被料层表面引子煤着火的假象所迷惑,盲目减风,急于求成,底料温度还未达到着火的要求,导致点火失败;二是底料着火燃烧时,送风量没跟上,增加的送风量不能满足底料升温速度所需要的风量,引子煤爆燃造成点火底料结焦;三是底料开始着火时,增加风量过大,底料着火后被吹熄,没掌握好底料温升和送风量的配比。 (2)准备因素。一是沸腾炉点火前引子煤和溢流灰配比不当,未严格按规定的25%的引子煤配比75%的溢流灰:二是引子煤热值低于2000千焦,燃点高于320℃点火交换时难以掌握;三是引子煤颗粒粗,粒度大于10毫米。 (3)设备因素。首先是风帽导流板变形,风帽小眼堵塞,布风不

浅谈通信技术发展史

浅谈通信技术发展史 在学习《现代通信技术》这么课程学期过半后,了解并掌握了一些与通信相关的知识,加以课程之余自己通过查阅书籍和使用网络工具,将通信史这一知识方面整理成以下文字,用以自我提高以及与大家共同进步。 人类进行通信的历史悠久。历史上最早的通信手段和现在一样是“无线”的,如利用以火光传递信息的烽火台,通常大家认为这是最早传递消息的方式了。事实上不是,在我国和非洲古代,击鼓传信是最早最方便的办法,非洲人用圆木特制的大鼓可传声至三四公里远,再通过“鼓声接力”和专门的“击鼓语言”,可在很短的时间内把消息准确地传到50公里以外的另一个部落。其实,不论是击鼓、烽火、旗语,还是今天的移动通信,要实现消息的远距离传送,都需要中继站的层层传递,消息才能到达目的地。不过,由于那时人类还没有发现电,所以要想畅通快速地实现远距离传递消息只有等待了…… 19世纪中叶以后,随着电报、电话的发明,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列技术革新,开始了人类通信的新时代。 1837年,美国人塞缪乐·莫乐斯成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。 1864年,英国物理学家麦克斯韦建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。1875年,苏格兰青年亚历山大·贝尔发明了世界上第一台电话机。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。1888年,德国青年物理学家海因里斯·赫兹用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论,导致了无线电的诞生和电子技术的发展。 电磁波的发现产生了巨大影响。不到6年的时间,俄国的波波夫、意大利的马可尼分别发明了无线电报,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般涌现出来。 电磁波的发现也促使图像传播技术迅速发展起来。实现了电子扫描方式的电视发送和传输,制造出第一台符合实用要求的电视摄像机。经过人们的不断探索和改进,一些国家相继建立了超短波转播站,电视迅速普及开来。 图像传真也是一项重要的通信。1980年后,传真技术向综合处理终端设备过渡,除承担通信任务外,它还具备图像处理和数据处理的能力,成为综合性处理终端。静电复印机、磁性录音机、雷达、激光器等等都是信息技术史上的重要发明。 随着电子技术的高速发展,军事、科研迫切需要解决的计算工具也大大改进。微电子技术极大地推动了电子计算机的更新换代,使电子计算机显示了前所未有的信息处理功能,成为现代高新科技的重要标志。 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管

实验六固体流态化的流动特性实验(精)

实验六 固体流态化的流动特性实验 一、 实验目的 在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。近年来,流化床设备得到愈来愈广泛的应用。 固体流态化过程又按其特性分为密相流化和稀相流化。密相流化床又分为散式流化床和聚式流化床。一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。 本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和临界流化速度,并实验验证固定床压降和流化床临界流化速度的计算公式。通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。 二、 实验原理 当流态流经固定床内固体颗粒之间的空隙时,随着流速的增大,流态与固体颗粒之间所产生阻力也随之增大,床层的压强降则不断升高。为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。现将一种较为常用的公式介绍如下: 流体流经固定床的压降,可以仿照流体流经空管时的压降公式(Moody 公式)列出。即 2 20u d H p p m m ρλ??=? (1) 式中,H m 为固定床层的高度,m 、d p 为固体颗粒的直径,m 、u 0为流体的空管速度,m ·s -1;ρ为流体的密度,Kg ·m -3;λm 为固定床的摩擦系数。 固定床的摩擦系数λm 可以直接由实验测定,根据实验结果,厄贡(Ergun)提出如下经验公式: ???? ??+???? ??-=75.1Re 150123m m m m εελ (2) 式中,εm 为固定床的空隙率;Re m 为修正雷诺数。Re m 可由颗粒直径d p ,床层空隙率εm ,流体密度ρ,流体粘度μ和空管速度u 0,按下式计算: m p m u d εμρ-?=11Re 0 (3) 由固定床向流化床转变式的临界速度u mf ,也可由实验直径测定。实验测定不同流速下的床层压降,再降实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图1所示。 ΔP mf u 0 图1流体流经固定床和流化床时的压力降 为计算临界流化速度,研究者们也曾提出过各种计算公式,下面介绍的为一种半理论半

简述通信行业的发展历程

简述通信行业的发展历程 摘要:本文简要叙述了通信技术的基本概念和主要发展历程,并以时间表的形式分析和记录了中国电信行业的主要发展史,并简要介绍了作为下一代通信技术的4G网络技术的基本原理和运用,并简要归纳了4G网络技术目前在国内的发展现状。 关键字:通信、通信技术、运营商、4G 一、通信的基本概念和主要发展历程 通信技术是当代生产力中最为活跃的技术因素,对生产力的发展和人类社会的进步起着直接的推动作用。通信最主要的目的就是传递信息。最早的通信包括最古老的文字通信以及我国古代的烽火台传信。而当今所谓的通信技术是指18世纪以来的以电磁波为信息传递载体的技术。通信技术的发展历史上主要经历了三个阶段: 初级通信阶段(以1839年电报发明为标志) 近代通信阶段(以1948年香农提出的信息论为标志) 现代通信阶段(以20世纪80年代以后出现的互联网、光纤通信、移动通信等技术为标志) 从1838年莫尔斯发明电报开始,通信技术经历了从架空明线、同轴电缆到光导纤维,从步进展、纵横制导数字程控交换机,从固定电话、卫星通信到移动电话、从模拟通信技术到数字通信技术的演进。通信技术每一次的重大进步,都极大地提升了通信网的能力和扩展了通信业务,如从过去的电报、传真、电话到现在的可视电话、即时通信(QQ&MSN)和电子邮件(E-mail)等,给通信行业发展注入了新活力,推动了社会通信服务水平的提高。现在通信技术和业务已

渗透到人们生活娱乐、工作学习的方方面面,深刻地改变了人类社会的生活形态和工作方式。随着社会的发展和进步,人类对信息通信的需求更加强烈,对其要求也越来越高。理想的目标就是实现任何人在任何时候、任何地方与任何人以及相关物体进行任何形式的信息通信。 百年以来,通信技术一直由西方国家主导其发展。直到世纪之交,历史才发生改变。2000年5月,由大唐电信科技产业集团(电信科学技术研究院)代表我国政府提出的具有自主知识产权的TD-SCDMA,被国际电信联盟(ITU)采纳为3G无线移动通信国际标准。2001年3月被3GPP采纳,这是我国通信百年历史上零的突破。移动通信从只支持语音通信的第一代模拟移动通信系统(1G),发展到到支持话音和低速数据(短信、GPRS)等的第二代数字移动通信系统(2G),再到支持视频通信、高速数据以及多媒体业务的第三代移动通信系统(3G)。当前,处在从2G到3G转折时期的通信行业正经历着一场前所未有的深刻变革,包括技术、网络、业务以及运营模式。电路交换技术与分组交换技术融合,将导致电信网、计算机网和有线电视网在技术、业务、市场、终端、网络乃至行业运行管理和政策方面的融合。在业务竞争中,各个电信运营商也在打破传统电信的思维或疆界,开拓新的市场。 二、中国电信行业发展历程 1、1949——1994 政府行政绝对垄断 从1949年11月1日邮电部成立到1978年,整个电信企业完全依靠行政垄断进行经营,在管理上采用政企合一的方式。政府无论从经营业务到资费方面都实行严格的控制,完全是计划经济,完全是政府定价,而且它的服务主要是面向党、政、军的,并没有考虑到为个人服务。举例说,直到改革开放初期的1979

固体流态化处理步骤

t1 22℃t2 22.6℃t 44.6 22.3℃ 997.701(密度)粘度0.9579 用内插法 求得粘度 0.95127 0.9358 Q u h1 h2 Δp l Δp/l 16 0.001587302 15.5 20.8 518.7346809 19.3 2687.744 461 20 0.001984127 15 21.3 616.609149 19.3 3194.866 057 28 0.002777778 13.3 22.7 920.0200001 19.3 4766.943 006 32 0.003174603 13.1 23.3 998.3195746 19.3 5172.640 283 36 0.003571429 12.4 23.9 1125.556383 19.3 5831.898 358 40 0.003968254 11.7 24.7 1272.368085 19.3 6592.580 753 52 0.00515873 9.8 26.8 1663.865958 19.3 8621.067 138 64 0.006349206 10 26.4 1605.141277 19.9 8066.036 567 76 0.007539683 9.8 26.5 1634.503617 20.5 7973.188 377 88 0.008730159 9.7 26.6 1654.078511 21 7876.564 338 100 0.009920635 9.8 26.7 1654.078511 21.4 7729.338 836 120 0.011904762 9.7 26.7 1663.865958 22.2 7494.891 701 124 0.012301587 9.7 26.7 1663.865958 22.3 7461.282 322 εm 平均Δp/l 6420.695 554 0.561411 518

流化床技术及国内的应用

流化床技术及国内的应用 从流化床在国内制药工业应用的情况出发,分析了流化床在干燥、制粒、制丸、包衣方面的各自特点,同时也阐明了流化床技术发展方向。 流化床技术的应用较为广泛,其中最为广泛的应用技术为流化床干燥,流化床干燥又称沸腾干燥,使颗粒等物料呈沸腾状态,并在动态下进行热交换。流化床技术因气—固两相大面积接触,其快速传热传质、温度梯度小的特性而被广泛运用于工业生产。然而,制药工业运用流化床技术进行粉(粒)状物料干燥已有数十年的历史,20世纪末,由德国、日本、瑞士引进的流化床一步制粒机为我国固体制剂生产作出了革命性贡献。近年来,流化床技术已溶入至干燥、制粒、药物包衣等领域。 1.流化床干燥机 1.1间隙式流化床 随着制药厂GMP改造工作的开展,带搅拌的流化床干燥机得到广泛的运用。 其特点:(1)床内设置搅拌,避免了死角及“沟流”现象;(2)设备结构简单,成本低,得以快速推广。 缺点:间隙式操作,批处理能力低。同时,对粉尘含量高的干燥操作,过滤器阻力损失大,不能连续操作。 1.2连续式流化床干燥 GMP改造促进了间隙式搅拌流化床的运用,但也在相当程度上将连续式流化床带入了误区,将其定位在清洗死角和交叉污染上,而几乎被遗忘。 连续式流化床却具有间隙式流化床无法比拟的优点:(1)连续进出料,适合大规模生产操作,同使用多台间隙式流化床相比,其无需移动料车,布局面积小; (2)动态下进料,避免了加料引起的压实、结块死角。(3)易于与制粒机、振荡筛、整粒机构成连续生产线,实现封闭操作的物流系统。 随着GMP的深入,连续式设备会得以发展,但需要制药厂、药机工程设计人员向如下方向去深入研究: (1)湿粒加料,现行的压板加料伴随密封不严的现象,而星形加料未解决对粒的挤压、变形甚至粘连的问题。由此看来,开发密闭性良好的分散加料装置势在必行; (2)清洗死角的问题,传统的过滤角以圆弧过度,舌形多孔板代替直孔板,不积料视窗应得以贯彻; (3)CIP方面,在设备可扩展分离室,流化床进风系统设置CIP清洗,避免交叉污染。 2.流化床制粒机 2.1顶喷式流化床制粒机 顶喷式流化床制粒机是目前运用最为广泛的机型,由于它集粉体混合—制粒—干燥于一体,俗称一步制粒机,其工艺已经成熟。 2.1.1目前顶喷式流化床制粒机的差距 但与国外先进技术相比,目前顶喷式流化床制粒机尚存很大的差距,主要表现在几个方面:

流态化还原炼铁技术

流态化还原炼铁技术 流态化(fluidization)是一种由于流体向上流过固体颗粒堆积的床层而使得 固体颗粒具有一般流体性质的物理现象,是现代多相相际接触的工程技术。使用流态化技术的流化床反应器因具有相际接触面积大,温度、浓度均匀,传热传质条件好,运行效率高等优点而应用于现代工业生产。 高炉炼铁技术在矿产资源受限和环保压力增大等形势下,将面临着前所未有的挑战。铁矿石对外依存度过高、铁矿石粒度越来越小和焦炭资源枯竭等状况,迫使人们加快步伐探索改进或替代高炉工艺的非高炉型炼铁工艺。以气固流态化还原技术为代表的非高炉炼铁工艺逐步受到重视。 新工艺的建立和发展需要理论研究作为支撑。目前国内对于流态化还原炼铁 过程中的气固两相流规律的认识还不够深入,特别是对不同属性铁矿粉的流态化特性、不同操作条件下的流态化还原特性,以及反应器结构对流态化还原过程的影响等相关研究还不够充分,基于流态化还原技术的新工艺要成熟应用于大规模工业生产还有明显距离。 发展流态化技术须重视基础研究 流态化技术可以把固体散料悬浮于运动的流体之中,使颗粒与颗粒之间脱离接触,从而消除颗粒间的内摩擦现象,使固体颗粒具有一般流体的特性,以期得到良好的物理化学条件。流态化技术很早就被引入冶金行业,成为非高炉炼铁技术气基还原流程中的一类重要工艺。流态化技术在直接还原炼铁过程中主要有铁矿粉磁化焙烧、粉铁矿预热和低度预还原、生产直接还原铁的冶金功能。 我国从上世纪50年代后期开始流态化炼铁技术的研究。1973年~1982年,为 了开发攀枝花资源,我国进行了3次流态化还原综合回收钒钛铁的试验研究。中国科学院结合资源特点对贫铁矿、多金属共生矿的综合利用,开展了流态化还原过程和设备的研究;钢铁研究总院于2004年提出低温快速预还原炼铁方法(FROL TS),并

通信发展史

通信发展史 概述 人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。千百年来,人们一直在用语言、图符、钟鼓、烟火、竹简、纸书等传递信息,古代人的烽火狼烟、飞鸽传信、驿马邮递就是这方面的例子。现在还有一些国家的个别原始部落,仍然保留着诸如击鼓鸣号这样古老的通信方式。在现代社会中,交通警的指挥手语、航海中的旗语等不过是古老通信方式进一步发展的结果。这些信息传递的基本方都是依靠人的视觉与听觉。 19世纪中叶以后,随着电报、电话的发明,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列技术革新,开始了人类通信的新时代。 人类历史上最早的通信手段和现在一样是“无线”的,如利用以火光传递信息的烽火台,通常大家认为这是最早传递消息的方式了。事实上不是,在我国和非洲古代,击鼓传信是最早最方便的办法,非洲人用圆木特制的大鼓可传声至三四公里远,再通过“鼓声接力”和专门的“击鼓语言”,可在很短的时间内把消息准确地传到50公里以外的另一个部落。 长城烽火台 旗语

其实,不论是击鼓、烽火、旗语(通过各色旗子的舞动)还是今天的移动通信,要实现消息的远距离传送,都需要中继站的层层传递,消息才能到达目的地。不过,由于那时人类还没有发现电,所以要想畅通快速地实现远距离传递消息只有等待了…… 1.电报的发明 电报的发明 人类通信史上革命性变化,是从把电作为信息载体后发生的。 1753年2月17日,在《苏格兰人》杂志上发表了一封署名C·M的书信。在这封信中,作者提出了用电流进行通信的大胆设想。虽然在当时还不十分成熟,而且缺乏应用推广的经济环境,却使人们看到了电信时代的一缕曙光。 1793年,法国查佩兄弟俩在巴黎和里尔之间架设了一条230千米长的接力方式传送信息的托架式线路。据说两兄弟是第一个使用“电报”这个词的人。 1832年,俄国外交家希林在当时著名物理学家奥斯特电磁感应理论的启发下,制作出了用电流计指针偏转来接收信息的电报机;1837年6月,英国青年库克获得了第一个电报发明专利权。他制作的电报机首先在铁路上获得应用。不过,这种方式很不方便和实用,无法投入真正的实用阶段。历史到了这关键的时候,仿佛停顿了下来,还得等待一个画家来解决。美国画家莫尔斯在1832年旅欧学习途中,开始对这种新生的技术发生了兴趣,经过3年的钻研之后,在1835年,第一台电报机问世。但如何把电报和人类的语言连接起来,是摆在莫尔斯面前的一大难题,在一丝灵感来临的瞬间,他在笔记本上记下这样一段话: “电流是神速的,如果它能够不停顿走十英里,我就让他走遍全世界。电流只要停止片刻,就会出现火花,火花是一种符号,没有火花是另一种符号,没有火花的时间长又是一种符号。这里有三种符号可组合起来,代表数字和字母。它们可以构成字母,文字就可以通过导线传送了。这样,能够把消息传到远处的崭新工具就可以实现了!” 莫尔斯 随着这种伟大思想的成熟,莫尔斯成功地用电流的“通”、“断”和“长断”来代替了人类的文字进行传送,这就是鼎鼎大名的莫尔斯电码。 1843年,莫尔斯获得了3万美元的资助,他用这笔款修建成了从华盛顿到巴尔的摩的电报线路,全长64.4公里。1844年5月24日,在座无虚席的国会大厦里,莫尔斯用他那激动

固体流态化实验

4 固体流态化实验 实验目的 (1) 掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法; (2) 测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 实验原理 4.2.1 固定床 1) 基本概念 当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下: 1. 静床堆积密度:ρb =M/V, 它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。 2. 静床空隙率ε : ε=1–(ρb /ρs ), 它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。 2) 固定床阶段压降Δp m 与空速u 的关系 当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式: m m m d u K d K uL p ψ-+ψ-=?ρεεμεε322 321)1() ()1( (1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直线,从直线的 斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。 4.2.2 流化床 1) 基本概念 当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。 流化床现象在一定的流体空速内出现,在此流速范围内,随着流速的加大,流化床高度不断增加,床层空隙率相应增大。流化床根据流体有性质不同,可分为以下两种类型。 1. 散式流化——若流化床中固体颗粒均匀地分散于流体中,床层中各处空隙率大致相等, 床层有稳定的上界面,这种流化型式称为散式流化。当流体与固体的密度相差较小时会发生散式流化,如液-固体系。 2. 聚式流化——对气固体系,因流化床中气体与固体的密度相差较大,气体对固体的浮力很小,气体对颗粒的支撑主要靠曳力,此时气体通过床层主要以大气泡的形式出现,气泡上升到一定高度处会自动破裂,造成床层上界面有较大的波动,这种气固体系的流态化称为聚式流化。 2) 流化床阶段压降Δp m 与空速u 的关系 1. 流化床层的压降Δp m 对散式流化,流化阶段床层修正压强降Δp m 等于单位截面积床层固体颗粒的净重,即 Δp m = m( ρs –ρ)g/(A ρs )=L(1–ε)( ρs –ρ)g (2)

通信工程介绍概况

通信工程介绍概况 通信工程(也作电信工程,旧称远距离通信工程、弱电工程)是电子工程的一个重要分支,电子信息类子专业,同时也是其中一个基础学科。该学科关注的是通信过程中的信息传输和信号处理的原理和应用。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。 该学科是信息科学技术发展迅速并极具活力的一个领域,尤其是数字移动通信、光纤通信、Internet网络通信使人们在传递信息和获得信息方面达到了前所未有的便捷程度。通信工程具有极广阔的发展前景,也是人才严重短缺的专业之一。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。通信工程研究的是以电磁波、声波或光波的形式把信息通过电脉冲,从发送端(信源)传输到一个或多个接受端(信宿)。接受端能否正确辨认信息,取决于传输中的损耗高低。信号处理是通信工程中一个重要环节,其包括过滤,编码和解码等。毕业后可从事无线通信、电视、大规模集成电路、智能仪器及应用电子技术领域的研究,设计和通信工程的研究、设计、技术引进和技术开发工作。 研究内容 通信工程专业主要为研究信号的产生、信息的传输、交换和处理,以及在计算机通信、数字通信、卫星通信、光纤通信、蜂窝通信、个人通信、平流层通信、多媒体技术、信息高速公路、数字程控交换等方面的理论和工程应用问题。随着19世纪美国人发明电报之日起,现代通信技术就已经产生。为了适应日益发展的技术需要,通信工程专业成为了美国大学教育中的一门学科,并随着现代技术水平的不断提高而得到迅速发展。 专业发展 通信工程专业代码:0810,分为两个学科,一个是偏向于传输的“通信与信息系统(081001)”,另一个是偏向于编解码的“信号与信息处理(081002)”。其中“通信与信息系统(081001)”的前身是电机系,北京交通大学是中国通信与信息系统研究的发祥地;“信号与信息处理(081002)”的前身是信息论系,西安电子科技大学是中国信号与信息处理的发源地。 未来展望

无线通信的发展历程 (1)

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。

第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些系统容易被第三方窃听。1G的主要蜂窝系统包括AMPS、NMT、Hicap、CDPD、Mobitex、DataTac、TACS和ETACS。 所有1G系统都有两类逻辑信道:业务信道和控制信道。业务信

相关文档
最新文档