19全国高中数学竞赛专题-三角函数

19全国高中数学竞赛专题-三角函数
19全国高中数学竞赛专题-三角函数

三角恒等式与三角不等式

一、基础知识

定义1 角:一条射线绕着它的端点旋转得到的图形叫做角。角的大小是任意的。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。 定义2 角度制:把一周角360等分,每一等分为一度。

弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=r

L ,其中r 是圆的半径。 定义3 三角函数:在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=

r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y

r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α

sec 1; 商数关系:tan α=α

ααααsin cos cot ,cos sin =; 乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;

平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.

定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;

(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α;

(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α;

(Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ??

? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。 单调区间:在区间???

???

+-22,22πππ

πk k 上为增函数,在区间??

????

++ππππ232,22k k 上为减函数, 最小正周期:2π. 奇偶性:奇函数

有界性:当且仅当x =2kx +

2π时,y 取最大值1,当且仅当x =3k π-2π时, y 取最小值-1,值域为[-1,1]。 对称性:直线x =k π+2

π均为其对称轴,点(k π, 0)均为其对称中心。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。

单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。

最小正周期:2π。 奇偶性:偶函数。

有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。

对称性:直线x =k π均为其对称轴,点??

? ??+

0,2ππk 均为其对称中心。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+2π)在开区间(k π-2π, k π+2

π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2

π,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,

s in (α±β)=s in αco s β±co s αs in β;

tan (α±β)=.)

tan tan 1()tan (tan βαβα ± 两角和与差的变式:2222sin sin cos cos sin()sin()αββααβαβ-=-=+- 2222cos

sin cos sin cos()cos()αββααβαβ-=-=+-

三角和的正切公式:tan tan tan tan tan tan tan()1tan tan tan tan tan tan αβγαβγαβγαββγγα

++-++=

--- 定理7 和差化积与积化和差公式: s in α+s in β=2s in ???

??+2βαco s ??? ??-2βα, s in α-s in β=2s in ??? ??+2βαco s ??

? ??-2βα, co s α+co s β=2co s ??? ??+2βαco s ??? ??-2βα, co s α-co s β=-2s in ??? ??+2βαs in ??

? ??-2βα, s in αco s β=21[s in (α+β)+s in (α-β)], co s αs in β=2

1[s in (α+β)-s in (α-β)], co s αco s β=21[co s(α+β)+co s(α-β)], s in αs in β=-21[co s(α+β)-co s(α-β)]. 定理8 二倍角公式:s in 2α=2s in αco s α, co s2α=co s 2α-s in 2α=2co s 2α-1=1-2s in 2α, tan 2α=

.)

tan 1(tan 22αα- 三倍角公式及变式:3sin 33sin 4sin ααα=-,3cos34cos 3cos ααα=- 1s i n (60)s i n

s i n (60)s i n 34αααα-+= ,1cos(60)cos cos(60)cos34

αααα-+= 定理9 半角公式: s in 2α=2)cos 1(α-±, co s 2α=2)cos 1(α+±, tan 2α=)cos 1()cos 1(αα+-±=.sin )cos 1()

cos 1(sin αααα-=+ 定理10 万能公式: ??

? ??+??? ??=2tan 12tan 2sin 2ααα, ??? ??+??? ??-=2tan 12tan 1cos 22ααα,.2tan 12tan 2tan 2??? ??-??? ??=ααα 定理11 辅助角公式:如果a , b 是实数且a 2+b 2≠0,则取始边在x 轴正半轴,终边经过点(a , b )的一个角为β,

则s in β=

22b a b +,co s β=22b

a a +,对任意的角α.a s in α+bco s α=)(22

b a +s in (α+β).

定理12 正弦定理:在任意△ABC 中有R C c B b A a 2sin sin sin ===, 其中a , b , c 分别是角A ,B ,C 的对边,R 为△ABC 外接圆半径。

定理13 余弦定理:在任意△ABC 中有a 2=b 2+c 2-2bco s A ,其中a ,b ,c 分别是角A ,B ,C 的对边。

定理14 射影定理:在任意△ABC 中有cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+ 定理15 欧拉定理:在任意△ABC 中,222OI R Rr =-,其中O,I 分别为△ABC 的外心和内心。

定理16 面积公式:在任意△ABC 中,外接圆半径为R,内切圆半径为r ,半周长2a b c p ++=

则211sin 2sin sin sin (sin sin sin )224a abc S ah ab C rp R A B C rR A B C R

======++

2221)(c o t c o t c o t )4

c a A b B c C ==++

定理17 与△ABC 三个内角有关的公式:

(1)sin sin sin 4cos

cos cos ;222

A B C A B C ++= (2)cos cos cos 14sin sin sin ;222

A B C A B C ++=+ (3)tan tan tan tan tan tan ;A B C A B C ++=

(4)tan

tan tan tan tan tan 1;222222

A B B C C A ++= (5)cot cot cot cot cot cot 1;A B B C C A ++=

(6)sin 2sin 2sin 24sin sin sin .A B C A B C ++= 定理18 图象之间的关系:y =s inx 的图象经上下平移得y =s inx +k 的图象;经左右平移得y =s in (x +?)的图象(相位变换);纵坐标不变,横坐标变为原来的ω1

,得到y =s in x ω(0>ω)的图象(周期变换);横坐标不变,

纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +?)(ω>0)的图象(周期变换);横坐标不变,纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +?)(ω, ?>0)(|A |叫作振幅)的图象向右平移

ω

?个单位得到y =A s in ωx 的图象。 定义4 函数y =s inx ???? ????????-∈2,2ππx 的反函数叫反正弦函数,记作y =a r c s inx (x ∈[-1, 1]), 函数y =co s x (x ∈[0, π]) 的反函数叫反余弦函数,记作y =a r cco s x (x ∈[-1, 1]).

函数y =tanx ???

? ??

??????-∈2,2ππx 的反函数叫反正切函数。记作y =a r ctanx (x ∈[-∞, +∞]). 函数y =co t x (x ∈[0, π])的反函数称为反余切函数,记作y =a r ccotx (x ∈[-∞, +∞]).

定理19 三角方程的解集,如果a ∈(-1,1),方程s inx =a 的解集是{x |x =n π+(-1)n a r c s ina , n ∈Z }。

方程co s x =a 的解集是{x |x =2kx ±a r cco s a , k ∈Z }.

如果a ∈R ,方程tanx =a 的解集是{x |x =k π+a r ctana , k ∈Z }。

恒等式:a r c s ina +a r cco s a =

2π;a r ctana +a r ccota =2

π. 定理20 若干有用的不等式: (1)若??

? ??∈2,

0πx ,则s inx

有2222cos 2cos 2cos x y z yz A xz B xy C ++≥++

等号成立当且仅当yzsinA=zxsinB=xysinC.

二、方法与例题

1.结合图象解题。

例1 求方程s inx =lg |x |的解的个数。

【解】在同一坐标系内画出函数y =s inx 与y =lg |x |的图象,由图象可知两者有6个交点,故方程有6个解。

2.三角函数性质的应用。

例2 设x ∈(0, π), 试比较co s(s inx )与s in (co s x )的大小。

【解】 若??

????∈ππ,2x ,则-10,所以co s(s inx )>s in (co s x ). 若0,2x π??∈ ???

,则因为s inx +co s x =2s in (x +4π)≤2<2π,所以0co s(2

π-co s x )=s in (co s x ). 综上,当x ∈(0,π)时,总有co s(s inx )

3.最小正周期的确定。

例3 求函数y =s in (2co s|x |)的最小正周期。

【解】 因为co s(-x )=co s x ,所以cos |x |=co s x, 所以T =2π是函数的周期;

4.三角最值问题。

例4 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。

【解法一】 令s inx =??? ??≤≤=+ππθθ4304

sin 2cos 1,cos 22x , 则有y =).4

sin(2sin 2cos 2πθθθ+=+ 因为ππ4304≤≤,所以ππθπ≤+≤42,所以)4

sin(0πθ+≤≤1, 所以当πθ43=,即x =2k π-2π(k ∈Z )时,y m in =0,当4πθ=,即x =2k π+2

π(k ∈Z )时,y m ax =2. 【解法二】 因为y =s inx +)cos 1(sin 2cos 1222x x x ++≤+=2(因为(a +b )2≤2(a 2+b 2)),

且|s inx|≤1≤x 2cos 1+,所以0≤s inx +x 2cos 1+≤2, 所以当x 2cos 1+=s inx ,即x =2k π+

2π(k ∈Z )时, y m ax =2, 当x 2cos 1+=-s inx ,即x =2k π-

2

π(k ∈Z )时, y m in =0。 5.换元法的使用。 例5 求x

x x x y cos sin 1cos sin ++=

的值域。 【解】 设t =s inx +co s x =).4sin(2cos 22sin 222π+=???? ??+x x x 因为,1)4sin(1≤+≤-π

x 所以.22≤≤-t

又因为t 2=1+2s inxco s x ,所以s inxco s x =212-t ,所以21121

2-=+-=t t x y ,所以.2

12212-≤≤--y 因为t ≠-1,所以121-≠-t ,所以y ≠-1.所以函数值域为.212,11,212??

? ??--???????-+-∈ y 6.图象变换:y =s inx (x ∈R )与y =A s in (ωx +?)(A , ω, ?>0).

例6 已知f (x )=s in (ωx +?)(ω>0, 0≤?≤π)是R 上的偶函数,其图象关于点???

??0,43πM 对称,且在区间??????2,0π上是单调函数,求?和ω的值。

【解】 由f (x )是偶函数,所以f (-x )=f (x ),所以s in (ωx+?)=s in (-ωx +?),

所以co s ?s inx =0,对任意x ∈R 成立。又0≤?≤π,解得?=

2π, 因为f (x )图象关于??

? ??0,43πM 对称,所以)43()43(x f x f ++-ππ=0。 取x =0,得)43(πf =0,所以sin .024

3=??? ??+πωπ所以243ππωπ+=k (k ∈Z ),即ω=32(2k +1) (k ∈Z ). 又ω>0,取k =0时,此时f (x )=sin (2x +2π)在[0,2

π]上是减函数; 取k =1时,ω=2,此时f (x )=sin (2x +2π)在[0,2

π]上是减函数; 取k =2时,ω≥310,此时f (x )=sin (ωx +2π)在[0,2

π]上不是单调函数,

综上,ω=3

2或2。 7.三角公式的应用。

例7 已知sin (α-β)=

135,sin (α+β)=- 135,且α-β∈??? ??ππ,2,α+β∈??

? ??ππ2,23,求sin 2α,cos 2β的值。 【解】 因为α-β∈??

? ??ππ,2,所以cos (α-β)=-.1312)(sin 12-=--βα 又因为α+β∈??

? ??ππ2,23,所以cos (α+β)=.1312)(sin 12=+-βα 所以sin 2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)=169120, cos 2β=cos [(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β)=-1.

例8 已知△ABC 的三个内角A ,B ,C 成等差数列,且

B C A cos 2cos 1cos 1-=+,试求2cos C A -的值。 【解】 因为A =1200-C ,所以cos 2

C A -=cos (600-C ), 又由于)

120cos(cos cos )120cos(cos 1)120cos(1cos 1cos 1000C C C C C C C A -+-=+-=+ =222

1)2120cos()60cos(2)]2120cos(120[cos 21)60cos(60cos 2000000-=---=-+-C C C C , 所以232cos 22cos 242--+-C A C A =0。解得2

22cos =-C A 或8232cos -=-C A 。 又2cos C A ->0,所以2

22cos =-C A 。 例9 求证:tan 20?+4cos 70?

【解】 tan 20?+4cos 70?=??20cos 20sin +4sin 20??

?

?????+=+=20cos 40sin 220sin 20cos 20cos 20sin 420sin ??

??????+=++=20

cos 40sin 10cos 30sin 220cos 40sin 40sin 20sin .320

cos 20cos 60sin 220cos 40sin 80sin ==+=??

????

例10 证明:7cos77cos521cos335cos 64cos x x x x x +++=

分析:等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、

x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次.

证明:因为,cos 33cos cos 4,cos 3cos 43cos 3

3x x x x x x +=-=所以

从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= =)2cos 1(29)2cos 4(cos 326cos 1x x x x +++++

全国高中数学竞赛专题三角函数定稿版

全国高中数学竞赛专题三角函数精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

三角恒等式与三角不等式 一、基础知识 定义1 角:一条射线绕着它的端点旋转得到的图形叫做角。角的大小是任意的。 若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负 角,若不旋转则为零角。 定义2 角度制:把一周角360等分,每一等分为一度。 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。 若圆心角的弧长为L ,则其弧度数的绝对值|α|= r L ,其中r 是圆的半径。 定义3 三角函数:在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重 合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原 点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余 切函数cot α= y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=α csc 1 ,co s α= α sec 1 ; 商数关系:tan α= α α αααsin cos cot ,cos sin = ; 乘积关系:tan α×co s α=s in α,cot α×s in α =co s α; 平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

初中数学竞赛 知识点和真题 第20讲 锐角三角函数

第20讲 锐角三角函数 没有精确的数学计算,没有多种测量和 几何作图,社会生产就无从进行。 ——凯洛夫 知识方法扫描 三角函数是基本初等函数之一,在科学技术许多领域中应用广泛,锐角三角函数体现了直角三角形中边和角之间的数量关系,因此它本身是几何和代数的一种结合体,用特殊角三角函数值和三角函数性质解题的方法称为三角法,用三角法解题通常要与构造直角三角形相结合。 ① 掌握锐角的三角函数即角的正弦,余弦,正切,余切的定义;同角三角函数间的关系,如α ααcos sin tan =,1cos sin 22=+αα等; ② 掌握三角函数值的取值范围,当0o≤α≤90o时,0≤sinα≤1, 0≤cosα≤1; ③ 会解直角三角形; ④ 要会利用当锐角变大时,其正弦值和正切值也变大,而余弦值和余切值变小的规律来处理关于比较同名函数值大小的问题; ⑤ 要会解答三角与代数,三角与几何的综合问题 经典例题解析 例1.已知,1cos cos 2=+θθ 求θθθθ8642sin sin sin sin 2+++的值。 解.1cos cos 2=+θθ ,θθθ22sin cos 1cos =-=∴。 +∴θ2sin 2θθθθθθθ432864cos cos cos cos 2sin sin sin +++=++ )cos (cos cos cos )cos (cos 222θθθθθθ++++= 211cos cos 12=+=++=θθ 例2.(1987年宁波市初中数学竞赛试题)若α为锐角,求证: 1114sin cos sin cos αααα ++>。 证明 1114s i n c o s s i n c o s αααα++- =111(1)(1)(2)sin cos sin cos αααα -+-+- =1sin 1cos 12sin cos sin cos sin cos αααααααα ---++

初中数学竞赛专题:三角函数

初中数学竞赛专题:三角函数 §7.1锐角三角函数 7.1.1★比较下列各组三角函数值的大小: (1)sin19?与cos70?; (2)cot65?与cos40?; (3)cos1?,tan46?,sin88?和cot38?. 解析(1)利用互余角的三角函数关系式,将cos70?化sin20?,再与sin19?比大小. 因为() ?=?-?=?,而 cos70cos9020sin20 ??>, ??>?=. tan52tan46tan451 因为() ?=?-?=?, cos1cos9089sin89 所以sin88sin891 ??>?>?. 评注比较三角函数值的大小,一般分为三种类型: (1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小. (2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

九年级三角函数竞赛题(含答案)

锐角三角函数 古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等.正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的sin 、cos 、tg 、ctg 的通用形式. 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tg α=ααcos sin ,ctg α=α αsin cos ; 倒数关系:tg αctg α=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 2 1sin 21sin 21==; (2)R C c B b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值. 思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.

三角及反三角函数

三角、反三角函数 一、考纲要求 1.理解任意角的概念、弧度的意义,能正确进行弧度和角度的互换。 2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式的证明。 5.了解正弦函数、余弦函数,正切函数的图像和性质,会用“五点法”画正弦函数,余弦函数和函数y=Asin(wx+?)的简图,理解A 、w 、?的物理意义。 6.会由已知三角函数值求角,并会用符号arcsinx 、arccosx 、arcotx 表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决三角形的计算问题。 8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三角函数的定义、性质解决一些简单问题。 9.能够熟练地写出最简单的三角方程的解集。 二、知识结构 1.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。其中射线OA 叫角α的始边,射线OB 叫角α的终边,O 叫角α的顶点。 (2)正角、零角、负角:由始边的旋转方向而定。 (3)象限角:由角的终边所在位置确定。 第一象限角:2k π<α<2k π+2 π ,k ∈Z 第二象限角:2k π+ 2 π <α<2k π+π,k ∈Z 第三象限角:2k π+π<α<2k π+2 3π ,k ∈Z 第四象限角:2k π+2 3π <α<2k π+2π,k ∈Z (4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内(而且只有这样的角),可以表示为k 2360°+α,k ∈Z 。 (5)特殊角的集合: 终边在坐标轴上的角的集合{α|α= 2 π k ,k ∈Z } 终边在一、三象限角平分线上角的集合{α|α=k π+4π ,k ∈Z } 终边在二、四象限角平分线上角的集合{α|α=k π-4π ,k ∈Z } 终边在四个象限角平分线上角的集合{α|α=k π-4 π ,k ∈Z } 2.弧度制: (1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。 (2)角度与弧度的互化:

新编高中数学竞赛用三角函数公式大全

三角函数公式汇总 一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan = 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。 三、诱导公式 ⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成.. 锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵απ +2、απ -2、απ+23、απ-2 3的三角函数值,等于α的异名函数值,前面加上一个把α看成.. 锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαs i n s i n c o s c o s )c o s (?+?=- βαβαβαtan tan 1tan tan )tan(?-+= + β αβαβαtan tan 1tan tan )tan(?+-=- 五、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-

全国高中数学竞赛专题三角函数

全国高中数学竞赛专题三 角函数 This manuscript was revised on November 28, 2020

三角恒等式与三角不等式 一、基础知识 定义1 角:一条射线绕着它的端点旋转得到的图形叫做角。角的大小是任意的。 若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负 角,若不旋转则为零角。 定义2 角度制:把一周角360等分,每一等分为一度。 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。 若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数:在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴 重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到 原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α =x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=α csc 1 ,co s α =α sec 1; 商数关系:tan α=α α αααsin cos cot ,cos sin = ; 乘积关系:tan α×co s α=s in α,cot α×s in α =co s α; 平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α (奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。 单调区间:在区间????? ? +-22,22ππππk k 上为增函数,在区间 ?? ????++ππππ232,22k k 上为减函数, 最小正周期:2π. 奇偶性:奇函数

高中数学竞赛讲义_三角函数

三角函数 一、基础知识 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正 弦函数s in α= r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α sec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。单调区间:在区间 ?? ????+-22,22ππππk k 上为增函数,在区间??????++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2 π时, y 取最小值-1。对称性:直线x =k π+2 π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x =k π均为其对称轴,点?? ? ?? +0,2ππk 均为其对称中心。有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+ 2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π ,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)= .) tan tan 1()tan (tan βαβα ±

九年级数学竞赛讲座锐角三角函数附答案

【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 13 5,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R C c B b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,B C=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.

注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值. 思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比. 【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=13 12,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明; (2) sinC= AC AD =1312,引入参数可设AD=12k ,A C =13k . 【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件; (2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦? 思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

高一数学竞赛培训——三角函数(包括答案)

高一数学竞赛培训——三角函数(包括答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高一数学竞赛辅导——三角函数 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.函数f (x ) = | sin x +cos x |的最小正周期是( ) A .π4 B .π2 C .π D .2π 2.若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若函数)sin()(?ω+=x x f 的图象(部分)如图所示,则?ω和的取值是( ) A .3 ,1π ?ω= = B .3 ,1π ?ω- == C .6,21π ?ω== D .6 ,21π ?ω-== 4.函数]),0[)(26sin(2ππ ∈-=x x y 为增函数的区间是( ) A . ]3,0[π B .]65,3[ππ C .]127,12[π π D . ],65[ππ 5.在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 6.在△ABC 中,8b =,c =ABC S ?=,则A ∠等于( ) A 、30 B 、60 C 、30或150 D 、60或120 7.函数y =-xcosx 的部分图象是 ( )

8.在△ABC 中, cos cos cos a b c A B C == ,则△ABC 一定是 ( ) A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 9.为了得到函数)6 2sin(π -=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移π6个单位长度 B .向右平移π 3 个 单位长度 C .向左平移π6个单位长度 D .向左平移π 3 个 单位长度 10.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中 240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关t 0 3 6 9 12 15 18 21 24 y 12 15.1 12.1 9.1 11.9 14.9 11.9 8.9 12. 1 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是(]24,0[∈t )( ) A .t y 6 sin 312π += B .)6sin(312ππ ++=t y C .t y 12 sin 312π += D . )2 12sin(312π π++=t y 二、填空题:本大题共5小题,每小题5分5,共25分.把答案填在横线上. 11.在△ABC 中,A =60°,B =45°,12=+b a ,则a = . 12. ? ?-?? ?+?8sin 15sin 7cos 8sin 15cos 7sin 的值是 . 13.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是 .

三角函数与反三角函数图像性质、知识点总结

三角函数 1.特殊锐角( 0°, 30°, 45°, 60°, 90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l ,圆心角为 a (rad ), 半径为 R,面积为 S 角a 的弧度数公式2π×(a /360 °) ①360°=2π rad 角度与弧度的换算②1°=π/180rad ③1 rad= 180°/π=57° 18′≈ 57.3 ° 弧长公式l a R 扇形的面积公式s1lR 2 3.诱导公式:(奇变偶不变,符号看象限)所谓 奇偶指是整数 k 的奇偶性( k· /2+ a) 所谓符号看象限是看原函数的象限(将a 看做锐角, k· /2+ a 之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了 学习指导参考

4. 三角函数的图像和性质: (其中 k z ) ①: 三角 函数 函 数 图 象 定义域 值域 周期 奇偶性 单 调 性 对 称 y sin x R [-1,1] 2 奇 2k , 2k 2 2 2k , 2k 2 2 对称轴 : x k 2 y cosx R [-1,1] 2 偶 2k ,2 k 2k ,2 k 对称轴 : x k y tanx y cotx x k x k 2 R R 奇 非奇非偶 k , k k , k 2 2 对称中心: ( k 2 , 0) 性 对称中心 : ( k , 0) 对称中心 : ( k + 2 , 0) 零值点 x k x k 2 最 x k , y max 1 x 2k , y max 1 ; 2 值 x k , y min 1 y 2k , y min 1 x k x 2 k

2013年全国初中数学竞赛试题及参考答案

2013年全国初中数学竞赛试题及参考答案 (湖北省3月17日复试) 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 5 2恰好有5个整数解,则t 的取值范围是( ). 2116.- <<-t A 2116.-<≤-t B 2116.-≤<-t C 2 11 6.-≤≤-t D 【分析】20232 353 5 2<<-??????? ?<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以211 6152314- ≤<-?<-≤t t ,本题选C 3.已知关于x 的方程 x x x a x x x x 22222 --=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】 422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212 ===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212 =-==--x x x x (舍); 再考虑等根: ⅲ)对04222 =-+-a x x ,2 70)4(84=→=--=?a a ,当21 ,272,1==x a . 故27,8,4=a ,2 1 ,1,1-=x 共3个.本题选C .

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 52恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2 116.-≤≤-t D 【分析】20232 35352<<-????????<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以 2116152314-≤<-?<-≤t t ,本题选C 3.已知关于x 的方程x x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根: ⅲ)对04222=-+-a x x ,270)4(84= →=--=?a a ,当21,272,1==x a . 故27, 8,4=a ,2 1,1,1-=x 共3个.本题选C .

高中数学竞赛专题讲座:三角函数与向量

高中数学竞赛专题讲座:三角函数与向量 一、三角函数部分 1.(集训试题)在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且 A C , A B sin sin 都是方程log b x=log b (4x-4)的根,则△ABC (B ) A .是等腰三角形,但不是直角三角形 B .是直角三角形,但不是等腰三角形 C .是等腰直角三角形 D .不是等腰三角形,也不是直角三角形 解:由log b x=log b (4x-4)得:x 2-4x+4=0,所以x 1=x 2=2,故C=2A ,sinB=2sinA , 因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A ,∴3sinA-4sin 3A=2sinA , ∵sinA(1-4sin 2A)=0,又sinA ≠0,所以sin 2A= 41,而sinA>0,∴sinA=2 1. 因此A=30°,B=90°,C=60°。故选B 。 2.(2006吉林预赛)已知函数y=sinx+acosx 的图象关于x=5π/3对称,则函数y=asinx+cosx 的图象的一条对称轴是(C ) A .x=π/3 B .x=2π/3 C .x=11π/6 D .x=π 3.2006年南昌市)若三角形的三条高线长分别为12,15,20,则此三角形的形状为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不确定 4.(2006年南昌市)若sin tan a θθ=+,cos cot b θθ=+,则以下诸式中错误的是( B ) A .sin θ= 11+-b ab B .cos θ=1 1+-a ab C .tan cot θθ+=) 1)(1(21)1(2++-+++b a ab b a D .tan cot θθ-=)1)(1()2)((++++-b a b a b a 5.(2006安徽初赛)已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间, ∠DCE = 45°,则以AD 、DE 、EB 为边长构成的三角形的最大角是 ( ) A .锐角 B .钝角 C .直角 D .不能确定 6.(2006陕西赛区预赛)若3 3sin cos cos sin ,02θθθθθπ-≥-≤<,则角θ的取值范围是(C) A .[0, ]4 π B .[,]4 ππ C .5[, ]4 4ππ D .3[,)42 ππ 7.(2006年江苏)在△ABC 中,1tan 2A =,310 cos 10 B =.若△AB C 的最长边为1,则最短边的长为 ( D ) A .455 B .355 C .255 D .5 5 8.(2005年浙江)设2)(1=x f ,x x x f 2cos sin )(2+=,x x x f 2cos 2 sin )(3+=,24sin )(x x f =,上述函数中,周期函数的个数是( B ) A .1 B .2 C .3 D .4 【解】: 2)(1= x f 是以任何正实数为周期的周期函数;)(2x f 不是周期函数。 因为x sin 是以π21=T 为周期 的周期函数, x 2cos 是以222π =T 为周期的周期函数, 而1T 与2T 之比不是有理数,故)(2x f 不是周期函数。 )(3x f 不是周期函数。 因为2sin x 是以π221=T 为周期的周期函数, x 2cos 是以2 22π =T 为周期的周期函数,

初中数学竞赛:三角函数

初中数学竞赛:三角函数 直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这佯便定义了直角三角形中锐角的三角函数(如图3-14),常用的有: 利用比例的变形并且结合勾股定理,可以从三角函数定义中推出同角三角函数间的关系式: (1)倒数关系 tgα·ctgα=1; (2)商的关系 (3)平方关系 sin2α+cos2α=1. 这些同角三角函数关系式对任意锐角都成立,它们在求值、化简以及三角式的变形中有着重要的应用. 如图3-15所示,在直角三角形ABC中,∠A与∠B互为余角,根据三角函数定义不难得到互为余角的三角函数之间的关系:

sinB=sin(90°-A)=cosA, cosB=cos(90°-A)=sinA, tgB=tg(90°-A)=ctgA, ctgB=ctg(90°-A)=tgA. 上述四个公式可以概括为:一个锐角的余角的三角函数值,等于该锐角相应的余函数的函数值 由图3-16可以看到,在直角三角形ABC中,如果斜边长度不变,当锐角A增大时,sinA 与tgA的值也随之增大,而cosA与ctgA的值随之减小.特别地,当A=0时,sin0=0,tg0=0,cos0=1,ctg0值不存在;当A=90°时,sin90°=1,tg90°值不存在,cos90°=0,ctg90°=0. 由于一个角的正弦或余弦值等于直角边与斜边的比,而直角三角形的斜边总是大于直角边,所以,当α为锐角时,总有 0<sinα<1,0<cosα<1. 我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题. 例1 不查表,求15°的四种三角函数值. 分析 30°,45°,60°这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15°角的三角函数值,也可以利用直角三角形的性质将其推出.

相关文档
最新文档