探讨深部开采面临的主要问题与对策

探讨深部开采面临的主要问题与对策
探讨深部开采面临的主要问题与对策

探讨深部开采面临的主要问题与对策

摘要:随着我国国民经济发展,煤矿深部开采技术不断进步,国家加大对于深部开采的投入力度,而在深部开采过程中,由于深部多变、复杂的煤岩体特点,给身边开采造成一定困难。本文主要探讨深部开采面临的主要问题,并提出一些针对性的对策。

关键词:深部开采;问题;对策

针对矿井深部开采,开采的深度直接反映矿井的开采难度。近年来,随着我国经济持续、稳定增长,对于能源需求量日益增多,使得矿井开采的延伸速度在不断加快。目前,我国矿井开采已发展至深部开采阶段,同浅部开采对比,深部开采的成本较高,随着深度增加,也不利于采矿环境,给煤矿生产、安全造成极大问题。笔者根据自身多年从业经验,对深部开采中面临的主要问题进行分析,并提出一些针对性的建议,现总结如下:

一.深部开采面临的主要问题

首先,巷道围岩变形。地应力随着开采深度的增加而增大,同时巷道周围的应力也随之增高。处于浅部较硬的围岩,直到深部后形成工程软岩,主要表现应变软化、强烈扩容性特点,降低了巷道岩体的强度,严重破坏了支护与巷道。按照相关统计显示,深部巷道的翻修比例在91%以上,显著增加了巷道维护成本,导致矿井生产系统不畅通,降低运输能力,以及风水电等一系列系统问题。具体表现如下方面:其一,巷道的变形速度较快,底鼓较为严重,变形量较大,在深部高应力的条件下,岩体具备较高能量,对巷道开挖具有卸荷作用,短时间可释放岩体聚集能量,深部围岩最大应力和最小应力差呈上升趋势。前掘后修已成为深部回采巷道施工的基础工作;其二,岩性显著影响了巷道的稳定性,对于浅部岩体而言,岩性变化几乎不影响巷道变形。而到达深部之后,不同岩性围岩的变形差异逐渐增加,巷道位置取决于岩性主导因素,若同一巷道的岩性不同,采用非等强支护方法已成为主要的巷道围护方法;其三,掘进后,巷道持续流变和变形,是深部巷不变形的表现特征。

其次,矿井煤同瓦斯之间的冲击、突出地压。其一,随矿井开采深度有所增加,煤层瓦斯压力随之增加,许多旧浅部属于非突出煤层,转变成突出煤层,随深度增加,其突出频度、强度也显著增大。由于我国煤矿开采条件较为复杂,矿井几乎全部为瓦斯矿井,瓦斯是煤矿安全生产的必要问题。其二,煤岩的冲击地压日益突出,破坏过程显著加剧,而且承压水、瓦斯提出等问题存在互相叠加作用,使得灾害预测难度增加。

第三,矿井水灾。由于地下水处于渗流场内,通常裂隙岩体水渗流与达西定理符合,然而矿井深部岩体由于高地温、高应力作用影响,特征出现显著变化,高渗透压力极易发生地质灾害。由于我国煤矿地质、水文地质条件极为复杂,奥灰水压呈持续增长趋势,承压水问题极为严重,同时突水几率也相应增加。

第四,高温热害。因为高温职工没有集中注意力,对生产效率造成严重影响,明显增加了机电设备、人身事故率,不能确保采掘工作面的安全、稳定生产。根据《煤矿安全规程》规定,煤矿采掘的工作面空气温度必须小于26摄氏度,机电硐室温度必须小于30摄氏度,若这两个工作点超过了30、34摄氏度的室内温度,必须强制性停止作业。

第五,煤层自燃。根据相关研究显示,随着开采深度增加,其地温随之增高。

而地温愈高,煤层的原始温度也就越高,进一步增加了围岩层的温度,有利于自然蓄热,增大环境风流和煤体的温差,导致漏风供养动力“热风压“增大,增强煤体自身氧化放热强度、耗氧速度,最终增加了媒体自燃的危险性。所以,在深部开采时,若温度环境较高,更容易发生煤层自燃起火。

二.深部开采的问题解决对策

首先,强化深部地质工作,了解煤的水分布、瓦斯分布和岩体特征,了解井巷工程、围岩稳定状态与断层空间结构的关系,为制定技术途径、有效方案提供基础依据。

其次,统筹规划深部开采,尽量避免煤柱应力、采动叠加,导致应力升高。在稳定岩层中布置巷道,尽量使巷道方向和最大主应力方向保持一致,降低巷道受应力影响作用,防止开采发生支承压力,在已采采空区布置巷道。在开采时,预先开采上部煤层,实施跨巷回采。防止上部开采有煤柱遗留,保持同煤柱沿边的距离,防止相邻巷道互相影响。确定合理开采顺序,防止在相邻区段同步开采。研发有效、快速高应力的局部卸压技术,可有效防止因局部应力发生的动力灾害、巷道失稳问题。

第三,改善围岩控制,约束围岩变形,围岩支护主要包含主动、被动两种支护方式,主动支护主要为加固围岩,运用围岩自撑力合理控制围岩变形。被动支护主要为防护已松动破坏、约束围岩变形的岩石。利用锚网索的主动支护方式,改善围岩的特性,提高锚网索系统强度,有利于提高支护效果,控制不良地段的复合支护。

第四,加大对深井热害防治技术的研究,展开井下制冷技术、通风降温技术时,研究新技术途径、开创新思路,将热害转变成地下热能源,实现变害为利。同时,选择高科技成果,研发出环境友好、经济高效的降温新材料、新技术,进而确保深部采矿能够顺利开展。

第五,针对深部瓦斯突出问题,确定治理结合开发利用模式,平衡煤层开发和煤层气开发的地位。

第六,针对动力问题。进一步试验、研究动力发生的规律和特点,构建达到深部开采预测、预报的防治理论、措施。

第七,对于地温明显的自燃矿井,由深部矿井向开采方式、开采系统、监测技术、通风系统和阻化技术进行开拓,实现综合治理,构建有效、科学的防治技术体系。

第八,针对地下水问题。地下水是地球的宝贵的水资源,开展深部保水开采,具有十分重要的环境价值。采用先进底板加固技术,达到保水开采的目的。今后,还应该同步发展监测、治理技术,保证复杂水文地质、高水压条件下仍可安全生产。

三.结语

在我国目前与未来煤矿安全生产中,煤矿深部开采将面临煤层自燃、围岩变形等一系列问题,我们必然做到防范于未然,强化科技创新,研发先进技术装备,防范、降低因深部开采造成的风险,使深部煤矿实现安全、低成本、科学、搞笑的开采。

参考文献

[1] 曾翀.金属矿山深部开采的问题及对策探讨[J].城市建设理论研究(电子版) ,2013,(18).

[2] 皇甫美俊.煤矿深部开采存在的问题及对策探讨[J].科技创新与应用,2012,(14):86-86.

[3] 李新强.煤矿深部开采存在的问题及对策探讨[J].科技创业

家,2012,(13):113.

[4] 张海军,陈宗林,陈怀利等.深部开采面临的技术问题及对策[J].铜业工程,2010,(1):25-28.

[5] 赵辉,熊祖强,王文等.矿井深部开采面临的主要问题及对策[J].煤炭工程,2010,(7):11-13.

深部开采

深部矿井开采技术问题 摘要:本文根据我国主要深部矿区30余对矿井的实地调查、部分井下观测和25个矿务局的函调材料,对我国煤矿深部开采的基本状况及其在开采中遇到的巷道维护、冲击地压、瓦斯突出及地热等主要问题作了总结和剖析,并就今后煤矿深部开 技术问题提出了几点看法和建议。 1煤矿深部开采的现状及趋势 深井开采技术是当今世界主要深井开采国家(如德国、原苏联、波兰等)十分关注的问题之一。随着我国煤矿开采规模的扩大,开采深度的逐渐增加,深部开采中遇到的各种技术问题日益增多,对当前的煤矿生产和今后矿井建设的影响日趋严重。因此,研究深部开采问题,对安全、经济、合理地开发深部煤炭资源无疑有特别重要的意义。 我国是世界第一产煤大国,1997年原煤产量13.3亿吨。全国主要国有矿区90多个,井工开采的生产矿井588对(1996年统计)。据不完全统计,采深超过800m的深井19对,其中开滦矿务局赵各庄、沈阳矿务局彩屯矿采深超过1000m,新汶矿务局孙村矿、华丰矿、长广七矿采深超过800m。“八五”期间新打深井65个,平均深度588m,其中700~800m的井筒28个,800~1000m的井筒13个,1000m以上井有12个。 据煤炭资源开发和资源保护研究指出,在我国预测总储量中73.2%埋深在1000m 以下,浅部储量较少。因此,深井开采技术不仅是目前一些深矿井面临的问题,而且从长远看,它将是我国今后进一步开发利用深部煤炭资源的带有战略意义的问题。 2深井开采的主要技术问题 2·1矿压显现加剧,巷道维护困难随着矿井采深的不断增加,一方面,巷道断面必需加大,据对开滦矿区统计,近10年间采深平均增加100m,岩石巷道断面平均增加8.1%,煤、半煤岩巷平均增加32%;另一方面,地压增大,在深部高应力作用下,围岩移动更为剧烈,巷道产生变形破坏更为严重。在调查的超过700m的深井中,巷道矿压问题普遍严重,底鼓成为常见的地压现象,特别在采准巷道中尤其严重。失修和严重失修巷道比例增加,据开滦局调查统计,井深1000m时巷道失修率约是同条件下500~600m埋深巷道失修率的3~15倍,部分矿井巷道失修和严重失修率达20%以上。巷道维修占用大量人力物力,林西矿井深800m,巷道维修工占井下工人的比重为7.00%~10.50%。很多深部巷道由于严重破坏无法行人、行车而被迫停产反修。且常常出现前掘后修、重复反修的象。深井巷道维护问题已成为整个矿井生产系统中的最薄弱环节。 出现上述现象的主要原因是客观上井深、围岩应力增加。主观上没有充分认识深井巷道矿压规律,巷道支护形式不能适应深井巷道围岩变形的要求,支护形式、支架参数

矿山留矿采矿技术流程

矿山留矿采矿技术流程 留矿采矿法的特点是:将阶段分成矿块,矿块再分为矿房和矿柱二次回采。矿房自下而上分层回采,每次崩落的矿石放出三分之一左右,其余的贮存于矿房中作为继续上采的工作台,待矿房采完以后再放出。 一、方法特点 留矿采矿法的特点是:将阶段分成矿块,矿块再分为矿房和矿柱二次回采。矿房自下而上分层回采,每次崩落的矿石放出三分之一左右,其余的贮存于矿房中作为继续上采的工作台,待矿房采完以后再放出。矿房采完后回采矿柱和处理采空区。 二、适用条件 留矿采矿法主要用来开采矿石和围岩稳固的矿体。矿体厚度虽不受限制,但超过5m时,技术经济效果不如深孔和中深孔落矿的阶段

矿房法,一般应用较少。矿体倾角:在薄矿脉中,一般要求不小于60°,在中厚矿体中,一般要求不小于55°。倾角越小,放矿越困难,粉矿损失和平场工作量也越大。由于矿房中贮存有大量矿石,贮存期往往长达1~3年,因此矿石和围岩不能具有自燃性、氧化性和结块性;高硫矿床,矿石有放射性等应慎重采用。 三、结构参数 在薄和极薄矿脉中,阶段高度大多数矿山采用40~50m;在矿脉倾角很陡(60°以上)、矿石和围岩很稳固、赋存要素较稳定的条件下,也有采用50~60m的;矿脉倾角在50°~60°左右、矿石和围岩稳固性较差、或者矿体产状有突变现象,则采用30~40m。顶柱厚3m左右;如果矿石品位高,上部回风巷道不需要保留,也可以不留。 底柱高度,一般在运输巷道顶板上留3~3.5m;如果围岩稳固,木材来源广泛,可以不留,而用坑木架设的假底代替底柱。漏斗间距,用木漏斗时,取4~6m;用振动出矿机时,取 6~7m。矿块长度一般为40~60m,也有采用100~120m的。如果围岩和矿石都很稳固,矿块中部布置一中央天井,两端布置顺路天井。矿房宽度一般与矿脉厚度一直,但不应小于0.8m。拉底空间的宽度不应小于1.2m,并应按次规格上采一分层,然后逐渐缩小到设计的采幅宽度。

第六章 矿床开采技术条件

第六章矿床开采技术条件 第一节水文地质 一、区域水文地质概况 (一)自然地理 地形地貌:该区属低山丘陵区,标高在1613~1761.3m,相对高差约150m,地势总体呈北西西—南东东向延伸,单个山体多为东西向,南高北低,最高峰为马沟山,海拔1761.3m,其南部为低缓的丘陵地形。矿区内季节性洪流沟谷较为发育,一般规模小、流程短,最终呈散流消失于山前山间戈壁。 气候:该区处内陆腹地,属典型的干燥大陆性气候。降水稀少,蒸发强烈,干燥多风,温差变化大,年度最高气温35°C,最低气温-,20℃,平均气温6-8.5°C。年最大降水量一般集中在6—9月份,且占全年的80%以上为110mm左右,最低降水量90mm左右,平均约94.9mm。蒸发量大是本区气候的显著特点。多年平均蒸发量约为4000mm左右。其中4—9月蒸发量占全年的80%,蒸发量主要受气温控制,一般随气温升高而增加。4—6月份以西北风为主,5月份开始出现东南风及东风,最大风速27m/s,最小风速3.57m/s。冬季日照率约71%,冻土层最大厚度约132cm。 (二)区域水文地质 该区属内蒙古高原西部水文地质区,低山丘陵贫水地段。含水岩系主要为中生界变质岩、火成岩,白垩系碎屑岩及第四系松散岩类。

依据地下水赋存条件和水力性质不同将区内含水层划分为第四系松散岩类孔隙含水层、碎屑岩裂隙孔隙含水层和基岩裂隙含水层三大类。 1、第四系松散岩类孔隙含水层:松散岩类孔隙水分为沟谷潜水和山前山间戈壁含水组两个亚类。 <1>沟谷潜水主要为全新统冲积、洪积砂砾碎石组成,地下水分段赋存。较大沟谷在低山丘陵区均有第四系潜水赋存。富水性受地形、含水层厚度、汇水面积等因素控制。沟谷上游地形坡度大,侵蚀性作用较强,第四系沉积厚度小,一般水量较小;大沟下段,汇水面积大,第四系较厚,沟宽坡小,富水性较好。一般含水层厚度0.82-2.94m,水位埋深1.5-2.8m,单井涌水量10-30m3/d,矿化度2.6-7.4g/l,水化学类型属Cl·SO4—Na型。 <2>山前山间戈壁均为上更新统洪积砂碎石所覆盖。山前带,一般第四系覆盖厚度小,地形坡度大,基本为透水不含水,只有一些古洼地或古沟槽内,第四系沉积厚度较大,地下水得以富集。 2、碎屑岩裂隙孔隙含水层:主要赋存于白垩系下统下岩组,岩性为接触式泥、钙质胶结砂砾岩,补给条件差,水量较为贫乏或极贫乏。 主要含水段在13.38m以上,以风化裂隙含水为主,水位埋深2-3m,单井涌水量均小于5m3/d,矿化度1-4.1g/l,水化学类型属SO4·Cl— Na型。 3、基岩裂隙含水层:以华力西中期火成岩、变质岩块状硬脆岩

深部高应力下的资源开采与地下工程_香山会议第175次综述_赵生才

第17卷第2期2002年4月 地球科学进展 ADVANCE I N E ARTH SCIE NCES V ol.17 N o.2 Apr.,2002 文章编号:100128166(2002)022******* 深部高应力下的资源开采与地下工程① ———香山会议第175次综述 关 键 词:深部开采;地下资源;理论与技术 中图分类号:X75 文献标识码:B 随着社会与经济发展需求的日益增长和矿山工程技术体系的进步和完善,资源开采不断地在向深部发展。然而用浅部开采条件下的地质作用特征和矿压显现规律来推断深部开采地质状况,无疑远远不够且蕴含着极大的风险。因此,对深部高应力条件下的资源开采与地下工程进行统一的、三维的、系统的多元研究,以揭示其中的一系列基本科学问题,构筑我国在深部高应力条件下资源开采的相关的基础理论和地下工程技术体系,显得尤为重要。 香山科学会议于2001年11月5日至7日在北京香山召开了以“深部高应力下的资源开采与地下工程”为主题的香山科学会议第175次学术讨论会。 谢和平教授(中国矿业大学)、钱鸣高院士(中国矿业大学)、古德生院士(中南大学)被聘为本次会议执行主席。 1 矿山采掘业现状与深部资源开采的发展趋势 深部开采和地下工程是未来发展必然趋势。据不完全统计,国外开采超千米深的金属矿山有80多座,其中南非最多。南非绝大多数金矿的开采水平都在1000m以下。其中,Anglog old有限公司的西部深水平金矿,采矿深度达3700m;West Driefovten 金矿,矿体赋存地下600m,并一直延伸至6000m 以下。印度的科拉尔(K olar)金矿区,已有3座金矿采深超2400m,其中钱皮恩里夫金矿共开拓112个阶段,总深3260m。俄罗斯的克里沃罗格铁矿区,已有捷尔任斯基、基洛夫、共产国际等8座矿山采准深度达910m,开拓深度到1570m,将来要达到2000~2500m。另外,加拿大、美国、澳大利亚的一些有色金属矿山采深亦超过1000m。 我国已探明的煤炭资源量占世界总量的11.1%,今后相当长的历史时期内仍需保证煤炭的高产稳产。我国煤炭资源埋深在1000m以下的为29500万亿吨,占煤炭资源总量的53%。目前煤矿开采深度以每年8~12m的速度增加,东部矿井正以每10年100~250m的速度发展,预计在未来20年很多煤矿将进入到1000m到1500m的深度。在我国,一批金属矿山近年也已进入深部开采,例如红透山铜矿目前开采已进入900~1100m深度;冬瓜山铜矿现已建成2条超1000m竖井来进行深部开采;弓长岭铁矿设计开拓深度750m,距地表达1000m;夹皮沟金矿二道沟坑口矿体延深至1050 m;湘西金矿开拓38个中段,垂深超过850m。此外,还有寿王坟铜矿、凡口铅锌矿、金川镍矿、乳山金矿等许多矿山都将进行深部开采。 深井开采势在必行,已是国际矿业的重要研究领域。国外深井开采研究起步较早,最早观察到岩爆是在1900年的印度科拉尔金矿。美国大西洋(Atlantic)矿,1906年5月26日发生了一次较大的岩爆,当时估计的地震强度达到了里氏3.6级。美国密西根工业大学存有一份Lake Superior铜矿发生岩爆的报告(1939年出版)。南非金矿赋存较深,早在1908年就成立了专门委员会研究深井岩爆问题。加拿大于1928年在安大略(Ontario)矿首次出现岩爆,M orris on于1942年完成了一份研究报告,至今仍被视为这方面的经典岩爆研讨报告。 20世纪80年代以来,深井开采的事故越来越严重。以南非为例,在南非深部金矿的开采中,由于地震等事件诱发的岩爆、岩石冒落,使南非的采矿工业成为最危险的工业之一。一些有深井开采矿山的 ① 收稿日期:20022012181

矿山开采技术发展趋势

矿山开采技术发展趋势 摘要:一定时期内采矿技术的主要发展方向为:机械化大规模采矿、深井采矿、 溶浸采矿和充填采矿等工艺和技术。数字化矿山与智能开采将成为未来矿山开采的自然趋势。全面实现采矿的自动化,目前尚有较大的困难。但局部装备实现遥控系统,进行遥控开采,将可能在短期内实现。 关键词:采矿技术自动化趋势 前言 近些年来,全世界开采有用矿物总量约计200亿t,年递增率为4%~5%,其中硬岩约50亿t,由地下开采的矿量为10多亿t,主要是富矿和价值较高的有用矿物。从布局上看,有的矿山公司和钢铁联合企业的矿山几乎全是地下开采。总之,金属矿山地下开采在近期的矿山开采中仍将发挥重要的作用。随着全球性科学技术的突飞猛进,国内外地下采矿技术也发展很快,很多采矿新技术、新工艺、新材料和新设备在地下矿山得到了应用。国内外地下金属矿山采矿工艺技术和设备的发展。主要表现在采用各种采矿方法的比重和回采工艺技术装备有了很大的变化,均沿着高效率、高回采率和机械化的方向发展。采场生产能力和劳动生产率有了较大的提高,损失、贫化指标大幅度降低。笔者就近几年来金属矿山地下采矿开采在采矿方法、深井开采、采矿装备三个方面现状作一介绍,并对今后的研究方向提出一点想法。 一、地下金属矿山采矿方法 现阶段采矿方法仍以充填采矿法、空场采矿法、崩落采矿法为主。对18个重点铁矿山统计, 崩落采矿法占94.1%,空场采矿法占5.9%。黄金矿山充填采矿法占31%,空场采矿法占65%,其它占4%。有色金属矿山空场采矿法占46.1%,充填采矿法占19.6%,崩落采矿法占34.3 %。从以上统计数据看,铁矿地下开采仍以崩落采矿法为主,有色及黄金矿山地下开采仍以空场采矿法和充填采矿法为主。地下采矿技术是取得科技成果最多的一个技术领域,近十多年来,地下金属矿山充填采矿法和充填工艺技术发展迅速,崩落采矿法和空场采矿法在工艺技术上也在不断地改进、创新。因而促进金属矿地下采矿技术得到迅速发展,使部分 矿山的工艺技术达到了国际先进水平。 (一)充填采矿法 我国先后采用干式、分级尾砂胶结、全尾砂胶结、碎石水泥浆胶结等新工艺

深部技术开采及发展趋势

采矿工程学科前沿与进展 ——深部技术开采及发展趋势 姓名: 班级:采矿1101班 学号:1111104007

深部技术开采及发展趋势 随着浅部资源的逐渐消耗殆尽,矿产资源开发向深部发展将成为一种趋势。根据矿床开采工作所面临的地压问题,可按开采深度将矿山分为以下几类。 开采深度小于300m,称浅井开采。在此深度内采矿时,一般地压显现不严重,即使发生地压活动,也属静压问题,易于处理。 开采深度300~800m,称为中深井开采。根据矿体赋存条件、矿岩的物理力学性质,在掘进或开采过程中,可能发生轻度岩爆,如岩石弹射等现象。 开采深度超过800m,为深井开采。在此深度内具有二类变形特征的岩石会发生频繁的岩爆,影响作业安全。 与浅井或中深井开采相比,深井(含超深井)开采这一特殊环境将带来一系列安全问题,主要包括岩爆(即在压力作用下,岩石发生爆裂的现象)、高温、采场闭合和地震活动等,其中尤以岩爆为丰要危害。 预计随着浅部资源町供开发量的减少,深部资源勘探技术发展获得更多深部可开采资源,这一比例将会呈逐步减小的趋势。当代露天采矿工艺的技术发展趋势是开采工艺的综合化。采剥工艺的选择,贵在因地制宜。对于范围广阔、能力巨大的大型矿山,针对不同开采深度、不同地段、不同开采对象的特点,采用不同开采工艺,并组成综合工艺,以实现优化开采效果,已成为现代露天矿山的发展趋势。将机械化、自动化、通信、计算机及优化理论等多学科交叉应用,通过研究、开发,实现露天开采生产的自动调度,生产计划和过程的优化,开拓运输系统和采装系统的优化将是露天开采常用的计划、生产管理手段;在未来几年,数字矿山技术将会得到普及。2.2 地下开采工艺地下开采虽然产量比例小,但数量多,西方国家有地下矿 365 座(2002 年数据),其中多为小型但却高效的矿山。尽管如此,许多地下矿山十分巨大并装备有非常精致的设备和较高的自动化水平。对传统主要采矿方法的不断改进是地下开采工艺的发展趋势。如大间距集中化无底柱参数的进一步扩展,充填采矿技术中新的充填材料和充填工艺的研究,自然崩落法技术的完善与应用范围的扩展等等;针对特定矿体改进的采矿技术将会不断出现。由于易采资源耗竭,勘探深度的加深,将越来越多地开采深部矿体和难采矿体,深井开采技术、复杂难采矿体开采技术将是今后几年研究的重点,在理论研究和系统开采技术方面都将取得突破。深井开采的岩爆、矿震、冲击地压等动力灾害是深部开采中面临的突出问题,除此之外,安全技术、地质构造、采场布置与采矿方法、降温与通风、采场支护、超深竖井掘进、钢绳提升和无绳提升等都是深部开采面临的关键问题。 对此,深部开采岩爆、矿震、冲击地压等动力灾害控制、预报与防治技术,深部开采的采、掘技术,深部开采通风与降温技术将在对正在或逐步进行的深井矿山开采技术研究及理论研究的基础上获得快速发展。难采矿开采面临一系列特殊的技术难题。如松散破碎矿体顶板与围岩稳定性控制技术,流砂含水层覆盖的

铜矿矿山开采方法

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 铜矿矿山开采方法 中国铜矿山开采主要是地下采矿和露天采矿。从目前开采的矿石量来看,地下采矿占44.6%,露天采矿占55.4%。 地下采矿,目前开采深度一般在300~800m,个别的达到1000m以上。其开拓方法,根据矿床的地形和矿体产状、规模和埋藏深度等,通常采用竖井开拓、平窿开拓、联合开拓和斜井等四种方法。主要矿山开拓方法: 中条山铜矿的胡家峪矿山南河沟坑口和桐木沟坑口均采用平窿、竖井联合开拓;篦子沟矿山669m标高以上为平窿溜井开拓,669m以下为平窿盲竖井开拓;铜矿峪矿山采用平窿、溜井、副竖井联合开拓。 铜陵地区铜矿的凤凰山采用单一混合竖井开拓;铜官山采用竖井、斜井、盲竖井和平窿开拓。大冶地区铜矿的铜录山Ⅲ、Ⅴ号矿体采用下盘中心竖井开拓;赤马山为平窿-竖井联合开拓;龙角山采用平窿与盲竖井开拓;丰岩穴采用下盘竖井和斜坡道开拓。 滇中地区铜矿,东川因民矿山采用平窿-竖井联合开拓,落雪矿山为平窿、溜井、辅助竖井开拓,滥泥坪矿山平窿、溜井、辅助斜井开拓。易门铜矿的狮山、凤山采用平窿-竖井联合开拓。牟定铜矿郝家河上部矿段用平窿盲斜井开拓,中部用箕斗斜井开拓。大姚铜矿的上部氧化带用平窿、溜井、辅助盲斜井联合开拓,下部硫化矿用箕斗竖井、溜井、石门、辅助盲斜井联合开拓。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

金属矿山深部开采的若干关键问题及其对策研究

金属矿山深部开采的若干关键问题及其对策研究 北京科技大学教授蔡美峰 摘要 阐述了金属地下矿山深部开采中的深部巷道变形与支护、深部地压显现与开采动力灾害、地温升高引起作业环境恶化和露天矿山高陡边坡稳定性及合理的边坡角确定、改变传统运输方式、降低运输和生产成本等关键问题及其对策思路;介绍了以地应力为切入点的金属矿采矿优化理论、以能量聚集和演化为主线的岩爆预测及防治和深凹露天矿高陡边坡稳定性分析与设计优化的主要技术内容。 关键词金属矿山,深部开采,关键问题,对策 1影响金属矿山深部安全高效开采的主要问题 1.l地下矿山 我国有很多重要的金属矿产资源都是通过地下开采的方式所获得,如大多数的有色金属矿山和黄金矿山均为地下矿山。随着浅部资源的逐渐减少和消失, 地下开采的比例将越来越大,包括现有的部分露天矿山也将转入地下开采。经过几十年的开采,目前很多地下矿山均己进入深部开采或即将进入深部开采。如铜陵狮子山铜矿的开采深度己到1100米,山东玲珑金矿和吉林夹皮沟金矿己到1000米,辽宁红透山铜矿己达1300米。随着开采深度的不断增加,地质条件恶化,破碎岩体增多,地应力增大,涌水量加大,地温升高,带来了深部地压、提升能力、作业环境恶化、通风降温和

生产成本急剧增加等一系列问题,抑制了生产能力提高和矿产资源的充分回收。 1.1.1深部巷道变形与支护 随着开采深度的增加,地应力随之增大。因此,深部巷道与采场的维护原理与浅部有十分明显的区别,这种区别的根源在于岩石所处的应力环境的区别以及由此导致的岩体力学性质的区别。在浅部十分普通的硬岩,在深部可能表现出软岩的特征,从而引起巷道和围岩的大变形;浅部的原岩大多处于弹性状态,而深部的原岩处于“潜塑性”状态,由各向不等压的原岩应力场引起的压、剪应力超过岩石强度,造成岩石的潜在破坏状态。深部高应力环境下的巷道支护,除了必须考虑岩石强度性质和岩体结构外,还应重视巷道所处的应力环境。浅部中、低应力条件下的巷道支护主要考虑业己存在的地质构造等不连续面的影响,而深部高应力岩体中巷道支护必须考虑巷道围岩因掘进造成的断裂破坏带,即新生断裂结构的影响。所以,深部高应力环境下的巷道支护应强调峰后破坏岩体残余强度的利用。应合理控制岩体的峰后变形,并尽量使巷道围岩处于三向应力状态,为此,需采用先柔后刚的能保持和提高岩体强度的加固措施;深部巷道支护设计应更多地建立在能量分析的基础上,而不是简单地以应力和强度作为设计准则。 11.2深部地压显现与开采动力灾害 从根本上讲,地应力是所有地下工程,包括地下采场、巷道地压显现的根本来源。在没有开采工程扰动的情况下,岩体处于原始平衡状态。地下

深部开采冲击地压产生机理及防治技术研究

毕业专题 深部开采冲击地压产生机理及防治 技术研究 摘要:冲击地压是煤矿开采过程中,井巷和采场周围煤、岩体在一定高应力条件下释放变形能,而产生的煤岩体突然破坏、垮落或抛出现象,并伴有巨大声响和岩体震动,经常造成支架折损、片帮冒顶、巷道堵塞、人员伤亡,对安全生产威胁巨大。冲击地压对矿井生产的危害是及其巨大的,如何预防冲击地压是全世界共同面临的一个重要技术问题。冲击地压受很多因素影响,并具备一定的条件才能产生。冲击地压发生的范围比较广,而且随着采深的增加发生的几率逐渐增加。针对上述问题本文提出了对深部开采冲击地压预防采取的主要措施。 关键词:冲击地压;煤炭开采;冲击地压防治;机理

目录 1 绪论 ............................................................................ 错误!未定义书签。 1.1概述 ................................................................................................ 错误!未定义书签。 1.2灾害现状与发展状态 .................................................................... 错误!未定义书签。 2 冲击地压特征与机理 (2) 2.1冲击地压的特征 (2) 2.2冲击地压的分类 (2) 2.3冲击地压的成因机理 (3) 2.4冲击地压影响因素 (6) 3 冲击地压的防治 (6) 3.1冲击地压的防治原则 (6) 3.2冲击地压的防治措施 (6) 4 冲击地压的预测方法 (8) 5 结束语 (9) 6 参考文献 (9)

石灰岩矿床开采技术条件编写范例

石灰岩矿床开采技术条件编写范例 第一节水文地质 一、区域水文地质 矿区位于低山区,最高海拔标高1080m,最低标高620m,相对高差460m,该区年平均降水量在350-500mm,年蒸发量1750mm, 蒸发量远大于降雨量。 矿区地处西辽河水系老哈河流域锡泊河支流,矿区内无地表水体分布。锡泊河发源于喀喇沁旗西部,近几年由于干旱成为间歇性季节河流,丰水期最大流速 3.0m/s,流量随枯、丰水期变化而变化,呈北东流向流经矿区西北部约13km处,对矿区无直接影响。 (一)、地下水分布特征 根据含水层结构等特征,将地下水类型分为;松散岩孔隙水和基岩裂隙水两大类。 1、松散岩类孔隙水: 该类地下水主要分布于山间河谷中砂砾松散层、山前裙裾、黄土丘陵区中,含水岩性以第四系砂砾卵石为主,地下水多赋存于上述层位的孔隙中,为孔隙水。山前裙裾及平缓丘陵地区赋水量小,一般单井涌水量小于50m3 /d,水化学类型为HCO3-Ca·Na为主,矿化度小于1g/L。 2、基岩裂隙水: 依据含水岩性的赋水条件的差异,分为风化裂隙水和构造裂隙

水。 风化裂隙水:风化带网状裂隙水,此类岩石由于长期接受风化剥蚀,因此其裂隙比较发育,一般裂隙宽3~5mm,密集成带,赋水条件比较优越。 构造裂隙水:主要分布在基岩节理和裂隙构造断裂破碎带中。断裂规模较小,多为闭合型逆掩断裂,赋水条件差、富水性弱。一般水位埋深10~15m,在矿区的下部河谷中有小的间歇泉,泉流量均小于5m3/d, (二)、地下水补给、径流、排泄条件 地下水的补给来源于大气降水的渗透及地下水侧向径流补给,补给期多集中于每年的7~8月份的降水期和每年的4~5月份冰雪融化期。 本区属半干旱气候区,历年平均降水量350-500mm,年蒸发量1750mm,湿润度>0.3。基岩裂隙水受气候影响明显。矿区内植被不发育,大气降水多半被地表吸收。地表水不发育。因此基岩裂隙富水性极弱。 区域上地下水均以径流方式流向中间冲积沟谷中,再以地下径流的方式向锡泊河排泄。地下水位的变化受气候、地貌及含水层埋藏深度等因素影响。 二、矿区水文地质 矿区位于低山区,最高海拔标高1080m,最低标高620m,相对高差460m,该区年平均降水量在350-500mm,年蒸发量1750mm, 蒸发

有色金属矿山采矿方法概述

采矿方式主要为露天、坑下开采。有色金属矿山地下开采方式按地压控制方式,分为空场法、充填法、崩落法三大类,以空场法、充填法具多。 1.空场采矿法 根据矿块或矿壁的结构不同与回采作业的特点,空场采矿法可分为全面采矿法、房柱采矿法、阶段矿房采矿法等。 ????(1)全面采矿法主要是用于水平和缓倾斜矿床的开采。其特点是回采工作面沿矿床走向或倾斜方向全面推进,整层回采。在回采时将矿体内所夹废石或贫矿石留下来,根据需要堆成矿柱来支撑采空区顶板。 ?????该法优点是生产能力大,采准切割工作量较少,采矿成本低,采场通风好,能在采场处理废矿石。但采场顶板暴露面积大,容易发生大面积冒顶。只适用于水平或缓斜,矿石与顶板稳固,矿石品位分布不均匀或有夹石层的矿床,矿床厚度不大于5~7米。 ????(2)房柱留矿法主要是用于水平和缓倾斜矿床的开采。其特点是在矿块内矿柱和矿房交替布置,回采矿床时留下规则的,不连续或连续的带状矿柱,以此支撑采采区顶板。 ?????该法优点主要是采准切割工作量小,工序简单,各工艺可以平行作业,通风及作业条件好,但回收率低,用于矿石和围岩稳定的倾角小于40°的矿床。 ?????(3)分段采矿法、阶段矿房采矿法主要用于急倾斜、厚度大的矿床开采。矿房沿矿体走向或垂直方向布置,用深孔、扇形炮眼爆破落矿,由下部漏斗柱阶段平巷放矿。主要用于围岩稳固,矿石较稳固、矿体厚度在8~?20米,倾角大于矿石的自然安息角,且矿体内夹石少,矿体与围岩接触线明显的矿床。 2.充填采矿法 随着回采工作面的推进,逐步用充填料充填采空区的采矿方法叫充填采矿法。有时还用支架与充填料相配合,以维护采空区。充填采空区的目的,主要是利用所形成的充填体进行地压管理,以控制围岩崩落和地表下沉,并为回采创造安全和便利的条件。有时还用来预防有自燃矿石的内因火灾。按矿块结构和回采工作面推进方向充填采矿法又可分为单层充填采矿法、上向分层充填采矿法、下向分层充填采矿法和分采充填采矿法。按采用的充填料和输出方式不同,又可分为干式充填采矿法、水力充填采矿法、胶结充填采矿法。 (1)单层充填采矿法。此法适用于缓倾斜薄矿体,在矿块倾斜全长的壁式回采面沿走向方向、一次按矿体全厚回采,随工作面的推进、有计划地用水力或胶结充填采空区, 以控制顶板崩落。 (2)(2)上向水平分层充填采矿法。此法一般将矿块划分为矿房和矿柱,第一步回采矿房,第二步回采矿柱。回采矿房时,自下向上水平分层进行,随着工作面向上推 进,逐层充填采空区,并留出继续上采的工作空间。充填体维护两帮围岩,并作为 上采的工作平台。崩落的矿石落在充填体的表面上,用机械方法将矿石运至溜井中。 矿房采到最上面分层时,进行接顶充填。矿柱则在采完若干矿房或全阶段采空后, 再进行回采。矿房的充填方法,可用干式充填、水力充填或胶结充填。 (3)(3)上向倾斜分层充填采矿法。这种方法与上向水平分层充填法的区别是,用倾斜分层回采,在采场内矿石和充填料的搬动主要靠重力。这种方法只能用干式充填。 (4)(4)下向分层充填采矿法。这种方法适用于开采矿石很不稳固或矿石和围岩均很不稳固,矿石品位很高或价值很高的有色金属或稀有金属矿体。这种采矿方法的实质是 从上往下分层回采和逐层充填,每一分层的回采工作是在上一分层人工假顶的保护

深部的概念体系及工程评价指标

万方数据

万方数据

万方数据

万方数据

万方数据

深部的概念体系及工程评价指标 作者:何满潮, HE Man-chao 作者单位:中国矿业大学(北京校区)北京,100083;中国地质大学(北京),北京,100083 刊名: 岩石力学与工程学报 英文刊名:CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING 年,卷(期):2005,24(16) 被引用次数:46次 参考文献(13条) 1.景海河深部工程围岩特性及其变形破坏机制研究 2002 2.徐则民;黄润秋;王士天隧道的埋深划分[期刊论文]-中国地质灾害与防治学报 2000(04) 3.何满潮深部开采工程岩石力学的现状及其展望 2004 4.谢和平深部高应力下的资源开采--现状、基础科学问题与展望 2002 5.古德生金属矿床深部开采中的科学问题 2002 6.Sun Jun;Wang Sijing Rock mechanics and rock engineering in C hina:developments and current state-of-the-art 2000(37) 7.钱鸣高20年来采场围岩控制理论和实践的回顾[期刊论文]-中国矿业大学学报 2000(01) 8.钱七虎深部地下工空间开发中的关键科学问题 2004 9.钱七虎非线性岩石力学的新进展--深部岩体力学的若干问题 2004 10.Malan D F;Spottiswoode S M Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations 1997 11.Fairhurst C Deformation, yield, rupture and stability of excavations at great depth 1990 12.Kidybinski A Strata Control in Deep Mines 1990 13.SellersEJ;KlerckP Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels 2000(04) 引证文献(47条) 1.左建平.谢和平.吴爱民.刘建锋深部煤岩单体及组合体的破坏机制与力学特性研究[期刊论文]-岩石力学与工程学报 2011(1) 2.GUO Zhibiao.SHI Jianjun.WANG Jiong.CAI Feng.WANG Fuqiang Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines[期刊论文]-矿业科学技术(英文版) 2010(2) 3.LI Guofeng.HE Manchao.ZHANG Guofeng.TAO Zhigang Deformation mechanism and excavation process of large span intersection within deep soft rock roadway[期刊论文]-矿业科学技术(英文版) 2010(1) 4.牟宗龙.窦林名.王绪胜.王占成.郑玉友工作面终采线附近冲击矿压综合防治技术[期刊论文]-矿业安全与环保2010(1) 5.黄文辉.杨起.唐修义.唐书恒.陈萍.敖卫华.万欢中国炼焦煤资源分布特点与深部资源潜力分析[期刊论文]-中国煤炭地质 2010(5) 6.郭志飚.王炯.蔡峰.王福强煤矿深部Y型大断面交岔点双控锚杆支护技术及工程应用[期刊论文]-岩石力学与工程学报 2010(z1)

深部矿产资源开采与利用中的挑战

Engineering 3 (2017) 432–433 https://www.360docs.net/doc/6e5232756.html,/10.1016/J.ENG.2017.04.027 2095-8099/? 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company.This is an open access article under the CC BY-NC-ND license (https://www.360docs.net/doc/6e5232756.html,/licenses/by-nc-nd/4.0/). Editorial Challenges in the Mining and Utilization of Deep Mineral Resources Meifeng Cai a , Edwin T. Brown b ,c a Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China b Golder Associates Pty. Ltd., Brisbane, QLD 4064, Australia c The University of Queensland, Brisbane, QLD 4072, Australia As Mote et al. [1] have noted in this journal, advances in the fields of engineering science and technology have played an indispensable role in shaping the social and economic development of humankind. However, the continuing development of science and technology, along with the world’s ever-growing population, is consuming the earth’s resources, including its mineral resources, at what may ul-timately prove to be unsustainable rates. After hundreds of years of mining, the more accessible shallow mineral resources are being depleted, and some have now been completely exhausted. This means that the economic exploitation of more of the earth’s deeper mineral resources is now required in order to meet society’s grow-ing demand for minerals. This demand is not only for the traditional metallic ores and energy sources, but also for minerals such as rare earths, which are being used at an increasing rate with the advent of new technologies in the fields of communication, power generation, and power storage, among others. The efficient mining and utiliza-tion of deep mineral resources is not one of the Grand Challenges for Engineering that were identified in recent years by the US National Academy of Engineering, the UK Royal Academy of Engineering, and the Chinese Academy of Engineering (CAE), as listed by Mote et al. [1]. However, it is clear that traditional and newer mineral resources will be required in order to develop solutions to most of the Grand Challenges that have been identified. Exploitable mineral resources exist at great depth in the form of a number of orebody types in a range of geological and geometrical settings. The current seven deepest mines in the world mine tabu-lar or stratiform gold deposits in the Witwatersrand Basin of South Africa. The deepest of these mines are now around 4 km deep. The next deepest mines in the world are two base metal mines in Cana-da, which are about 3 km deep. For the purpose of this discussion, deep mining is taken to involve mining at depths of more than 1 km. The effective development and extraction of deep mineral resources face a number of engineering challenges arising from factors such as high in situ and induced stresses, and the responses of variable rock masses to these stresses; high in situ temperatures, and the associated ventilation and cooling requirements; the dif-ficulty and cost of exploring deep, and sometimes blind, deposits; the complex and difficult mining conditions that are often encoun-tered; safety concerns leading to the desirability of developing non-entry methods of mining; and methods and costs of handling mined ore at depth and transporting it to the surface. In some extreme cases, new, low-cost, and non-traditional methods of ex-traction will be required. Against this background, deep mining has been identified as an important topic for research under China’s State Key Research and Development Program, with several State Key Laboratories hav-ing been established under that program. This special issue of the CAE’s journal, Engineering , focuses on Efficient Exploitation of Deep Mineral Resources; it follows on from a China Engineering Science and Technology Forum on the same topic that was held in Beijing in October 2016, and was sponsored by the CAE. The proceedings of that forum will be published by Higher Education Press, Beijing, in September 2017 [2]. The Guest Editors are grateful to the CAE for this opportunity to assemble this special issue of Engineering ; we also offer our thanks to those who have provided contributions and to those who have taken part in the associated review and editorial processes. This special issue contains the following five papers by selected interna-tional and Chinese authors: (1) “Some challenges of deep mining,” by Charles Fairhurst: This stimulating paper by one of the world’s most distinguished mining engineers is written from the perspective of a reader who does not necessarily have a background in mining or rock engineering, and thus provides a valuable introduction to this special issue. (2) “Monitoring, warning, and control of rockburst in deep metal mines,” by Xia-Ting Feng and colleagues: As noted by Professor Fairhurst, the understanding and alleviation of rockbursts have long provided one of the major safety and rock engineering challenges for deep mining. This paper reports on some recent advances made in Contents lists available at ScienceDirect jo ur n al h om e pag e: w w https://www.360docs.net/doc/6e5232756.html,/locate/eng Engineering Meifeng Cai Edwin T. Brown

相关文档
最新文档