气动爬行机器人设计

气动爬行机器人设计
气动爬行机器人设计

管道机器人结构设计

φ700mm-φ1000mm管道机器人结构设计 在工农业生产及日常生活中,管道作为一种重要的物料运输手段,其应用范围极为广泛。管道在使用过程中,由于各种因素的影响,会产生各种各样的管道堵塞与管道故障和损伤。如果不及时的管道进行检测、维修及清理就可能产生事故,造成不必要的损失。然而,管道所处的环境往往是不易直接达到或不允许人们直接进入的,检测及清洗难度很大。因此最有效的方法之一就是利用管道机器人来实现管道内的在线检测、维修和清洗。管道机器人在我国处于发展阶段,具有广阔的市场前景。管道机器人相对于人工操作来说,有无可比拟的优势。管道机器人在计算机控制下,可进行采样、检测等动作。而单片机技术的发展,为管道机器人的方便应用提供了一个良好的基础技术。利用单片机,可以实现管道机器人的控制,是管道机器人设计中较好的选择。 通过对国内外管道机器人研究现状分析,总体看来,国内外已经在管内作业机器人领域取得了大量的成果,主要应用在管道检测、维修及空调通风管道的清洗等方面。但对于金属冶炼厂烟气输送管道中烟灰堆积层的清理这种特殊管内作业的自动化装置研究目前少有报道。因此研制适应于金属冶炼厂烟气管道烟灰清理的管道清灰机器人将具有重大的现实意义。 此次设计的管道机器人主要应用在金属冶炼厂、化工企业等烟气输送管道烟灰堆积层的清理,作为载体,通过安装不同的设备可实现排水管道的监测、清理。 编辑:林冰宁波广强机器人科技有限公司管道检测机器人是由控制器、爬行器、高清摄像头、电缆等组成。在作业的时候主要是由控制器控制爬行器搭载检测设备进入管道进行检测。检测过程中,管道机器人可以实时传输管道内部情况视频图片以供专业维修人员分析管道内部故障问题。 使用管道检测机器人的优势: 1.安全性高。使用广强管道机器人进入管道查明管道内部情况或排除管道隐患,如果是人工作业的话,往往存在较大的安全隐患,而且劳动强度高,不利于工人的健康。广强管道机器人智能作业可有效提高作业的安全性能。 2.节省人工。管道检测机器人小巧轻便,一个人即可完成作业,控制器可装载在车上,节省人工,节省空间。 3.提高效率和品质。广强管道机器人智能作业定位准确,可实时显示出日期时间、爬行器倾角(管道坡度)、气压、爬行距离(放线米数)、激光测量结果、方位角度(选配)等信息,并可通过功能键设置这些信息的显示状态;镜头视角时钟显示(管道缺陷方位定位)。 4.防护等级高,摄像头防护等级IP68,可用于5米水深,爬行器防护等级IP68,可用于10米水深,均有气密保护,材质防水防锈防腐蚀,无需担心质量问题,因为广强只做国内 最好的管道机器人。 5.高精度电缆盘,收放线互不影响,可选配长度。

仿生六足机器人中期报告

编号: 哈尔滨工业大学 大一年度项目中期检查报告 项目名称:仿生六足机器人 项目负责人:学号 联系电话:电子邮箱: 院系及专业:机电工程学院 指导教师:职称: 联系电话:电子邮箱: 院系及专业:机电工程学院 哈尔滨工业大学基础学部制表 填表日期:2014 年 6 月28 日

一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见 三、项目专家组意见

四、研究背景 1.研究现状 4.1国内研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人行走运动控制过程的应用。Boston Dynamics公司的Big Dog四足机器人用于为军队运输装备,其高3英尺,重165磅,可以以3.3英里的速度行进,其采用汽油动力。 图1 Adaptive Suspension Vehicle 图2 Odex1步行机器人 图3 MIT腿部实验室的四足和双足机器人图4 DANTE步行机器人 由于新的材料的发现、智能控制技术的发展、对步行机器人运动学、动力学高效建模方法的提出以及生物学知识的增长促使了步行机器人向模仿生物的方向发展。 4.2国外研究现状 我国步行机器人的研究开始较晚,真正开始是在上世纪80年代初。1980年,中国科学院长春光学精密机械研究所采用平行四边形和凸轮机构研制出一台八足螃蟹式步行机,主要用于海底探测

真空吸附式爬壁机器人设计

Ξ №.4 西北轻工业学院学报 D ec.1997?18? JOU RNAL O F NOR THW EST I N ST ITU T E O F L IGH T I NDU STR Y V o l .15 真空吸附式爬壁机器人设计 何雪明1 丁毅 朱明波2 (机械工程系) 摘 要 运用壁虎爬行原理,设计构思了真空吸附式爬壁机器人.采用多组橡胶吸 盘将机器人吸附在墙面上,配以简单四杆机构完成其行走功能,从而达到擦洗整个 墙面的目的.该机器人可用于建筑行业和洁净业. 关键词:壁面机器人,真空吸附,蠕行运动 中图法分类号:TQ 242.1(TH 122) 1 引言 目前,瓷砖、玻璃装璜的墙壁均采用人工直接擦洗.因高空擦洗作业具有很大的危险性,因此,研制一种适用于高楼墙壁擦洗的墙壁机器人有着重要的意义. 壁面机器人是集机构学、传感技术、控制和信息技术等科学为一体的高技术产品,自80年代以来在国内外取得了迅速的发展,有的已开始进入实用试验阶段.到1992年底,国外已有不同类型的爬壁机器人研制成功,其中以日本发展最快.国内较早的是哈尔滨工业大学,他们已研制成功壁面爬行遥控检测机器人,采用真空吸附式,通过运载小车使机器人在壁面上下左右自由行走.另外, 上海大学研制了用于高层建筑窗户擦洗的真空吸附足式爬行机器 图1 爬壁机器人总体框架图人.上海交通大学亦于1995年研制了磁吸 附爬壁机器人用于油罐检测. 2 真空吸附式爬壁机器人总体设计 要实现机器人在普通壁面上的自由移 动,必须具备粘着功能与移动功能.常见粘 着功能主要靠吸附即负压吸附实现.根据吸 附力量产生装置不同,又可分为真空泵式、 喷射器式.移动方式一般有轮式、履带式及 足式三种.针对壁面移动机器人的工作条件以及壁面非金属性、金属性等其它原因,经过比较选择了多子真空吸附、足式移动的方案.其吸附性好,结构简单,由于吸盘采用列吸盘组, Ξ收稿日期:1997-05-10 第一作者:男,32岁,硕士 1、2作者单位:无锡江南大学机电系,邮编:214063

管道爬壁机器人的设计

管道爬壁机器人设计 作品内容简介 现在的管道机器人在竖直或者是水平方向都很好的实现了检测与清理功能。但至今还没有管道产品在复杂的管道中很好的工作。为此我们设计了这款管道爬壁机器人,它既可以在水平管道中很好的工作还可以在竖直管道中完成工作,能够自如的在水平竖直交叉的复杂管道中完成检测,清理等工作。 该产品的主题结构为车体结构,在水平方向依靠车载力运动,在车体上安装有四个机械手臂,在机械手臂的前端安装有吸盘跟电磁铁,在塑料管道中依靠吸盘在竖直方向上运动,在铁质管道上利用电磁铁的磁力和机械手臂的交叉前进实现竖直方向的运动。该作品灵活多变,不但可以适应复杂的管道还能够进行多样的工作。 我们依靠机械臂的灵活度与吸盘,电磁铁的吸力来实现该产品的爬壁功能,在水平方向上利用最传统的智能车作为动力,这样的设计完全可以满足水平方向与竖直方向的灵活转变,实现复杂管道的自由穿梭,进而可以让该机器人更好的实现其检测与清理功能。该管道爬行机器人实现远程电脑控制,所得数据通过反馈处理使机器人能够完成各项做业。 一、研制背景及意义 1、随着社会的快速发展,国家生产水平不断提高,产品更新也越来越快。管道运输在我国运用比较普遍,但管道长期处在压力大的恶劣环境中,受到水油混合物、硫化氢等有害气体的腐蚀。这些管道受腐后,管壁变薄,容易产生裂缝,造成漏油、漏气的问题,存在重大安全隐患和经济损失。在管道广泛使用的今天,管道的检测、清理、维护成了一个亟待解决的问题。但是管道的封闭性和工作环境决定了这项工作的艰难。时至今日,虽然经过各国学者的努力,已经有各种各样的机器人,但是他们大都存在这样或那样的问题,而且功能不够强大。 2、人民对管道清洁机械的要求是不仅科技含量要高,而且还要绿色、节能、环保。能够满足不同类型管道的检测、维护、清理等要求。 3、管道爬行机器人的研究更好地为管道的检测、维护、清理提供了新的技术手段,这种技术更好的提高了管道监测的准确性和管道清理的安全性,也便于管道工程管理维护人员制定维护方案,清除管道垃圾防止堵塞,事前消除管道的安全隐患,从而节约大量的维修费用,降低管道维护成本,保障工业生产和人民生活及财产安全。 4、近些年来人们对自然环境、工作环境、工作工具及其方式的要求逐步提高。随着中国城市化建设事业的发展推进中国西气东输工程的全面启动 特别是大型化工厂、大型天然气厂、大型地下管道处理系统的建成大型管道或类似管道装置组合处理系统设施以其高质量的工作效率、圆形管道结构占地少、有效工作空间大、美化生活环境等优点得到了广泛的应用。为研究高效的管道机器人提供了良好的市场环境。 5、随着计算机技术的广泛普及和应用国内外检测技术都得到了迅猛发展管道检测技术逐渐形成管道内、外检测技术 涂层检测、智能检测两个分枝。通常情况下涂层破损、失效处下方的管道同样受到腐蚀管道外检测技术的目的是检测涂层及阴极保护有效性的基础上通过挖坑检测达到检测管体腐蚀缺陷的目的对于目前大多数布局内检测条件的管道是十分有效的。 6、管道内检测技术主要用于发现管道内外腐蚀、局部变形以及焊缝裂纹等缺陷也可间接判断涂层的完好性。因此各种大口径天然气管道、大口径石油运

六足机器人设计参考解析

摘要 六足机器人有强大的运动能力,采用类似生物的爬行机构进行运动,自动化程度高,可以提供给运动学、仿生学原理研究提供有力的工具。本设计中六足机器人系统基于仿生学原理,采用六足昆虫的机械结构,通过控制18个舵机,采用三角步态和定点转弯等步态,实现六足机器人的姿态控制。系统使用 RF24L01射频模块进行遥控。为提高响应速度和动作连贯性,六足机器人的驱动芯片采用ARM Cortex M4芯片,基于μC/OS-II操作系统,遥控器部分采用ARM9处理器S3C2440,基于Linux系统。通过建立六足机器人的运动模型,运用正运动学和逆运动学对机器人进行分析,验证机器人步态的可靠性。 关键字:六足机器人,Linux,ARM,NRF24L01,运动学 Abstract Bionic hexapod walking robot has a strong ability of movement, the use of similar creatures crawling mechanism movement, high degree of automation, can be provided to the kinematics, the principle of bionics research provides powerful tool. Six feet in the design of this robot system based on bionics principle, the mechanical structure of the six-legged insect, through 18 steering gear control, use the gait, such as triangle gait and turning point to control the position of six-legged robot. Remote control system use RF24L01 rf modules. In order to improve the response speed and motion consistency, six-legged robot driver chip USES the ARM architecture (M4 chip, based on mu C/OS - II operation system, remote control part adopts ARM9 processor S3C2440, based on Linux system. By establishing a six-legged robot motion model, using forward kinematics and inverse kinematics analysis of robot, verify the reliability of the robot gait. KEYWORD:Bionic hexapod walking robot;Linux,ARM,NRF24L01;Kinematics

四足仿生移动机器人结构设计

河工大 毕业设计说明书 作者:学号: 系:机械工程学院 专业:机械设计制造及其自动化 题目:四足仿生移动机器人结构设计 指导者:张副教授 评阅者: 2013年 5月 29日

目次 1 概述 ................................................ 错误!未定义书签。 1.1 绪论........................................... 错误!未定义书签。 1.2 国内外研究现状及关键技术....................... 错误!未定义书签。 1.3 本课题主要研究内容............................. 错误!未定义书签。 2 四足仿生移动机器人的结构设计原则及要求 ............... 错误!未定义书签。 2.1 四足仿生移动机器人的总体方案确定............... 错误!未定义书签。 2.2 机器人机械结构及传动设计....................... 错误!未定义书签。 3 电机的确定 .......................................... 错误!未定义书签。 3.1 各关节最大负载转矩计算......................... 错误!未定义书签。 3.2 机器人驱动方案的对比分析及选择................. 错误!未定义书签。 3.3 驱动电机的选择................................. 错误!未定义书签。 4. 带传动设计 .......................................... 错误!未定义书签。 4.1 各参数设计及计算............................... 错误!未定义书签。 4.2 带型选择及带轮设计............................. 错误!未定义书签。5工作装置的强度校核.................................... 错误!未定义书签。 5.1 轴的强度校核................................... 错误!未定义书签。 5.2 轴承的选型..................................... 错误!未定义书签。结论 ................................................. 错误!未定义书签。参考文献 ............................................ 错误!未定义书签。致谢 ................................................. 错误!未定义书签。

六足爬行机器人总体设计方案

本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析 六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并

管内爬行机器人行走机构的设计

管内爬行机器人行走机构的设计 【摘要】随着管内检测爬行机器人技术的不断成熟,它在工业中的应用也越来越广,本文所设计的管内爬行机器人驱动机构,即管内步伐式行走机构,是在分析以往的轮式和履带式机器人的基础上设计的一种新型的管内爬行机器人行走机构。 【关键词】管内爬行机器人;步伐式;驱动机构 0.引言 目前工业管道系统已广泛应用于冶金、石油、化工及城市水暖供应等领域,因其工作环境非常恶劣,容易发生腐蚀、疲劳破坏或使管道内部潜在缺陷发展成破损而引起泄漏事故等,必须定期地对这些管道进行检修和维护,然而管道所处的环境往往是人力所限或人手不及,检修难度很大, 所以燃气管道管内探测是一项十分重要的实用化工程,关系到燃气的安全、合理地应用和管理。管道检测机器人(管内爬行机器人驱动机构)就是为满足该需要而产生的。 根据管内步伐式行走机器人的运动模仿人在井筒中四肢扶壁上下运动的模式,设计了机器人的行走机构,有效的解决了机器人在管道内的行走。 1.管内爬行机构总体设计 管内爬行机构主要由撑脚机构及其传动,牵引机构及传动,转向机构3部分组成:见图1所示: 该管内爬行机构的运动控制过程大致为:主、副电机不同时工作,分别控制其牵引机构和撑脚机构,并且镜面对称的两单元,其支撑脚同一时间径向所处状态相反,即前脚踩在管壁上时,后脚处在抬起状态;反之亦然。具体过程为通过副电机16带动齿轮与齿圈啮合旋转,齿圈背面的平面螺纹驱动滑杆沿滑道径向移动,从而实现支撑脚的转换。主电机1通过联轴器与丝杠连接,带动丝杠旋转,将丝杠的旋转运动转换为螺母的轴向移动,从而通过连杆机构拖动身躯和前后单元向前移动,另一部分的控制过程相同。上述动作是管内爬行机构的一个步进过程,循环执行步进过程机器人继续前进,实现管内的均匀连续行走。 2.撑脚机构及其传动 撑脚机构的作用是使管道机器人被支承在管道中心线上。其机构及传动(见图1)由电机16、小齿轮15、齿圈及平面螺纹14、滑杆13、脚靴12组成。当电机16带动小齿轮15和齿圈14旋转时,齿圈背面的平面螺纹驱动滑杆13在筒体10的径向轨道内外伸推动脚靴踩在管壁上,电机反向旋转时,滑杆内缩带动脚靴径向抬起离开管壁。脚靴三套在圆周上间隔120°布置,三套脚靴同步伸缩,其动作与车床三爪卡盘的动作类同。三套脚靴伸出踩在管壁上时,使机器人处在管道的中心线上。为了使机器人在脚靴缩回时,仍能维持在中心线上,安装4组辅助支承轮18,每组三套,在圆周上间隔120°安装,支承轮通过支承柱19、弹簧20分别与支架3和筒体10固连。当撑脚缩回时支承轮使机器人基本上维持在管道中心线上。当机器人行走过程中支承轮遇到障碍时弹簧被压缩通过障碍。 3.牵引机构及传动 牵引机构的作用是拖动机器人前进.牵引机构(见图1)由电机1、螺杆2、螺母5拨销4、拨杆7和支承杆9组成。当电机1带动螺杆转动时,螺母受拨杆的约束不能转动而沿螺杆轴向移动,固连其上的拨销4拨动拨杆7顺时针方向转动,由于脚靴12锁死在管壁上,支承杆9不能向后运动,拨杆7通过销6带动支架3及其

l六足昆虫机器人机械原理

l六足昆虫机器人机械原理 一、基本原理 本项目的机器人,传动系统还是继续利用“摆动曲柄滑块机构”原理,把减速电机的旋转运动转换为驱动腿迈步的往复摆动运动,再结合简单的连杆结构,协调六条腿按照昆虫的步态规律实现爬行运动。 1、运动方式 本项目机器人是模仿拥有六条腿的昆虫的爬行运动。昆虫爬行想必大家都是见过的,但是由于昆虫的六条腿还是多了些,而且一般昆虫的动作都比较迅速,观察起来有点眼花缭乱,所以可能很多人并不是很了解昆虫爬行时这六条腿是如何协调动作的。而要做好六足爬行机器人,就要清晰的了解这六条腿的每个阶段的步伐状态,也就是我们常说的“步态”。 实际上,一般六条腿的昆虫,是以三条腿为一组、共两组交叉进行协调运动的。同一时间内,有一组也就是三条腿着地,另外一组的三条腿是离开地面的,然后两组交替切换往前爬行。我们都知道,三点可以确定一个平面,即三条腿可以保证整个身体的平衡,这也许就是很多昆虫都是长了六条腿的主要原因吧。 以下是六足昆虫爬行步态的分解,以前进方向为例进行说明: 1、静止时六条腿都是同时着地; 2、前进时,先迈出第1组三条腿(左前、右中、左后),第2组三条腿着地(右前、左中、右后); 3、第1组三条腿(左前、右中、左后)往前迈出着地后保持不动,然后换第2 组三条腿(右前、左中、右后)往前迈出; 4、第2组三条腿(右前、左中、右后)往前迈出着地后保持不动,再换第1组……

如此循环往复,同一时间都保证有一组三条腿着地以保持身体的平衡,并不断往前进。 2、驱动机理 本项目机器人是采用六足爬行的方式运动,对于六足的驱动力量也是有一定要求的,所 以与前几个仿生类机器人项目一样都是借助减速电机所具有的“低转速、高扭矩”的特性来实现的。 与PVC-Robot 11号、PVC-Robot 12号机器人驱动双臂以及与PVC-Robot 13号驱动双足类似,本项目机器人六足中的中间两足是主动足,是由减速电机直接驱动的,而采用的减速电机同样也必须要满足两个条件: 1、拥有足够的动力,能够支撑双足行走; 2、减速电机左右两侧同轴输出。 为此,需要利用“蜗杆传动机构”对现有减速电机进行改造,相关方案在前面的项目中也已经进行了详细的阐述,这里不再重复,具体可以点击这里:PVC-Robot 11号——减速机构 本项目机器人实现六足爬行机械结构,其实是和PVC-Robot 12号、PVC- Robot13号类似的“连杆机构”——“摆动曲柄滑块机构”,只不过说这个在PVC-Robot 15号中这个连杆机构驱动六足的中间两足,然后再通过连杆带动其他四足 联动的。相关资料请参考:PVC-Robot 12号——驱动机理、PVC-Robot 13号——驱动机理。

四足爬行机器人控制研究

第7卷第1期 智能计算机与应用V d.7No.l 2017 年 2 月Intelligent Computer and Applications Feb.2〇17 四足爬行机器人控制研究 韩飞,吴宝春,陈益,王志远,李志刚 (大连民族大学信息与通信工程学院,辽宁大连116600) 摘要:本文介绍一种四足爬行机器人的组成结构及其控制系统的构成。控制系统主要由上位机控制界面和下位机控制单元组 成。上位机通过Java语言编写调试控制界面,与下位机通过串口进行通信,下位机采用STM32作为核心控制器,接收上位机的相 关控制信息,通过控制舵机控制器,实现四足爬行机器人的行走控制。 关键词:四足爬行机器人;STM32;舵机控制器;Java 中图分类号:TP311 文献标志码:A文章编号:2095-2163(2017)01-0117-03 Control research on quadruped robot HAN Fei,WU Baochun,CHEN Yi,WANG Zhiyuan,LI Zhigang (College of Information and Communication Engineering,Dalian Minzu University,Dalian Liaoning 116600, China) Abstract:This paper describes the structure of a quadruped robot and the corresponding control system.The control system is mainly composed of a master computer with control interface and a slave computer.The control interface installed on the master computer is written and debugged in Java language.The communication between master and slave computers uses their series.The slave computer adopts STM32 as the core controller,which receives the control information from the master computer and realizes the walking control of a quadruped robot through controlling the servo controller. Keywords:quadruped robot;STM32; servo controller;Java 0引言 随着现代科技与人工智能的快速发展,人类对机器人的研 究与应用也日趋广泛。近年来,各类新型仿人机器人、仿生机器 人已然陆续研发问世,并逐渐进入诸多领域。与众多款型机器人 相比,四足仿生机器人是具备爬行动物外形、并可发挥强大行动 能力的机器人,采用爬行的方式提供自主行走,通过自身内部协 调处理实现一些简单的动作。与传统机器人相比,四足机器人具 有独特鲜明优势,可通过多足的机械结构交互配合,从而完成以 探索和采集作为主要设定目的的综合任务。因此,研究爬行机器 人的结构组成及其控制方法具有至关重要的课题价值和现实意义。 本文首先系统分析四足爬行机器人结构组成以及设计行 走控制方法,结合Java语言编写上位机调试界面,通过串口 与下位机STM32核心控制器进行通信,核心控制器采用串口 通信方式将运动控制信号实时传递给舵机驱动器控制机器人 舵机状态,从而实现对爬行机器人行走的简单控制。 1四足爬行机器人简介 本文所研究的四足爬行机器人机械结构采用成品套件, 基金项目:大连民族大学大学生创新创业训练计划项目(S201612026055, XA201611276);大连民族大学2016年“太阳鸟”学生科研项目 资助。 作者简介:韩飞(1995-),男,本科生,主要研究方向:智能移动机 器人控制。 收稿日期:2016-12-13具有12个舵机,每条腿上安装3个舵机,分布在爬行机器人 的各个关节;在安装舵机前首先进行舵机状态复位,舵机复位 后保证舵机左右或前后摆动的幅度均匀,避免舵机在调试过 程一个方向无法摆动或者堵转而烧坏舵机。系统控制器采用 STM32核心板安装在机器人背部,舵机控制器装在机器人身 体下部,电池装在夹缝中。爬行机器人整体结构如图1所示。 图1爬行机器人整体结构图 Fig. 1 Structure of the quadruped robot 2控制系统设计 本文研究的爬行机器人控制系统主要由上位机控制界面 和下位机控制单元组成,上位机控制界面采用Java语言编 写,通过串口与下位机通信。下位机控制单元采用STM32作 为核心控制器,这是由意法半导体公司重点生产的基于超低 功耗的ARMCortex-M3处理器内核,因其一流的外设配备、低 功耗、最大集成度的特点,满足了用户对高性能、低功耗、低成 本和经济实用的要求。在此,则给出控制系统结构框图如图 2所示 。

仿生机械蜘蛛设计与仿真

vvv学院毕业论文(设计)任务书 毕业论文(设计)题目 仿生机械蜘蛛设计与仿真 学生姓名 vvv 专业 机制 班级 0912 指导教师 vvv 一、毕业论文(设计)的主要内容及要求 设计一种步行仿生机械蜘蛛,要求: 1、绘制仿生机械蜘蛛零部件三维图型和装配图; 2、绘制仿生机械蜘蛛零部件工程图; 3、对仿生机械蜘蛛进行运动仿真; 4、设计仿生机械蜘蛛运动控制方案。 二、毕业论文(设计)应收集的资料及主要参考文献 [1]孙立宁,王鹏飞,黄博. 四足仿生机器人嵌入式多关节伺服控制器的研究[J]. 机 器人,2005,06:517-520. [2] 许宏岩 , 付宜利 , 王树国 , 刘建国 . 仿生机器人的研究 [J]. 机器 人,2004,03:283-288. [3]徐小云,颜国正,丁国清. 微型六足仿生机器人及其三角步态的研究[J]. 光学精 密工程,2002,04:392-396. [4]马光. 仿生机器人的研究进展[J]. 机器人,2001,05:463-466. [5]迟冬祥,颜国正. 仿生机器人的研究状况及其未来发展[J]. 机器 人,2001,05:476-480. [6]徐小云,颜国正,丁国清,刘华,付轩,吴岩. 六足移动式微型仿生机器人的研究[J]. 机器人,2002,05:427-431. [7]刘鹏,郑浩峻,关旭. 基于并联腿机构的四足仿生机器人开发[J]. 微计算机信 息,2007,No.19205:226-227+264. [8]漆向军,陈霖,刘明丹. 控制六足仿生机器人三角步态的研究[J]. 计算机仿

真,2007,04:158-161. [9]张争艳,刘彦飞,冯敏,杨艳芳. 基于虚拟样机技术的六足仿生机器人设计与仿 真[J]. 装备制造技术,2007,No.15410:35+43. [10]王丽慧,周华. 仿生机器人的研究现状及其发展方向[J]. 上海师范大学学报 (自然科学版),2007,06:58-62. [11]赵涓涓,李强,任美荣,郭晓东,李晓飞. 六足仿生机器人运动控制系统的设计[J]. 机电工程技术,2008,v.37?No.20112:44-45+76+106. [12]王鹏飞,黄博,孙立宁. 四足仿生机器人稳定性判定方法[J]. 哈尔滨工业大学 学报,2008,07:1063-1066. [13] 孙立宁 , 胡海燕 , 李满天 . 连续型机器人研究综述 [J]. 机器 人,2010,v.3205:688-694. [14]谭云福,党培. 一种四足仿生机器人步态协调控制的策略[J]. 微计算机信 息,2010,v.26?No.34132:152-154. [15]姜铭,李鹭扬. 混联仿生机器狗构型研究[J]. 机械工程学报,2012,v.4801:19-24. 三、毕业论文(设计)进度及要求 1、1~3周阅读资料、撰写开题报告; 2、4~10周完成毕业设计任务指定工作; 3、11~13周撰写毕业论文; 4、14周毕业答辩 5、要求每周至少向指导教师汇报一次工作进度。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

六足仿生机器人实验室开放项目结项报告

淮北师范大学实验室开放项目
总结报告
基于 STC12C5A60S2 单片机的六足机器人

院: 物理与电子信息学院 韩润 陆家双
负 责 人:
小组成员: 史浩东 史良东 张莹莹 指导老师: 方 振 康强强 国

一 、项目重述
1.1 项目名称:智能六足机器人 1.2 项目背景及意义:
背景:在社会迅速发展的今天,单片机的的运用已经渗透到我们生活的每个 角落,也似乎很难找到哪个领域没有单片机的足迹。智能仪表、医疗器械,导弹的 导航装置, 智能监控、通讯与数据传输 ,工业自动化过程的实时控制和数据处理 , 广泛使用的各种智能 IC 卡, 汽车的安全保障系统, 动控制领域的机器人 , 数码像 机、电视机、全自动洗衣机的控制,电话机以及程控玩具、电子宠物等等,这些都 离不开单片机。 意义:单片机的学习、开发与应用将对于现代社会的发展,经济的繁荣,和提高 满足人类日益增长的物质文化需求有着至关重要的作用。 也成就了一批又一智能 化控制的工程师和科学家。科技越发达,智能化的东西就越多。学习单片机是社 会发展的必然需求,也是我们现代高级技工所必须要掌握的技能。
1.3 项目内容:
以 51 单片机为控制器的核心, 利用单片机内部中断产生 PWM 波控制舵机。 利用开环函数组成的动作组使六足做仿生动作,制作出了动作灵活、价格低廉以 及模块化结构的六足机器人。该机器人能够严格按三角步态进行行走,实现诸如 直线、转弯、躲避障碍物和追踪物体等行走功能。

二、方案简介
本项目可细分为控制部分、机械部分、恒流源部分、超声波检测部分。 控制部分采用 STC12C5A60S2 单片机为核心处理器。通过 PWM 波使舵机 转动,机械部分采取合理的机械构造,实现机器人在行走的情况下的平稳。恒流 源部分采取 LM7805 稳压芯片为单片机和舵机供电, 由于舵机在运转的过程中会 有较大的电流波动。 因此采用恒流电路进行恒流。超声波壁障采用超声波遇故障 反射的原理。实现对物体识别和规避。

竖直管道爬行机器人

竖直管道爬行机器人 小组成员:刘晓燕、周平、时佳、王迪阳、刘传亮 一、设计背景: 随着科学技术的发展,管道在当今社会已经得到了广泛的应用。管道在长期的使用中难免会出现破裂、堵塞等,人们往往为了寻找管道上的一个裂纹而花费大量的人力和物力。如今水平管道的检测、清理、维护已经不再是个难题,但竖直管道中的检测、清理、维护仍然有待解决。而我们设计的机器人正是为满足在竖直管道的爬行而设计的,它具有一定的承载能力,可以成为管道检测、清洗设备的载体、检修的运输工人,使得管道的检测、清洁等工作易于实现。 二、组成介绍: 该机器人由三部分组成,包括一个伸缩模块和两个支撑模块。伸缩模块主要由曲柄连杆构成,利用驱动电机的转动来实现机器人的行走;两个支撑模块结构上完全一样,都是由初始弹簧提供微张力而贴附在竖直管道内壁。由电动机的转动产生推力,使机器人的脚与管壁压紧而锁死,从而产生机器人行走所需的静摩擦力。伸缩模块和支撑模块按一定的顺序工作,从而实现机器人在管道内的爬行。 三、结构设计: (1)支撑架的设计 为满足不同内径管道的需求,将支撑架设计为可伸缩的。同时将上下两组支撑架设计为空间十字交叉形,这样就满足机器人在管道中爬行的稳定性,,并在上下两组支撑架中各安装有被压缩的弹簧,以提供一初始的张力,使摩擦滑块与管道内壁能够充分接触。 (2) 摩擦滑块的设计 摩擦滑块与管道内壁接触的部分,滑块的上部分有圆滑过渡以防止遇到障碍物时机器人被卡死。而且这部分是可拆卸的,对不同材质的管道可选用不同材料的滑块接触面与管道内壁接触。 (3)微电机及曲柄滑块部分设计 微电机通过杆件固定在机器人下肢的正下方,一方面为可降低机器人的重心使机器人在一开始时能够稳定的贴在管道内壁而不下滑,另一方面使上肢与电动

六足步行机器人的毕业设计说明书

本科毕业设计(论文) 六足步行机器人设计与仿真 燕山大学 2012年6月

本科毕业设计(论文) 六足步行机器人设计与仿真 学院(系):里仁学院 专业:机械电子工程 学生姓名:牛智 学号: 0811******** 指导教师:田行斌 答辩日期: 20012.6.17

燕山大学毕业设计(论文)任务书

摘要 摘要 基于仿生学原理,在分析六足昆虫运动机理的基础上,采用了仿哺乳类的腿部结构,并针对这种腿部结构设计了六足的行走方式,通过对18个直流伺服电机的控制,采用三角步态,实现了六足机器人的直行功能。仿真证明,这种结构能较好地维持六足机器人自身的平衡,并且对今后更深入地研究六足机器人抬腿行走姿态及可行性,具有较高的参考价值。 针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与UG软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析。通过仿真,验证了所设计的三角步态的适用性。 关键词六足机器人;步行;三角步态;运动学仿真

燕山大学本科生毕业设计(论文) Abstract A bionic leg structure which is similar to the legs of mammals was used,and a hexapod walking mode was designed according to this structure.By controlling 18 step motors straight walking function of the hexapod robot has been implemented with tripod gait movement.Simulation and experiment show that this structure can keep the hexapod robot balance better,providing high reference value to research the advantage and feasibility of leg raising walking gesture. As there are many joints in the bionic hexapod walking robot and the calculation of its walking track and joints control unit are comparatively comp- licated,the kinematical simulation and analysis of the model of bionic hexapod walking robot have been done by using solidworks and UG.Through simulation,the applicability of designed tripod gait are validated. Keywords Hexapod robot;Walking;Tripod gait;Kinematics simulation

最新六足爬虫机器人

本文的设计为六足爬虫机器人,机器人以锂电池为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析

六足爬行机器人设计--第2章 六足爬行机器人的方案设计

第2章六足爬行机器人的方案设计 2.1 总体设计要求 技术参数: 自由度数:每条腿有3个,共有16个; 本体体重:≤6kg; 行走速度:≥20mm/s; 设计要求: 能够完成前进、倒退、转弯、摆头、避障等任务,并且便于人工控制。 工作要求: 1)机器人的重量控制在6公斤左右,但是这是设计的爬行机器人,为适应不同地形, 它的最大负重加20%。为1.2公斤; 2)机器人机体运动时离地最低为100mm; 3)机器人机步长不低于50mm; 4)为保证电机良好工作和不至于使电机在重负重下工作,机器人小腿和地的夹角不小 于10度,不大于40度,小腿往内倾斜; 多足爬行机器人的一般设计准则: 1) 能够实现机器人多种姿态间的灵活调整; 2) 机器人机体结构简单、紧凑,重量轻; 3) 机器人整体结构强度高、刚度好、负载能力达到要求; 4) 在满足功能要求的情况下,尽量减少驱动及配套装置数量,简化控制的复杂性。

2.2六足爬行机器人的步态规划 步态设计是实现爬行的关键之一,也是系统控制难易的标志,为达到较为理想的爬行,考虑下列要求: 1)步行平稳、协调,进退自如,无明显的左右摇晃和前后冲击; 2)机体和关节间没有较大的冲击,特别是当摆动腿着地时,与地面接触为软着陆; 3)机体保持与地面平行,且始终以等高运动,没有太大的上下波动; 4)摆动腿胯步迅速,腿部运动轨迹圆滑,关节速度与加速度轨迹无奇点; 5)占空系数β的合理取值。 根据占空系数β的大小可分为3种情况: 1)β=0.5,在摆动腿着地的同时,支撑腿立即抬起,即任意时刻同时只有支撑相 或摆动相; 2)β>0.5,机器人移动较慢时,摆动相与支撑相有一短暂的重叠过程,即机器人 有所有腿同时着地的状态; 3)β<0.5,机器人移动较快时,所有腿有同时为摆动相的时刻,即所有腿同时在 空中,处于腾空状态,因此在交替过程中要求机器人机构具有弹性和较快的速 度,否则难以实现。 通过以上分析,我们设计出β>0.5(β=0.55)的六足机器人步态为满足其平稳性的要求,六足机器人采用占空系数为0.55(即在运动过程中有六条腿同时着地)的三角步态。如图2.1(a)所示,机器人开始运动时,六条腿先同时着地,然后2、4、6三条腿抬起进行向前摆动的姿态准备,另外三条腿1、3、5处于支撑状态,支撑起机器人本体以确保机器人的重心位置始终处于三条支腿所构成的三角形内,使机器人处于稳定状态而不至于摔倒,摆动腿2、4、6抬起向前跨步(如图2.1(b)所示),支撑腿1、3、5 一面支撑机器人本体,一面在动力的作用下驱动机器人机体向前运动半步长s(如图 2.1(c)所示)。在机器人机体移动结束后,摆动腿2、4、6立即放下,呈支撑态,使机器人的重心位置处于2、4、6三腿支撑所构成的三角形稳定区内,同时原来的支撑腿1、3、5经短暂停留后抬起并准备向前跨步(如图2.1(d)所示),当摆动腿1、3、5向前跨步时(如图2.1(e)所示),支撑腿2、4、6此时一面支撑机器人,一面驱动机器人本体,使机器人机体向前行进半步长s(如图2-1(f)所示),如此不断循环往复,以实现机器人的向前运动,由于设计速度并不是非常精确,所以其行进轨迹并不是一条笔直的直线。

相关文档
最新文档