自然崩落法底部结构应力状态研究

Series No.500February一2018一一一一一一一一一一一一一一金一一属一一矿一一山METAL MINE 一一一一一一一一一一一一一一一

总第500期

2018年第2期

收稿日期一2017-09-05

作者简介一者亚雷(1989 ),男,硕士研究生三

自然崩落法底部结构应力状态研究

者亚雷一侯克鹏一程一涌一杨八九

(云南亚融矿业科技有限公司,云南昆明650093)

摘一要一以普朗铜矿为研究背景,通过分析拉底工程在自然崩落法中的重要性,应用FLAC 3D 数值模拟软件,研究拉底过程中,逐渐增大拉底推进线尺寸时,底部结构应力状态的分布情况,得到一个聚矿槽开挖距拉底推进线较有利的距离三并且,在实测地应力的基础上,通过改变水平构造应力值,研究了4种不同应力状态下,底部结构的应力分布情况,分别得出有利于矿石崩落及底部结构稳定的应力状态三该研究成果将对自然崩落法矿山的采矿工艺设计和安全生产具有指导作用三

关键词一自然崩落法一拉底推进线一底部结构一水平构造应力

一一中图分类号一TU528.31一一一文献标志码一A一一一文章编号一1001-1250(2018)-02-061-03

一一DOI 一10.19614/j.cnki.jsks.201802011

Research on Bottom Structural Stress State by Natural Caving Method

Zhe Yalei一Hou Kepeng一Cheng Yong一Yang Bajiu

(Yunnan Yarong Mining Technology Co .,Ltd ,Kunming 650093,China )

Abstract 一With the Pulang copper mine as background,the importance of the undercutting project in natural caving was

analyzed.With the use of FLAC 3D numerical simulation software,the distribution of the bottom structural stress state is studied during the process of undercutting,with the size of the undercutting line gradually increasing.A more favorable distance from

the undercutting line to the poly trough was obtained.On the basis of the measured ground stress,and through changing the hor-izontal structural stress values,the stress distribution of the bottom structure were described under four different stresses.The stress state which is beneficial to the ore caving and the stability of the bottom structure was determined.The research result

can provide a guide for designing mining process in mine with caving method and safety production.

Keywords 一Natural caving,Undercutting line,Bottom structure,Horizontal tectonic stress

一一自然崩落法是在开采矿体出矿水平上部,通过拉底形成一定的冒落空间,在有需要的情况下,施加辅助工程,使原岩应力发生改变,朝着矿体破坏二冒落的方向发展[1]三拉底工作是该采矿方法开展的首要任务,对落矿的成功与否起着决定性作用三拉底扰动所引起的次生应力,使矿体原有的稳定状态不能够继续维持,达到最终冒落,其中构造应力的作用是主要的动力[2]三因此,研究拉底过程及不同构造应力条件

下,底部结构的应力状态,对矿山生产具有重要意义三

本项目以普朗铜矿自然崩落法为研究背景,由于受地理环境条件限制,该矿山不能采用露天开采三且因其矿石品位低,矿体厚大,倾角近乎垂直,崩落空间充裕,矿岩易崩落,矿石无自燃和黏结性,地表容许塌陷等,使自然崩落法有可能成为该矿山的一种较为理

想的采矿方式三

1一拉底影响因素及重要性

拉底的作用主要是:首先为矿石崩落形成足够的空间尺寸,以使矿石能在自身重力下崩落;其次在形成的初始崩落时对周围岩体的破坏最小;最后在时间上尽可能快地推进到崩落水力半径,开始崩落,以减少拉底的集中应力三拉底虽然只是矿体的切割工作,但其影响因素很多,主要包括:拉底方式,拉底相关巷道的掘进顺序,拉底推进线二出矿巷道掘进推进线和出矿推进线等的相对位置,拉底推进的起始点和推进方向,拉底的推进速度,拉底高度及三维空间形状三

拉底的好坏是自然崩落法成功与否的关键,同时也与底部结构直接相关三拉底的形式和时间对底部结构的稳定性有着重要的影响,主要是因为在拉底推

16四万方数据

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

自然崩落法的岩石力学工作与矿石崩落块度

2003 年 8 月 中国有色金属学会第五届学术年会论文集 Aug . 2003  收稿日期:2003-07-21  作者简介:张东红(1964-),男,山西省平陆县人,高级工程师,主要从事矿山地质工作.   自然崩落法的岩石力学工作与矿石崩落块度  张东红  (山西垣曲铜矿峪矿地测科,山西 垣曲县 043706)    摘 要:介绍了运用自然崩落法采矿工艺时开展岩石力学工作的方法,在总结铜矿峪矿5号矿体810中段矿石崩落块度的基础上,主要分析了影响矿石崩落块度的因素,提出了降低大块的措施。 关键词:自然崩落法;崩落块度;岩体构造;节理裂隙  Rock Mechanics of Block Caving Method and Ore-caved Fragmentation  Zhang Dong-hong  (Geologic survey section of Tongkuangyu Mine,Yuanqu County ,Shanxi 043706,China) Abstract: The author introduced the method for rock mechanics work while using block caving mining technology, in the light of the ore-caved fragmentation on 810 level of 5#  ore body in Tongkuangyu Mine, mainly analyzed the factors which affect ore-caved fragmentation and put forward some measures to reduce oversized fragments.  Key Words: Block caving method; Caving fragmentation, Rock structure, Joint fissures 自然崩落采矿是依靠岩体内部自然力的变化来破坏各种结构面和结构面的岩桥,形成与岩体分离的脱离体,并在重力作用下自然落矿。在这一动力学过程中,原岩应力及各种采矿工程(拉底、割帮等)所产生的次生应力场的大小及作用方式是矿体发生破坏的先决条件,而矿体中不连续面的存在,特别是它们的数量、分布规律、空间结合的特点,是确定矿体崩落难易程度、崩落块度大小和形状的决定性影响因素。  结构面是岩体中没有或具有低抗拉强度的力学不连续面的总称。它包括原生结构面、构造结构面及次生结构面。因此它是节理、层面、片理面、劈理面、劈理面断层等的总称。  在论证是否要应用自然崩落法采矿以及怎样布置工程时,必须对开采对象及其影响范围内的岩体构造、原岩应力进行全面调查,研究岩体构造面的几何参数、空间分布规律、结构面表面的力学性质等,便于进行可崩性论证,预测矿石崩落块度和进行巷道稳定性分析。  1 岩体构造调查成果  岩体构造调查的重点是研究岩体结构面的空间分布情况(产状、位置)和表面状态、性质等,进而统计出节理分组情况、间距以及岩体质量指标等反映岩 石力学性质的特征值。  坑道工程调查要测量节理的空间位置,记录节理的产状、持续性、粗糙度、张开度、充填物、渗水性和岩性。调查结果:5号矿体节理倾向丰度较高的区域为260°~320°和110°~170°, 分 别 第一组和第二组,其平均倾角分别为59.1和55.7 。 节 理 频 率 和 平 均间 1。节理面粗糙度统计见表2。  表1 节理频率及平均间距统计表  结构面频率(条/m2) 平均间距(cm) 标高(m) 最小 最大 平均 最小 最大 平均 810 6.1 11.9 8.4 8.4 16.3 11.8 690  3.5  6.2  4.7  16.1  28.6  21.2    表2 节理面粗糙度统计表  标高(m) 平面形(%) 波浪形(%) 台阶形(%) 810 77.6 20.0 2.4 690  73.8  24.8  1.4    节理张开度类型以闭合节理为主,占节理总数的69.9%,张开节理占29.4%,愈合节理很少。钻探岩芯调查主要研究节理分布数量、节理面特征、统计RQD值和破碎带情况,并取部分岩心进行岩石物理力学性质研究。通过钻孔岩心调查, 5号矿体节理密度为3.34条/m,RQD值的平均值为72.73%。

无底柱分段崩落采矿法

无底柱分段崩落采矿法 一、无底柱分段崩落采矿法的特点: 1、将矿块划分为分段,在分段进路中进行落矿、出矿等回采作业,不需要开掘专用的出矿底部结构。 2、崩落矿石在崩落围岩覆盖下放出。 二、无底柱分段崩落采矿法的主要布置: 1、常用的分段高度为12~15m,通过斜坡道、设备井、电梯井与各分段的联络巷道相联系。 2、分段联络巷道一般位于矿体下盘,通常每隔20m左右掘进一条回采进路,上下分段的回采进路采用菱形布置。 3、在进路的端部开切割槽,以切割槽为自由面用中深孔或深孔挤压爆破,后退回采,每次爆破1~2排炮孔,崩落矿石在崩落的覆盖岩石下,从进路的端部用铲运机、装岩机等出矿设备运到放矿溜井。 4、在上一分段退采到一定距离后,便可开始进行下一分段的回采。 5、此方法掘进回采进路、钻凿炮孔、出矿可以在同一矿块的不同分段同时进行。 三、矿块结构参数: 1、阶段高度:阶段高度一般为50~70m,无底柱分段崩落法与阶段高度的制约关系不太大,在实际开采中可按一般的开采原则

选择阶段高度。 2、分段高度:分段高度主要受设备能力的限制,目前国内的分段高度一般采用12~15m,为了减少采准工程量,在凿岩设备能力允许的条件下,可适当加大分段高度。 3、进路间距:在分段高度确定后,便可根据放矿理论,使其损失、贫化指标最佳的原则来确定进路间距。 4、进路的规格和形状:回采进路的规格和形状对出矿工作有很大影响,在保证巷道顶板和眉线稳固的条件下,需从以下方面加以考虑: a.进路宽度应尽可能大,以增大放出体的宽度,提高矿石回收率和便于出矿设备运行。 b.进路的高度在满足凿岩设备及通风管道布置的要求时,应尽可能低,以减少残留在进路正面的矿石损失。 c.进路的顶板以平顶为好,以便矿石能均匀地在全宽上放出,若顶板呈拱形,矿石将集中在拱顶部放出,容易造成废石提前流出。 d.国内常用的进路宽度为3~4m, 高度为3m。 四、采准与切割 (一)采准工作 1、矿块的划分与放矿溜井的布置 a.无底柱分段崩落法矿块的划分,一般以一个放矿溜井所服务的范围划分为一个矿块。 b.放矿溜井的布置一般根据设备的性能而定。其间距为:使用

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

阶段自然崩落采矿法的拉底方法

书山有路勤为径,学海无涯苦作舟 阶段自然崩落采矿法的拉底方法 拉底方法有浅孔拉底和深孔拉底(见图1,2)两种方法。拉底巷道一般布置在出矿水平以上4~15m,掘进与漏斗间距相同的互相平行的拉底巷道。出矿水平与拉底水平之间的距离主要取决于矿岩的稳固性和选用的拉底方法。图1 重力出矿1-运输巷道;2-放矿溜井;3-分支溜井;4-格筛巷道;5-漏斗;6-拉底巷道;7-拉底炮孔;8-联络道 图2 铲运机出矿系统1-铲运机道;2-装矿进路;3-平底V 形槽;4-拉底巷道;5-出矿堑沟炮孔;6-拉底炮孔;7-放矿溜井;8-运输巷道;9-回风联络巷道;10-回风巷道 最低的拉底高度是拉底后,漏斗间的脊柱不致阻碍上部矿石自然崩落。即在拉底水平不能有支撑点。浅孔拉底的高度为2.5~5.0m。使用深孔(或中深孔)拉底时,要求拉底后在漏斗脊柱之上必须形成高度大于3.0m 的拉底空间。拉底速度要与崩落速度和产量相适应。在初期,拉底不宜太快,使次生应力得到充分发展,有利崩落,但也不宜太慢或停顿,这对出矿巷道不利,应保持均匀推进。随着生产经验积累,可以适当加快拉底速度。随崩落线推进顺序爆破拉底炮孔,每次爆2~3 排(约5m)。每次爆破以后必须仔细检查是否留下残柱,一旦发现留有残柱,一定要及时处理,否则将会阻止矿石自然崩落,并对出矿巷道产生应力集中。拉底一般从靠近已崩落矿块的一侧,或从矿体上盘开始,沿对角线方向呈阶梯状推进,要严格控制相邻拉底超前距离,一般在 15m 以内为好。当矿体中品位分布不均时,为了尽早回收资金,一般把初始拉底选择在高品位矿段。从岩石力学的观点出发,应先从软弱矿段开始拉底,有利于矿石崩落,并且对维护出矿巷道也有利。在有大的构造断层穿过开采矿段时,拉底线一定要垂直断层走向推进。要注意拉底推进线的方向尽可能与原岩水平主应力方向一致,拉底水平面积的形状最好呈矩形,且矩形的长边垂直于

无应力状态控制法综述

文章编号:1003-4722(2010)01-0071-04 无应力状态控制法综述 黄晓航1,高宗余2 (1.中铁大桥局集团有限公司,湖北武汉430050; 2.中铁大桥 勘测设计院有限公司,湖北武汉430050) 摘 要:无应力状态控制法是解决桥梁结构分阶段施工的理论方法。通过建立分阶段施工结构的力学平衡方程,从理论上阐明桥梁构件单元的无应力状态量是影响分阶段施工结构内力和位移的本质因素,并得出无应力状态控制法原理:在结构外荷载、结构体系、支承边界条件、单元无应力长度、无应力曲率一定的情况下,其对应的结构内力和位移是惟一的,与结构的形成过程无关。 采用无应力状态控制法,在斜拉桥安装计算时可由成桥最终状态直接解算施工中间状态;可分析杆件工厂制造长度偏差对桥梁结构内力和线形的影响;可实现调索与其他工序并行作业等运用传统方法解决较困难或无法解决的工程问题。 关键词:桥梁工程;分阶段施工;无应力状态量;安装计算;施工监控;原理;应用 中图分类号:TU311.4文献标志码:A A Summarized Account of Unstressed State Control Method H U ANG Xiao hang1,GAOZong y u2 (1.China Zhongt ie M ajo r Bridge Engineer ing G roup Co.,L td.,W uhan430050,China; 2.China Zho ng tie M ajor Br idg e Reconnaissance&Desig n Institute Co.,L td.,W uhan430050,China) Abstract:T he unstressed state co ntro l method is a theoretic m ethod for bridg e structur e con structio n in stages.By establishing the m echanical equilibrium equations for the structure,it is theoretically ex plained that the unstressed state am ount o f the element o f the str ucture is the es sential factor that has influence on the internal force and displacem ent of the structur e constructed in stages and the principle of the unstr essed state control is obtained,that is,under the certain conditions of the ex ternal load,structural system,supporting boundary co ndition,element un stressed leng th and unstressed cur vature,the structur al internal force and displacement co rre spo nding to the conditio ns is sole and has no relatio nship w ith the fo rmation pro cess of the str uc ture.T hrough utilization of the unstressed state contr ol m ethod in the calculatio n fo r erection of a cable stayed br idge,the construction interm ediate state can be directly solved from the final com pletion state,the influences of the shop manufactur ing length to ler ance of structural members on the internal fo rce and geometric shape o f the structure can be analyzed and the parallel o pera tion o f cable adjustment and other w or king procedures that is difficult for the conv entional con structio n methods to be carried out or that can not be car ried out by the m ethods can be realized. Key words:bridg e engineering;co nstructio n in stages;unstr essed state amount;calculation for erection;construction mo nitoring and co ntro l;principle;applicatio n 收稿日期:2009-11-13 作者简介:黄晓航(1970-),男,高级工程师,1992年毕业于上海交通大学工程力学专业,工学学士(h uangx h@https://www.360docs.net/doc/6f13493268.html,)。

重力坝稳定及应力计算

坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算 (一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m (二)、坝体断面 1、非溢流坝段标准剖面

荷载作用的 标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040×4.3 = 8772 KN ·m M OW2 = -1109.4×1.067 = -1183.7 KN ·m

自然崩落法采矿方法的实践应用1

自然崩落法采矿方法的实践应用 万相宗 (安徽省铜陵县牛山矿业有限责任公司) 主题词:采矿方法有底柱无底柱自然崩落法 (摘要:铜陵县牛山矿业公司虎山硫铁矿3#矿体为褐铁矿,较松散不稳定,难以开采。选择有底柱自然崩落法开采二年来,管理得当,安全生产无事故,年产矿石达六万多吨。确实达到了安全、高效、稳产的效果。) 铜陵县牛山矿业有限责任公司虎山硫铁矿3#矿体属于小型铁矿体,总储量约为20万吨。位于牛山矿段94线至100线之间,走向135o,矿体宽10~25m不等,长约100m,矿体倾向北东,倾角近直立,矿体赋存标高为+63~-29m。+34m以上矿体由露于进行开采。矿体为褐铁矿,较松散不稳定,矿石品位较稳定,Fe在40%~55%之间,矿体不含水。矿体呈墙状产出,矿体基本上控制在石炭系黄龙组与船山组之间,上盘围岩溶蚀少,较稳固,下盘围岩有较多溶洞发育,且溶洞均被矿岩充填,稳定性差。 3#矿体为斜井开拓,已开拓了0m和-20m二个中段,中段高分别为30米和20米。 一、原采矿方法的选择 本矿体采矿方法原推荐方案为点柱式上向分层充填法,充填料以井下废石为主,电耙出矿。根据实践证明,原方案存在一些问题,主要表

现在: 1、原方案中未能考虑矿石非常松散、易垮落的特点,使巷道支护工作量非常大,安全性较差。 2、原方案中充填成本较高,且要布置专门的取料通道和溜矿井。 3、技术复杂,较难操作,并且点柱不足以承受地压。 4、电耙道支护量大,维修时安全性低。 根据铜陵县牛山矿业公司3#矿体的实际情况,上述采矿方法不适用于对3#矿体的开采。必须选择合适的采矿方法来满足对3#矿体开采的需要。 二、变更后采矿方法的选择 牛山矿业有限责任公司虎山硫铁矿3#矿体矿石非常松散、易垮落的特点比较符合自然崩落法对矿体的要求,故选择自然崩落法比较适宜。 (一)有底柱自然崩落法 1、沿矿体顶底板在围岩内掘进沿脉巷道,然后掘进穿脉贯通矿体,沿脉运输大巷距矿体应在5米左右为宜。在矿体内掘进平底漏斗结构,上向爆破形成采场。 2、采场要素:穿脉间水平距离为10米;平底结构平行布置,二条穿脉斗穿交错布置,间距为6~8米;斗穿长度为5米,斗颈2米;漏斗上向倾角(扩漏斗)为45o。 3、支护形式主要为木支护,圆木小头直径0.16~0.22米,支护间距0.5米,支护棚脚用圆木做基础梁,基础梁的作用是防止支护棚下沉,保证保证巷道断面尺寸。梁埋于地下,支护棚顶、邦用木板背实。因矿

自然崩落法底部结构应力状态研究

Series No.500February一2018一一一一一一一一一一一一一一金一一属一一矿一一山METAL MINE 一一一一一一一一一一一一一一一 总第500期 2018年第2期 收稿日期一2017-09-05 作者简介一者亚雷(1989 ),男,硕士研究生三 自然崩落法底部结构应力状态研究 者亚雷一侯克鹏一程一涌一杨八九 (云南亚融矿业科技有限公司,云南昆明650093) 摘一要一以普朗铜矿为研究背景,通过分析拉底工程在自然崩落法中的重要性,应用FLAC 3D 数值模拟软件,研究拉底过程中,逐渐增大拉底推进线尺寸时,底部结构应力状态的分布情况,得到一个聚矿槽开挖距拉底推进线较有利的距离三并且,在实测地应力的基础上,通过改变水平构造应力值,研究了4种不同应力状态下,底部结构的应力分布情况,分别得出有利于矿石崩落及底部结构稳定的应力状态三该研究成果将对自然崩落法矿山的采矿工艺设计和安全生产具有指导作用三 关键词一自然崩落法一拉底推进线一底部结构一水平构造应力 一一中图分类号一TU528.31一一一文献标志码一A一一一文章编号一1001-1250(2018)-02-061-03 一一DOI 一10.19614/j.cnki.jsks.201802011 Research on Bottom Structural Stress State by Natural Caving Method Zhe Yalei一Hou Kepeng一Cheng Yong一Yang Bajiu (Yunnan Yarong Mining Technology Co .,Ltd ,Kunming 650093,China ) Abstract 一With the Pulang copper mine as background,the importance of the undercutting project in natural caving was analyzed.With the use of FLAC 3D numerical simulation software,the distribution of the bottom structural stress state is studied during the process of undercutting,with the size of the undercutting line gradually increasing.A more favorable distance from the undercutting line to the poly trough was obtained.On the basis of the measured ground stress,and through changing the hor-izontal structural stress values,the stress distribution of the bottom structure were described under four different stresses.The stress state which is beneficial to the ore caving and the stability of the bottom structure was determined.The research result can provide a guide for designing mining process in mine with caving method and safety production. Keywords 一Natural caving,Undercutting line,Bottom structure,Horizontal tectonic stress 一一自然崩落法是在开采矿体出矿水平上部,通过拉底形成一定的冒落空间,在有需要的情况下,施加辅助工程,使原岩应力发生改变,朝着矿体破坏二冒落的方向发展[1]三拉底工作是该采矿方法开展的首要任务,对落矿的成功与否起着决定性作用三拉底扰动所引起的次生应力,使矿体原有的稳定状态不能够继续维持,达到最终冒落,其中构造应力的作用是主要的动力[2]三因此,研究拉底过程及不同构造应力条件 下,底部结构的应力状态,对矿山生产具有重要意义三 本项目以普朗铜矿自然崩落法为研究背景,由于受地理环境条件限制,该矿山不能采用露天开采三且因其矿石品位低,矿体厚大,倾角近乎垂直,崩落空间充裕,矿岩易崩落,矿石无自燃和黏结性,地表容许塌陷等,使自然崩落法有可能成为该矿山的一种较为理 想的采矿方式三 1一拉底影响因素及重要性 拉底的作用主要是:首先为矿石崩落形成足够的空间尺寸,以使矿石能在自身重力下崩落;其次在形成的初始崩落时对周围岩体的破坏最小;最后在时间上尽可能快地推进到崩落水力半径,开始崩落,以减少拉底的集中应力三拉底虽然只是矿体的切割工作,但其影响因素很多,主要包括:拉底方式,拉底相关巷道的掘进顺序,拉底推进线二出矿巷道掘进推进线和出矿推进线等的相对位置,拉底推进的起始点和推进方向,拉底的推进速度,拉底高度及三维空间形状三 拉底的好坏是自然崩落法成功与否的关键,同时也与底部结构直接相关三拉底的形式和时间对底部结构的稳定性有着重要的影响,主要是因为在拉底推 四 16四万方数据

无底柱分段崩落法炮孔设计说明

某铜硫矿无底柱分段崩落法中深孔爆破设计 一、工程概况: 矿体岩性为含铜黄铁矿,岩石坚固性系数f=3~5,属不稳固矿石;回采进路基本全巷道木支护。矿山采用的采矿方法为无底柱分段崩落法,分段高度为13m,分段进路间距为12m,上下分段回采巷道应严格交错布置,使回采分间成菱形,以便将上分段回采巷道间的脊部残留矿石尽量回收。回采巷道的布置形式为垂直矿体走向布置。根据-68m分段地质平面图及上个分段的巷道布置情况,回采进路布置个数为7个;分别为1#穿脉、2#穿脉、3#穿脉、4#穿脉、5#穿脉、6#穿脉、7#穿脉。采用切割平巷与切割天井联合拉槽法,即岩矿体掘进一条切割平巷贯通各回采巷道端部,然后根据爆破需要,在适当的位置掘进切割天井;切割天井断面为2m×2m。在切割天井两侧,自切割平巷钻凿若干排平行或扇形炮孔,每排4-6个炮孔;以切割天井为自由面,一侧或两侧逐排爆破炮孔形成切割槽。 二、爆破器材的确定 采用半秒塑料导爆管雷管,粉状炸药,BQF-50型装药器装药,起爆器起爆,按设计顺序依次起爆 三、爆破参数的选择: (1)凿岩 本矿山为小型矿山,根据资料,采用FJY-24型圆盘台架配以YGZ-90型凿岩机进行凿岩,炮孔直径60mm,每根钎杆长度为0.8m。

(2)炮孔布置 炮孔布置形式为扇形,边孔角取500。最小抵抗线W常取 1.5- 2.0m。若W过小,前排孔易爆坏后排孔;过大,同排孔易爆穿,产生大块和爆破立槽。最佳的W应满足W/d=35,根据算W=35×60= 2.1m,综合考虑取2m。布置9个眼,中间一个眼,两边对称。详见爆破设计图。 表1 炮孔参数表(炮孔从左到右) (3)爆破 炸药采用粉装炸药,BQF-50型装药器装药。装药采用交错装药,孔口装药间距a=0.6—1.0w,取a=0.6w=1.2m。因为无底柱分段崩落法的爆破只有很小的补偿空间,属于挤压爆破。为了避免扇形炮孔孔口装药过于集中,装药时,除边距及中心孔装药较满外,其余各孔的装药长短。具体装药长度及装药量见表2。见爆破设计图。 表2 装药长度及装药量 爆破时采用V字形起爆,4号、5号、6号孔1段毫秒雷管最先起爆,2号、3号、7号、8号5段毫秒雷管其次,1号、9号孔9段毫秒雷边眼最后起爆。

无应力状态法

无应力状态法 摘要:本文介绍了大跨度桥梁施工控制一种结构计算方法,即无应力状态法。通过建立分阶段施工结构的 力学平衡方程, 从理论上阐明桥梁构件单元的无应力状态量是影响分阶段施工结构内力和位移的本质因素, 并得出无应力状态控制法原理: 在结构外荷载、结构体系、支承边界条件、单元无应力长度、无应力曲率 一定的情况下, 其对应的结构内力和位移是惟一的, 与结构的形成过程无关。安装计算时通过无应力状态 量直接解算施工中间状态的内力和位移, 在分阶段施工桥梁施工过程中实现了多工序并行作业和温度、临 时荷载影响的自动过滤。 关键词:分阶段施工桥梁;无应力长度;无应力曲率;施工控制;原理;应用 Unstressed state method Abstract:This paper introduces a method of structure calculation in the construction control about large span bridge, which is unstressed state method. By establishing the mechanical equilibrium equations for the structure, it is theoretically explained that the unstressed state amount o f the element of the structure is the essential factor that has influence on the internal force and displacement of the structure constructed in stages and the principle of the unstressed state control is obtained, that is, under the certain conditions of the external load, structural system, supporting boundary condition, element unstressed length and unstressed curvature, the structural internal force and displacement corresponding to the conditions is sole and has no relationship with the formation process of the structure .At the time of calculation for erection, the internal force and displacement in the interim state of construction are directly calculated by means of the unstressed state amount and the parallel operation of multiple working procedures and the automatic filtration of influences from temperatures and temporary load can be therefore well realized in the construction process of the bridges constructed in stages. Keyword:bridge constructed in stages; unstressed length; unstressed curvature; construction control; principle; application 1 前言 无应力状态控制法是中铁大桥局总工程师秦顺全提出的一种解决桥梁分阶段施工的理 论控制方法。该方法的理念在20世纪80年代末形成, 在1992年的全国桥梁结构学术会议上正式发表第1篇论文, 于1993年完成程序编制工作并在武汉长江二桥工程上第1次成功运用, 至今该方法已经在国内外30多座桥梁上成功运用[1]。 现阶段施工控制中桥梁结构的计算方法主要包括:正装分析法、倒装分析法和无应力状态计算法[2]。倒拆计算法以结构的倒拆计算建立了施工中间状态与最后成桥目标状态之间的联系;正装计算法可以通过试算的办法建立结构施工的中间状态,并使结构施工的中间状态的内力和线形满足成桥目标的要求。两种计算方法都是以结构的内力和线形建立中间状态与最终状态之间的联系。而内力和位移状态与结构体系和外荷载紧密相关,外荷载和结构体系

机械可靠性结构度计算

脆断体(高、低周疲劳)的剩余寿命计 算 课程名称:机械结构强度与可靠性设计 专业:机械设计及理论 年级:2013级 完成时间:2014-05-02

文章是对脆断体(高周疲劳和低周疲劳)的剩余寿命计算的一个综述。对于机械零件的寿命计算,尤其是对于断裂件(含裂纹体)的剩余寿命计算,正确估算裂纹体的剩余疲劳寿命估算,能够有效的保证重要零件的合理检修要求,能够很好的创造好经济条件。一般对于高周疲劳,无裂纹寿命N1是主要的,它占了总寿命N(N=N1+N c)中的主要部分,而裂纹扩展寿命N c短,因此高周疲劳中往往只按初始裂纹尺寸来估算N e值。但对于低周疲劳中总寿命中N c占主要部分,N1 很小。与疲劳裂纹扩展速度相关的物理量有应力强度因子幅值ΔK I和其他量。疲劳裂纹的扩展速度:疲劳条件下的亚临界裂纹扩展速率是决定零部件疲劳破坏寿命的特性指标之一。 剩余寿命的时间是指初始裂纹a0到临界裂纹尺寸a c的时间。零件在变应力作用下,初始裂纹a0会缓慢产生亚临界扩展,当它达到临界裂纹尺寸a c 时,就会发生失稳破坏。裂纹体在变应力作用下的裂纹扩展速率与应力场裂纹尺寸和材料特性的关系。ΔK I—控制疲劳裂纹扩展速度的主要力学参量,实验指出控制盘疲劳裂纹扩展速度的主要力学参量是应力强度因子幅值ΔK I。da/dN与ΔK I的关系曲线表明了材料在无害环境中疲劳裂纹的扩展速度与应力强度因子幅值的关系。 ①区间I: da/dN=0处,有ΔKth,称为界限应力强度因子幅值。 当ΔK I≤ΔKth时,裂纹不扩展,稳定状态

当ΔK I ≥ΔKth 时,裂纹开始扩展,ΔKth 是判断构件是否会发生裂纹亚临界扩展的指标. ② 区间II 为裂纹的亚临界扩展区;由亚临界裂纹扩展速度da/dN 与ΔK I 存在的指数规律得出的Paris 公式 da/dN=c(ΔK I )m 。 da/dN —裂纹亚临界扩展速率,a 为裂纹半长,N 为循环次数;ΔK I —在每一循环中I 型应力强度因子变化幅值; c —与平均应力、应力变化、频率、材料机械性能G 有关的常数; m —与材料有关的常数 由max min max min (I K K K F F σσ?=-=-=? 得I I K F ?=? 式中Δσ为应力变化幅度,一般 max min σσσ?=- 实验数据:da/dN 主要决定于ΔK I ,而且与试件和裂纹的特征和加载方式无关。实验室数据可以直接用于实际零件的裂纹亚临界扩展速率和裂纹体剩余寿命的计算。 ③区间IIIda/dN 剧增,裂纹迅速作临界失稳扩展,引起断裂。 由于考虑到Paris 公式只适用于低应力、高疲劳强度问题,未考虑第二位因素的影响,如平均应力、介质条件、温度、过载峰、加载方式、加载频率等。 (1)对于平均应力的影响,对裂纹扩展速率由显著影响,平均应力越大,da/dN 越大。Forman 提出了修正公式,考虑了K Ⅰ趋近临界值K C 时裂纹的加速扩展效应和平均应力的影响: 10()m I C I c K da dN K K ??=?-? 其中: min max (1);; C c C K r K F r K F σσσ?=-=??==? 式中c 、m —材料常数; K C —平面应力断裂韧性;考虑到零件的表面残余压应力可以提高疲劳强度,其

第6章结构件及连接的疲劳强度计算原理

148 第6章 结构件及连接的疲劳强度 随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。 6.1 循环作用的载荷和应力 起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。 起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个 循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。 6.1.1 循环应力的特征参数 (1) 最大应力 一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。 (2) 最小应力 一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。 (3) 整个工作循环中最大应力值 构件或连接整个工作循环中最大应力的数值,用max ?σ 表示。 (4) 应力循环特性值 一个循环中最小应力与最大应力的比值,用min max r σσ=表示。 (5) 循环应力的应力幅 一个循环中最大的应力与最小的应力的差的绝对值,用σ?表示。

有底柱分段崩落法

有底柱分段崩落法 2012-05-14 11:03:29 来源: 阅读: 6 摘要:有底柱分段崩落法的主要特征是:矿体自上而下将阶段划分为分段,沿矿体走向按一定顺序,用强制崩矿或利用地压与矿石自重落矿,实现单步骤连... 有底柱分段崩落法的主要特征是:矿体自上而下将阶段划分为分段,沿矿体走向按一定顺序,用强制崩矿或利用地压与矿石自重落矿,实现单步骤连续回采;崩落矿石是在覆盖岩石的直接接触下,借助矿石的自重和振动力的作用,经底部结构放出。随着矿石的放出,覆盖岩石随之下降,充满采空区,实现地压管理。 1)采场布置 急倾斜和倾斜矿体,厚度小于15~20m时,矿块沿走向布置;厚度大于15~20m时,矿块垂直走向布置。图9-12为胡家峪矿沿走向布置的有底柱分段崩落法示意图。 2)采准切割 为提高矿块出矿和运输能力,阶段运输平巷1可采用环形运输系统,布置脉外双巷,采用穿脉连接。上下阶段运输平巷间掘进矿石溜井10和人行材料井9(无轨设备出矿时,施工斜坡道),在每个分段出矿水平掘进联络道7,与人行材料井和电耙道4联通。在出矿水平上方施工凿岩平巷3,负责凿岩工作。自凿岩平巷上掘切割天井5和切割平巷4,以切割天井和切割平巷为自由面,形成切割槽。 3)回采 采用中深孔或深孔钻机,在凿岩平巷内钻凿上向扇形中深孔或深孔,向切割槽方向进行挤压爆破。在“V”型堑沟内的崩落矿石,通过安装在电耙道内的电耙耙入矿块小井,最终汇入主溜矿井。由于崩落矿石直接与上部覆盖岩石接触,为减少矿石损失与贫化,应使矿石与废石接触面保持一定的状态(水平或倾斜)下降,因此,各分段出矿时,应综合考虑上下分段、相邻矿块的出矿情况,制定周密的放矿顺序和放矿量。 图12 胡家峪矿有底柱分段崩落法示意图 1—下盘阶段运输平巷; 2—漏斗颈; 3—凿岩平巷;4—电耙道; 5—切割天井;6—切割平巷;7—联络道;8—矿块出矿小井;

相关文档
最新文档