10Gleeble热模拟实验

deform挤压模拟课程设计

课题: 材料成型计算机模拟系别: 机械工程学院专业班级: 11级材控1班 指导教师: 张金标 组别: 第五组 2014年6月

第一章课程设计内容及任务分配.............................................................................................................. - 1 - 1.1 概述.......................................................................................................................................................... - 1 - 1.2 设计目的.................................................................................................................................................. - 1 - 1.3 设计内容.................................................................................................................................................. - 1 - 1.4 设计要求.................................................................................................................................................. - 1 - 1.5 挤压方案任务分配.................................................................................................................................. - 2 - 第二章工艺参数.......................................................................................................................................... - 3 - 2.1 工艺参数的设计...................................................................................................................................... - 3 - 2.1.1 摩擦系数的确定.................................................................................................................................... - 3 - 2.1.2 挤压速度的确定.................................................................................................................................... - 3 - 2.1.3 工模具预热温度的确定........................................................................................................................ - 3 - 第三章模具尺寸的确定.............................................................................................................................. - 4 - 3.1 挤压工模具示意图.................................................................................................................................. - 4 - 3.2 模具尺寸的确定...................................................................................................................................... - 4 - 3.2.1挤压模结构尺寸的确定......................................................................................................................... - 4 - 3.2.2 挤压筒结构尺寸的确定...................................................................................................................... - 6 - 3.2.3 挤压垫的结构及尺寸确定.................................................................................................................... - 7 - 第四章实验模拟及数据提取分析............................................................................................................ - 8 - 4.1挤压工模具及工件的三维造型............................................................................................................... - 8 - 4.2 挤压模拟.................................................................................................................................................. - 8 - 4.3 后处理...................................................................................................................................................... - 9 - 4.4分析数据................................................................................................................................................... - 9 - 4.5 坯料温度对挤压力的影响.................................................................................................................... - 10 - 4.6 坯料预热温度对破坏系数的影响........................................................................................................ - 11 - 个人小结........................................................................................................................................................ - 12 - 参考文献........................................................................................................................................................ - 21 - 附表《塑性成型计算机模拟》课程设计成绩评定表

deform模拟常见问题

1.我用deform模拟轧制过程时,推动块(pusher)和轧件(slab)再整个运动过程中始终粘在一起,我设置多个轧辊速度都不能使其分离,为什么?请高手指点? (1)你给推动块设置一个速度时间曲线就可以了吧,让它在某一时间停下来,不就分离了 2.DEFORM的一些参数跟我们传统理工科的习惯很不一致,导致建模、模拟的时候经常会莫名的出错,而且很难找出问题出在哪里!比如:(1) 边界条件设置(BDRY)中的压强(pressure)——按照我们的习惯,施加在面上的应为压应力(因为是压强嘛),如果想设置为拉应力的话,要取负值;可在DEFORM中却是相反的。不信你建个简单的立方体模型,上下面加压(正的值),模拟结果很明显是物体被拉长了!(2) 旋转方向设置——如果从旋转轴的箭头方去看,我们通常以顺时针为正;可是在DEFORM中是反过来的!而且有的时候你选了轴,可在用系统选定旋转中心点后(俗称小绿帽),刚刚选好的轴会更改,本来你选的-X,它有时会变成+X(很奇怪!),出现这种情况只能通过正负值的设定来改变旋转方向了。特别是在轧制、旋压加工的时候,千万要看准工作辊旋转方向!(3)边界条件设置(BDRY)中的力(force)——这地方的正负值仅仅是决定方向的,更值得注意的地方是:有时候你设置的拉力或张力在生成DB文件的时候不写入的(可能是DEFORM有个许可范围,你设置的值溢出了),也就是说你的边界力是没有加上去的,模拟的时候为零。还要注意,你输入的力值是加在每个所选的节点上的,举例:你想在面上加载100kN的力,面上节点数为100,这时你在力值的输入窗口所写的值应为1kN。类似的细节问题还有很多,一不小心或稍有不熟悉就可能出问题,而且很难排查出,最伤人了! (1)正应力—拉、负应力—压是常识呀;旋转方向的判别采用右旋定则,即右手握住旋转轴,大拇指伸直与旋转轴正向一致。 3.我用Dform 3D进行轧制模拟,起初用稳态ALE模型,但是轧件扭曲很严重,计算很快就终止了。换成增量ALE以后,便基本顺利完成了轧制的模拟(模拟

传热模拟实验

实验名称传热模拟实验班级化艺146 姓名楚莹鑫学号 1401010625 成绩指导老师王许云 一、实验目的 1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数αi 的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式 Nu=ARe m Pr0.4 中常数A、m 的值。 2.通过对管程内部插有螺旋线圈的空气--水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B、m 的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验装置 1.实验设备流程示意图 空气-水蒸气传热综合实验装置流程图 1-液位计; 2-储水罐; 3-排水阀; 4-蒸汽发生器; 5-强化套管蒸汽进口阀; 6-光滑套管蒸汽进口阀;7-光滑套管换热器;8-内插有螺旋线圈的强化套管换热器;9-光滑套管蒸汽出口; 10-强化套管蒸汽出口; 11-光滑套管空气进口阀; 12-强化套管空气进口阀;13-孔板流量计;14-空气旁路调节阀;15-旋涡气泵;16-蒸汽冷凝器 三、实验原理 1.普通套管换热器传热系数及其准数关联式的测定 (1)对流传热系数 αi的测定 对流传热系数αi可以根据牛顿冷却定律,用实验来测定。因为αi <<αo ,所以传热管内的对流传热系数αi≈K,K(W/m2·℃)为热冷流体间的总传热系数,且K≈Q i/( ?t m *s i)。 所以: αi≈Q i /(??t m *s i) 式中:α

αi 管内流体对流传热系数,W/(m2?℃); Qi—管内传热速率,W; Si—管内换热面积,m2; ?t mi 管内平均温度差,℃。 平均温度差计算公式:??t mi =t w-t m 式中:t m 冷流体的入口、出口温度t w 壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用tw来表示,由于管外使用蒸汽,所以tw近似等于热流体的平均温度。 管内换热面积:S i =πd i L i 式中:di 内管管内径,m; Li 传热管测量段的实际长度,m。 由热量衡算式: Q i =W i c pi(t i2-t i1 ) 其中质量流量由下式求得: W i =V iρi /3600 式中:Vi 冷流体在套管内的平均体积流量,m3 / h; cpi 冷流体的定压比热,kJ / (kg·℃); ρi 冷流体的密度,kg /m3。 cpi 和ρi 可根据定性温度 tm 查得,t m=(t i1+t i2)/2为冷流体进出口平均温度。ti1,ti2,tw, Vi 可采取一定的测量手段得到。 (2)对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为: Nu i= A Re i m Pr i n 物性数据λi、cpi、ρi、μi可根据定性温度tm查得。经过计算可知,对于管内被加热的空气,普兰特准数Pri变化不大,可以认为是常数,则关联式的形式简化为: Nu i= A Re i m Pr i0 .4 这样通过实验确定不同流量下的Rei与Nu i,然后用线性回归方法确定A和m的值。 2 强化套管换热器传热系数、准数关联式及强化比的测定 强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装置是采用了多种强化方式,见表

deform3D实验报告

学生学号0120801080128 实验课成绩 学生实验报告书 实验课程名称材料成型数值模拟设计实验 开课学院材料学院 指导教师姓名朱春东、钱东升 学生姓名王丹丹 学生专业班级成型0801 2011-- 2012学年第一学期

实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平 与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高 学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参 照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验 报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有 实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。 附表:实验考核参考内容及标准 观测点考核目标成绩组成 实验预习1.预习报告 2.提问 3.对于设计型实验,着重考查设计方案的 科学性、可行性和创新性 对实验目的和基本原理 的认识程度,对实验方 案的设计能力 20% 实验过程1.是否按时参加实验 2.对实验过程的熟悉程度 3.对基本操作的规范程度 4.对突发事件的应急处理能力 5.实验原始记录的完整程度 6.同学之间的团结协作精神 着重考查学生的实验态 度、基本操作技能;严 谨的治学态度、团结协 作精神 30% 结果分析1.所分析结果是否用原始记录数据 2.计算结果是否正确 3.实验结果分析是否合理 4.对于综合实验,各项内容之间是否有分 析、比较与判断等 考查学生对实验数据处 理和现象分析的能力; 对专业知识的综合应用 能力;事实求实的精神 50%

热物理模拟设备的发展

物理模拟设备的发展综述 摘要:物理模拟技术,作为材料成形工艺的简单实验,可以对复杂成形技术提供可靠的支持,在材料的加工领域里面有不可取代的作用。早期使用橡皮泥,铅块,石蜡等塑性较好的材料来进行复杂成形过程的模拟,以提供合理的设计参数,这种方法浪费大,时间长,效率较低,随着计算机技术的发展,目前更多的模拟同在在电脑上进行,先在热物理模拟机上进行的简单的模拟,得到材料的性能参数,然后在电脑上利用专门的商业软件进行模拟,这样不仅花费小,开发周期短,而且可以使材料的数据得到最大的用途。因此,热物理模拟设备的发展对物理模拟的进步有着举足轻重的作用。 关键词:物理模拟,热物理模拟机,Gleeble

前言 “物理模拟”是一个内涵十分丰富的广义概念,也是一种重要的科学方法和工程手段。通常,“物理模拟”是指缩小或放大比例,或简化条件,或待用材料,用实验的模型来代替原型的研究。对材料和热加工工艺来说,物理模拟通常指利用小试样,借助某种实验装置在线材料制备或热加工过程中受热火受力的物理过程,充分而准确的揭示材料或工件在制备和热加工过程中的组织和性能变化规律,用这些来评定或预测材料制备或加工过程中可能出现的问题,为制定合理的加工工艺和参数,以及研制新材料提供理论指导和技术支持。物理实验可以分为以下两种,一种是在模拟过程中进行的实验,另一种是模拟完成后进行的实验。 以往我们在进行科学研究或者工件的生产过程,为评价工艺方案对材料性能或产品质量的影响,多采用实验的方法,这种简单直接的实验不仅仅要消耗大量的时间,材料和金钱,而且得到结果仅仅能够表示在该工艺下的结果,并不能对其他工艺有太多的指导意义,因此我们必须在实验工艺和方法上进行有一定的创新和改造。 近些年来,随着计算机技术和工程检测技术的迅速发展,物理模拟,数值模拟以及与模拟相关的专业软件都有了长足的进步,相关软件在材料科学和工程领域的运用都取得了非常好的效果,材料学科的研究开始从“经验”走向“科学”。新模拟技术的应用使得人们不仅可以对变形过程有了更加直观的认识,对模具的设计参数好坏有了更加直观的评价,为工艺的制定和工艺参数的设计提供了更加可靠的依据,从而大大减少了新产品和新材料的开发周期和开发费用,降低了企业的成本,提高企业的竞争力。

Deform-3D在挤压中的应用1

Deform-3D在挤压中的应用挤压就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 挤压过程分为开始(填充)挤压阶段、基本(平流)挤压阶段和终了(紊流)挤压三个阶段。在填充挤压阶段:金属发生横向流动,出现单鼓或双鼓变形。随着挤压杆的向前移动,挤压力呈直线上升。随着填充过程中锭坯直径增大,在锭坯的表面层出现了阻碍其自由增大的周向附加拉应力。随着填充过程进行,锭坯长度缩短,直径增大,中间部分首先与挤压筒壁接触,由于摩擦作用,从而在表面层出现了阻碍金属向前后两个空间流动的纵向附加拉应力。在基本挤压阶段:金属不发生横向流动。挤压力随挤压杆向前移动几乎呈直线下降。在终了挤压阶段:金属的横向流动剧烈增加,并产生环流,挤压力增加,产生挤压缩尾。这些因素使其变形机理非常复杂,很难用准确的数学关系式进行描述,从而导致生产过程中对产品质量控制的难度增大。采用DEFORM软件对大变形生产工序进行模拟分析和控制,能有效地对挤压生产进行指导。这里主要介绍DEFORM塑性成形模拟的基本过程和方法。 关键字:DEFORM 挤压塑性成形 DEFORM软件模拟塑性成形的基本流程: (1)几何模型的建立。 DEFORM-3D不具有三维造型功能,所以物理模型要在其他三维软

件中建立。例如用CAD,Pro/e,UG等三维造型软件造型,然后,通过另存为STL格式,实现模型与数值模拟软件间的数据转换。 (2)网格的划分与重划分。 划分网格是将问题的几何模型转化成离散化的有限元网格。分网时要根据问题本身的特点选择适当的单元类型。根据问题的几何和受力状态的特点,尽可能的选用比较简单的的单元类型。网格划分的方法有映射法或称为结构化的方法和自由的或非结构化的方法两种,根据不同问题类型应选用合适的方法划分网格。网格划分太大则模拟精度降低;网格划分太小模拟准确性上升,但是模拟时间增加,效率降低。所以选择一个合适的网格划分方式和网格划分大小至关重要。用刚(黏)塑性有限元法计算材料成型过程时,随着变形程度的增加和动态边界条件的变化,初始化分好的规则有限元网格,会发生部分畸变现象,网格出现不同程度的扭曲,从而影响有限元的计算精度,严重时会使迭代过程不收敛,这时就需要进行网格的重新划分,保证仿真过程中材料经大量流动后仍然可以继续,获得的结果仍然具有足够的精度。Deform在网格畸变到一定程度后会自动进行网格重划分,生成搞质量的网格。 (3)材料模型的建立及其他参数设置 功能强的分析软件提供的材料模型种类较多,用户可以根据问题的主要特点,精度要求即可得到的材料参数选择合适的模型,并输入相关参数。越是复杂的模型,其计算精度越高;但计算量也会提高,同时所需输入的材料参数也越多。一般而言,材料的物理性能和弹

Deform 6.1 开式模锻模拟实例

一.DEFORM软件介绍 DEFORM系列软件是由位于美国Ohio Clumbus的科学成形技术公司(Science Forming Technology Corporation)开发的。该系列软件主要应用于金属塑性加工、热处理等工艺数值模拟、它的前身是美国Battelle实验室开发的ALPID软件。在1991年成立的SFTC公司将其商业化,目前,Deform软件已经成为国际上流行的金属加工数值模拟软件之一。 其主要软件产品有: 1. DEFORM-2D(二维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 2. DEFORM-3D(三维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析复杂的三维材料流动模型。用它来分析那些不能简化为二维模型的问题尤为理想。 3. DEFORM-PC(微机版) 适用于运行Windows 95,98和NT的微机平台。可以分析平面应变问题和轴对称问题。适用于有限元技术刚起步的中小企业。 4. DEFORM-PC Pro(Pro版) 适用于运行Windows 95,98和NT的微机平台。比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。 5. DEFORM-HT(热处理) 附加在DEFORM-2D和DEFORM-3D之上。除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。 二.模锻模拟 2.1 创建一个新的题目 正确安装DEFORM 6.1后运行程序DEFORM-3D,其界面如下图所示。

Gleeble 3500热模拟试验机

Gleeble 3500热模拟试验机 在本科生教学实验中的应用 特色与创新 热模拟试验机是一个材料热机械加工性能分析系统, 具有急(慢)速升温降温、急(慢)速拉压变形、同时记录温度、力、应力、应变等参数变化曲线,可对金属材料的冶炼、铸造、锻压、成形、热处理及焊接工艺等各个制备阶段的工艺与材料性能的变化之间的关系进行精确的模拟。利用该设备既可进行单一性能测试,又可进行多种综合性、设计性、创新性实验。 据了解,目前国内在本科生中利用热模拟试验机开设实验的高校只有清华大学,采用的设备型号为Gleeble1500,本实验采用的型号为Gleeble 3500,功能更丰富。由于本实验室在为各科题组研究服务工作中已积累了大量经验,结合科研项目能设计出具有交大特色的实验方案,可为学生进行综合性、设计性、创新性实验提供技术支持。 特色实验一金属材料高温强度的测定 特色实验二钢连续冷却转变图(CCT曲线)的测定 特色实验一金属材料高温强度的测定 一.实验目的 (1)了解典型金属材料的高温强度与塑性及其随温度的变化规律。 (2)掌握用材料加工物理模拟设备即动态热-力学模拟试验机Gleeble3500测定材料抗拉强度、屈服强度和塑性的原理。 (3)掌握Gleeble 3500试验机的简单操作与编程.并了解其一般应用。 (5)测定不同钢种如20、45、40Cr和1Crl8Ni9不锈钢的拉伸强度及其塑性随温度的变化井进行比较;测定并分析变形速度对强度的影响规律。 二.概述 材料的力学性能在科学研究和工程应用中具有非常重要的作用。例如,数值模拟研究必须以力学性能为依据;负载结构的设计和材料加工艺方案(如焊接、锻压、热处理、表面改性等工艺)的制定必须以力学性能为基础等等。温度对材料的力学性能功能影响很大。高温强度和塑性是材料高温使用和热加工时需要考虑的重要力学性能指标,了解其测试方法及其随温度的变化规律,是对高温结构材料进行科学研究和应用的基础。本次实验主要研究金属材料高温短时拉伸的力学性能。 金属材料如钢材的强度和塑性由基体组织类型(如马氏体M,铁素体F,珠光体P,贝氏体B,奥氏体A)、晶粒大小、基体强化类型(固溶强化和弥散强化),以及与此有关的加工变形程度、热处理条件等决定,因此,不同类型的金属及其合金的强度和姻性及其随温度变化的规律存在明显区别,一般来讲,材料按高温强度由低到高的排列顺序为:碳素钢,低合金钢,高合金钢,不锈钢,镍基高温合金。 金属力学性能指标一般按金属材料室温拉伸试验方法(GB/T228-2002)和金属材料室温拉伸试验方法 (GB/T4338-1995)进行测试。测试数据全面,但较繁琐。本实验用动态热-力学模拟试验机Gleeble快速测定金属材料的高温强度。 动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电流,通过试样本身的电阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,通过主

DEFORM模拟锻造过程中的憋气

DEFORM模拟锻造过程中的憋气 模锻件生产过程中,最常见的缺陷之一是未充满模具型腔,其中主要原因有结构设计上的不合理,造成模具中的气体在金属流动过程中被过早封闭于型腔内,无法及时排除型腔,尤其润滑液较充分的时候,影响更加明显。目前大部分金属成形仿真软件实际计算过程中,并没有由于憋气造成未充满缺陷,这给工艺人员判断是否会存在憋气造成未完全充满型腔缺陷的直观判断造成困扰。 DEFORM模拟仿真软件是目前世界上最著名的金属成形仿真软件,它能够模拟金属整个成形及热处理过程,预测各个阶段可能出现的缺陷,分析产生缺陷的原因,帮助工艺人员在工艺及模具设计阶段提前修正和优化。未充满型腔缺陷也是DEFORM能够精准预测的缺陷之一,该缺陷的精准性模拟主要体现在能够区分模拟有排气孔、无排气孔憋气、无排气孔憋油的充满型腔的结果。 DEFORM憋气模拟原理是以变形体与模具构成一个型腔的封闭情况和气体或油的体积模量来计算,如下图1所示,当构成这样一个封闭的型腔时(红色圈区域),通过理想气体定律,工件表面将增加一个压力,最终轻微的未充满被标记,如图2所示,通过高亮的绿色接触点可以看到。在这个案例中,即使两个物体已经被完全挤到一起,但仍然有细微的裂缝存在。 图1 受压作用下的体积

图2 最终状态下带有轻微未充满的体积 下面是一个简单的墩粗案例,当不考虑不憋气影响时,墩粗高度为88.5217mm,如果考虑了憋气的影响,墩粗高度为88.426mm,高度略低。但如果同时考虑了润滑油的影响,墩粗高度只有73.1683mm。 图3 不考虑憋气影响

图4 考虑憋气影响 图5 憋油影响 我们再看一个复杂模锻件如果考虑了憋气与憋油的影响,模拟计算结果如下:图6为不考虑憋气影响的模拟结果,与图7考虑憋气影响的模拟计算结果模具型腔充满性基本相同,完全充满了模具,但图7飞边部位的接触情况更加接近实际生产结果,而图8是考虑了润滑较充分的情况下憋油的影响,未充满区域较多, 与实际生产完全一致,生产时需要采取适当的润滑措施。

热模拟

一热模拟的原理 物理模拟是指缩小或放大比例,或简化条件,或代用材料,用试验模拟来代替原型的研究。对于材料和热加工工艺来说,物理模拟通常指利用小试件,借助于某些实验装置再现材料在制备或热加工过程中的受热,或同时受热与受力的物理过程,充分而精确的暴露于揭示材料或构件在热加工过程中的组织与性能变化规律,评定或预测材料在制备或热加工时出现的问题,为制定合理的加工工艺以及研制新材料提供理论指导和技术依据。 材料现代物理模拟技术是一种高技术。它融材料科学,传热学,力学,机械学,工程检测技术,电子模拟技术以及计算机领域的知识和技能为一体,构成了一个独特的,跨学科的专业领域。 二热模拟技术在研究焊接热裂纹方面的应用 热模拟技术经过近三十年的试验研究,已经成为一种比较成熟的研究手段,可用于研究焊接热裂纹。利用焊接热模拟技术,可以用于新合金的研制阶段,探讨合金产生裂纹的冶金过程,从而研究出焊接性能良好的材料,而且在常规实验的基础上,作为一种实验方案来推测材料的焊接性能。 三热塑性试验 一般来说,焊接热裂纹发生在焊接过程的高温冷却阶段,由于金属的塑性变形能力不足以承受当时所发生的塑性变形而导致开裂。因此,热模拟技术便被应用于测量金属的高温塑性,作为评价金属材料热裂纹敏感性的重要方法。 1 早期的研究 早期的工作从1949年开始,Nippers等人把金属材料再加热过程中的塑性降低作为评定其裂纹敏感性和合理性选材的标准,用断面收缩率来表示热塑性。 1957年Nippers等人报道了他们对十七类34重金属材料所做的热塑性实验结果。 在这一时期的实验研究中,加热的峰值温度都定在加热时的零塑性温度点,虽然也对试样的强度进行测量,但并没有吧测量结果与实际的焊接性能联系起来。 2 热强度 1963年,Williams 等人通过研究发现热强度的测量应当是裂纹敏感性试验的重要组成部分,热强度的恢复情况也是决定热裂纹敏感性的重要指标。Solda 等人解释:虽然塑性在冷却过程中恢复缓慢,但强度恢复缺很迅速。对于两种屈服强度十分接近的高强度钢,可以弹性变形的方式吸收产生的热应变,而屈服强度较低的材料却相应地要受到较大的塑性变形,因而有较高的热裂纹敏感性。 然而,Yeniscavich 试验的研究否定了Solda的观点。他认为金属材料在高温冷却过程中的强度恢复率也是判断其裂纹敏感性的重要指标。如果热塑性恢复较差,但强度恢复较快,则材料的裂纹敏感性也较小。如果热强度恢复缓慢,则材料的裂纹敏感性主要取决于其塑性的恢复状况。 3 加热的峰值温度 Willams 分析了金属材料的热强度曲线(如下图3),指出,这种曲线的特征是显示储不连续性或拐点,温度超过该点之后,强度迅速下降,而拐点处强度下降到一半的温度与零塑性温度十分接近因此,以零强温度作为最高加热温度,而不是以零塑性温度,这样虽对冷却阶段的塑性造成很大的损害,但更接近实际焊接情况。 Yeniscavich 发现,采用零强温度作为测定冷却阶段热塑性的加热峰值温度,将零强温度(NST)与冷却过程中塑性开始恢复的温度(NDT冷却)之间的温度区间定义为零塑性温度区间(ZDR),使用该区间作为判断金属抗裂性能的指标,与试验中后续焊道加热所引起的微裂行为有着密切的关系,见图4。 为了更加清楚地理解热塑性试验所测得的这些参量对金属焊接性能的影响,Duvall

DEFORM模拟锻压挤压实验报告

铜陵学院课程实验报告 实验课程材料成型计算机模拟 指导教师 专业班级 姓名 学号 2014年05月11日

实验一 圆柱体压缩过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。 1.2 实验内容 运用DEFORM 模拟如图1所示的圆柱坯压缩过程。 (一)压缩条件与参数 锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。 工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度700℃。 (二)实验要求 (1)运用AUTOCAD 或PRO/e 绘制各模具部件及棒料的三维造型,以stl 格式输出; 砧板 工件 锤头 图1 圆柱体压缩过程模拟

(2)设计模拟控制参数; (3)DEFORM前处理与运算(参考指导书); (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)比较实验 1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。 2.2 压缩过程模拟 2.2.1 前处理 建立新问题:程序→DEFORM6.1→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面; 单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 添加对象:点击+按钮添加对象,依次为“workpiece”、“topdie”、“bottomdie”。 定义对象的材料模型:在对象树上选择workpiece →点击General按钮→选中Plastic 选项(塑性)→点击Assign Temperature按钮→填入温度,→点击OK按钮;在对象树上选择topdie →点击General按钮→选中Rigid选项(刚性)→点击Assign Temperature 按钮→填入温度,→点击OK按钮→勾选Primary Die选项(定义为extusion dummy block 主动工具)→如此重复,定义其它工模具的材料模型(不勾选Primary Die选项)。 调整对象位置关系:在工具栏点击Object Positioning按钮进入对象位置关系调整对话框→根据挤压要求及实体造型调整相互位置关系→点击OK按钮完成; 模拟控制设置:点击Simulation Conrol按钮→Main按钮→在Simulation Title栏中填入“tuble extrusion”或“stick extrusion”→在Operation Title栏中填入“deform heat transfer”→选中SI选项,勾选“Defromation”选项,点击Stemp按钮→在Number of Simulation Stemps 栏中填入模拟步数→Stemp Increment to Save栏中填入每隔几步就保存模拟信息→在Primary Die栏中选择extusion dummy block(以挤压垫为主动工具)→在With Constant Time Increment栏中填入时间步长→点击OK按钮完成模拟设置; 实体网格化:在对象树上选择workpiece→点击Mesh →在Number of Elements卡上填入需要的网格数,如15000→点击Generate Mesh →工件网格生成; 说明:工模具不作分析,可以不进行网格划分。 设置对象材料属性:在对象树上选择workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 设置主动工具运行速度:在对象树上选择topdie →点击Movement→在speed/force选

热力学模拟试验机

产品介绍: Gleeble3800热力学模拟试验机是目前强大的热模拟试验平台,净载荷可达20吨。该系统模拟应用范围与Gleeble 3500大体相同,但具有两倍的变形力和变形速度,特别适用于多道次热轧和锻造模拟。Gleeble 3800热模拟可以模拟更大的样品、测试更强的材料、施加更高的应变率和在较低温度下惊醒模拟测试。 试验标准方法: 满足GB、ASTM、ISO、DIN、JIS等高温试验标准,热拉伸、热压缩试验标准,应力应变测试标准,工艺模拟,热温变形,热加工模拟等测试标准。 主要技术规格参数: 根据实际需求提供相应的功能模块配置; Gleeble3800热力学模拟试验机Thermal analog test machine 热模拟试验机规格型号:Gleeble3800 温度控制范围可达:3000度 控温精度:±1℃ 加热速率范围:10000℃/s ;2000℃/s ;50℃/s 淬火速率:1000℃时330℃/s,800℃~500℃时200℃/s 拉伸试验力范围:100KN 压缩试验力范围:200KN 位移速率:1000mm/s 位移速率压缩:≥0.01 mm/s 可选的扩展单元配置: 可选功能包括各种传感器、力传感器、接触及非接触式引伸计、红外高温计、淬火系统、夹头、夹具和真空系统,MCU包括液压楔、多轴大变形、热扭转和超高温形变模拟系统 高温拉伸试样压缩试样规格: 高温拉伸试样棒试样直径规格大小可选,平面应变压缩试样规格可选。详细规格咨询FULETEST。 特殊模拟单元激光超声波(选配): 在材料物理冶金领域,超声波技术是探测弹性模量、微观结构、相组成、晶体结构、晶粒尺寸等的有效工具。与Gleeble 3500及Gleeble 3800相组合,这些测量可以在热加工模拟现场实时完成。 连铸连轧模拟单元(选配): 连铸连轧(CC-DR)技术为钢铁企业节省了大量能耗、减少了资本投入,从而降低了成本并增加了利润。模拟过程使用单个试样从连铸开始到热轧结束。钢铁制造商可以在实验室里多快好省地探索新的连铸连轧(CC-DR)工艺。此外,该系统还可用于模拟半固态轧制(液态金属芯轧制)、平面应变压缩、热轧和锻造。

热模拟技术的应用

热模拟技术的应用 摘要:本文从物理模拟的角度,阐述了热模拟技术在焊接领域和奥氏体再结晶过程模拟、CCT曲线绘制、疲劳试验等热变形条件下的应用;从数值模拟的角度,阐述了热模拟技术在铸造、电子和电池研发等领域的应用。 关键词:热模拟,物理模拟,数值模拟,热模拟应用 目前,热模拟技术的研究已经越来越广泛,人们因其直观有效的模拟手段,成熟快速的仿真演算,大量开发并运用于科研和工程设计中。 一、关于热模拟技术中的物理模拟和数值模拟 热模拟技术分为物理模拟和数值模拟。 物理模拟是通过实验室物理实验模拟真实物理过程的方法。将实际地形物理的缩小模型置于实验体(如风洞、水槽等)内,在满足基本相似条件(包括几何、运动、热力、动力和边界条件相似)的基础上,模拟真实过程的主要特征,如空气动力规律和扩散规律。 数值模拟也叫计算机模拟。它以电子计算机为手段,利用一组控制方程(代数或微分方程)来描述一个过程的基本参数的变化关系,采用数值方法求解,已获得该过程(或一个过程的某一方面)的定量认识。 在实验中,一般只能获得有限点上的测量值。物理模拟的结果一般不能用外推法,而且模拟的准确性及普遍性依赖于必要的测量手段和模拟的相似条件,这对于复杂的热加工工艺有时很难实现。而数值模拟能提供整个计算域内所有有关变量完整而详尽的数据,因此,热加工中很多过去难以用物理模拟机分析方法求解的非线性问题可以在计算机上涌数值方法获得定量结果。 然而,某些热加工工艺由于工艺因素的错综复杂,目前尚缺乏全面描述其过程的理论公式,必须依赖物理模拟获得对过程的主要影响因素和缺陷形成机理的认识才能建立合理的数学模型。同时,数值模拟的合理性和可靠性也要靠物理模拟的定量测试结果来检验。由此可见,数值模拟与物理模拟具有不容的特点和应用范围,两者具有互补性,物理模拟是数值模拟的基础,数值模拟是物理模拟的归宿,只有将两者有机地结合起来,才能更有效地解决材料科学与工程中的复杂问题,获得符合实际的研究结果。 二、物理模拟技术的应用 对材料和热加工工艺来说,物理模拟技术通常指利用小试件,借助于某种试验装置再现材料在制备或热加工过程中的受热或同时受热与受力的物理过程,充分而精确地暴露与揭示材料或构件在热加工过程中组织与性能变化规律,评定或预测材料在制备或热加工时出现的问题,为制定合理的加工工艺及研制新材料提供理论指导和技术依据。 物理模拟技术的发展与物理模拟试验装置的不断完善紧密相关。随着物理模拟技术水平的提高,不同功能的热/力模拟试验装置不断研制开发。目前,在冶金领域中得到广泛应用的是美国DSI科技联合体的Gleeble系列热模拟试验机。随着钢铁行业对新产品开发和工艺优化需求的提高,Gleeble系列热模拟试验机的功能不断得以完善,如图1。

Deform棒材热挤压过程模拟

铜陵学院课程实验报告 实验名称棒材热挤压过程模拟 实验课程材料成型计算机模拟 指导教师张金标. 专业班级10材控(2). 姓名彭建新. 学号1010121064 . 2012年04月23日

实验二棒材热挤压过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。 1.2 实验内容 运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ90?25mm)。 图1 棒材热挤压示意图 挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。 坯料:材质DIN_CuZn40Pb2,尺寸φ98×60,温度6300。 工艺参数:挤压速度10mm/s,摩擦系数0.1。 (二)实验要求

(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出; (2)设计模拟控制参数; (3)DEFORM前处理与运算; (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1挤压工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extusion mandrel,extusion dummy block,extusion chamber。输出STL格式。 说明:上述几何形体尽量在一个空间体系下用相对尺寸绘制,保证它们的装配关系;所有实体造型都要在空间体系的第一象限内,即几何点的坐标值非负。 2.2 挤压模拟 1.前处理 2.建立新问题: 注:单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 3.添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”和“object 4”,在Object Name栏中填入extrusion workpiece→点击Change按钮→点击geometry →点击import→选择extrusion workpiece.stl实体文件→打开;重复操作,依次添加extrusion die,extusion mandrel,extusion dummy block,extusion chamber。 4.定义对象的材料模型 5.模拟控制设置 6.实体网格化 说明:工模具不作分析,可以不进行网格划分。 7.设置对象材料属性:在对象树上选择extrusion workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 8.设置主动工具运行速度:在对象树上选择extusion dummy block→点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Directiont选中主动工具运行,如-Y→在speed卡上选中Define选项,其性质选为Constant,填入数度值,如10mm/s; 9.工件体积补偿:在对象树上选择extrusion workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olumer按钮→→点击Yes按钮→勾选Compensate during remeshing

相关文档
最新文档