最短路径问题专项练习题

最短路径问题专项练习题
最短路径问题专项练习题

最短路径问题专项练习

共13页,全面复习与联系最短路径问题

一、具体内容包括:

蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;

线段(之和)最短问题;

二、原理:

两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化)

1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.

如图所示,点A ,B 分别是直线l 异侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时点C 是直线l 与AB 的交点.

(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于

这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.

如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点.

为了证明点C 的位置即为所求,我们不妨在直线上另外任取一点C ′,连接AC ′,BC ′,

B ′

C ′,证明AC +CB <AC ′+C ′B .如下:

证明:由作图可知,点B 和B ′关于直线l 对称,

所以直线l 是线段BB ′的垂直平分线.

因为点C 与C ′在直线l 上,

所以BC =B ′C ,BC ′=B ′C ′.

在△AB ′C ′中,AB ′<AC ′+B ′C ′,

所以AC +B ′C <AC ′+B ′C ′,

所以AC +BC <AC ′+C ′B .

【例1】 在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小.

分析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直线l 的交点M 即为所求的点.

解:如图所示:(1)作点B 关于直线l 的对称点B ′;

(2)连接AB ′交直线l 于点M .

(3)则点M 即为所求的点.

点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.

2.运用轴对称解决距离最短问题

运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.

警误区 利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.

3.利用平移确定最短路径选址

选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决. 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.

【例2】 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.

(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?

(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?

分析:(1)到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB 的垂直平分线,与EF 的交点即为符合条件的点.

(2)要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,作A (或B )点关于EF 的对称点,连接对称点与B 点,与EF 的交点即为所求.

解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,则P 到A ,B

的距离相等.也可分别以A 、B 为圆心,以大于12

AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.

(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.

【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直

的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?

思路导引:从A 到B 要走的路线是A →M →N →B ,如图所示,而MN 是定值,于是要使

路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.

解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.

(2)连接BC与河岸的一边交于点N.

(3)过点N作河岸的垂线交另一条河岸于点M.

则MN为所建的桥的位置.

4.生活中的距离最短问题

由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.

【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?

图a 图b

解:如图b.

(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.

5.运用轴对称解决距离之差最大问题

利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.

破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.

【例5】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.

分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l 于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-C B.

点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.

B C D

A

B

L

C

D

三、例题:

例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。请在图中找出点P的位置,并计算PA+PB的最小值。

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边

的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。

四、练习题(巩固提高)

(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值

为。

3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食

第2题

张村

李庄

张村

李庄

A

B

B 第1题第3题

图(2)

图(3)

C

物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。

4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。

第4题 第5题 第6题 第7题

5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

6、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为____ ___。

7、AB 是⊙O 的直径,AB=2,OC 是⊙O 的半径,OC ⊥AB ,点D 在AC 上,AD = 2CD ,点P 是半径OC 上的一个动点,则AP+PD 的最小值为____ ___。

(二)8、如图,点P 关于OA 、OB 的对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,若CD =18cm ,则△PMN 的周长为________。

9、已知,如图DE 是△ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于E ,且AC =5,BC =8,则△AEC 的周长为__________。

10、已知,如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC =8,△ABE 的周长为14,则AB 的长 。

11、如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.

12、在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C

(1,n ),当n = 时,AC + BC 的值最小.

第11题 第14题 第15题

⌒ ⌒ ⌒

13、△ABC 中,∠C = 90°,AB = 10,AC=6,BC=8,过AB 边上一点P 作PE ⊥AC 于E ,PF ⊥BC 于 F ,E 、F 是垂足,则EF 的最小值等于 .

14、如图,菱形ABCD 中,AB=2, ∠BAD=60°,点E 、F 、P 分别是AB 、BC 、AC 上的动点,则PE+PF 的最小值为___________.

15、如图,村庄A 、B 位于一条小河的两侧,若河岸a 、b 彼此平行,现在要建设一座与河岸垂直的桥CD ,问桥址应如何选择,才能使A 村到B 村的路程最近?

16、一次函数y=kx+b 的图象与x 、y 轴分别交于点A (2,0),B (0,4).

(1)求该函数的解析式;

(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标.

(三)16、如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使得△PEF 的周长最小。试画出图形,并说明理由。

17、如图,直线l 是第一、三象限的角平分线.

实验与探究:

(1)由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(2,0),请在图中分别标明B (5,3)、C (-2,5)关于直线l 的对称点B ′、C ′的位置,并写出他们的坐标:B ′ 、C ′ ;

归纳与发现:

(2)结合以上三组点的坐标,你会发现:坐标

平面内任一点P (a ,b )关于第一、三象限的角

平分线l 的对称点P ′的坐标为 ;

运用与拓广:

(3)已知两点D (1,-3)、E (-1,-4),试

在直线l 上确定一点Q ,使点Q 到D 、E 两点的

距离之和最小,并求出Q 点坐标.

18、几何模型:

条件:如图,A 、B 是直线L 同旁的两个定点.问

题:在直线L 上确定一点P ,使PA+PB 的值最小.

方法:作点A 关于直线l 的对称点A ',连结A B

'交l 于点P ,则PA PB A

B '+=的值最小(不必证明).

模型应用:

(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则P B P E +的最小值是___________;

(2)如图2,O ⊙的半径为2,点A B C 、

、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;

(3)如图3,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值.

19、问题探究

(1)如图①,四边形ABCD 是正方形, 10AB cm =,E 为边BC 的中点,P 为BD 上的一个动点,求

PC PE

+的最小值;

(2)如图②,若四边形ABCD 是菱形, 10AB cm =,45ABC ∠=°,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC PE +的最小值;

问题解决(3)如图③,若四边形ABCD 是矩形, 10AB cm =,20BC cm =,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC PE +的最小值;

20.如图,在直角坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点

O 顺时针旋转120。,得到线段

OB. (1)求点B 的坐标;

(2)求经过A 、O 、B 三点的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号) 解:(1)过点B 作BD ⊥x 轴于点D ,由已知可得:OB=OA=2,∠BOD=60。.在Rt △OBD 中,∠ODB=90。,∠OBD=30。.

∴OD=1,

∴点B 的坐标是(1).

(2)设所求抛物线的解析式为2y ax bx c =++,由已

知可得:

0420c a b c a b c =??++=??-+=?

解得:0.a b c === ∴所求抛物线解析式为2.y x x =

+ O A B P R Q 图3 A B E C B 图1 O A B C 图2 P A B A 'P l A D

B C A D B C E P

(3)存在.

由233

y x x =+

配方后得:(

)2133y x =+- ∴抛物线的对称轴为x =-1.

(也写用顶点坐标公式求出)

∵OB=2,要使△BOC 的周长最小,必须BC+CO 最小.

∵点O 与点A 关于直线x =-1对称,有CO=CA.

△ BOC 的周长=OB+BC+CO=OB+BC+CA.

∴当A 、C 、B 三点共线,即点C 为直线AB 与抛物线对称轴的交点时,BC+CA 最小,此时△BOC 的周长最小.

设直线AB

的解析式为,:20

k b y kx b k b ?+=?=+?-+=??则有

解得:,33k b == ∴直线AB

的解析式为33

y x =+ 当x =-1时,

y = ∴所求点C 的坐标为(-1

. 21、如图,抛物线2y ax bx c =++的顶点P

的坐标为1? ??

,,交x 轴于A 、B 两点,交y

轴于点(0C -,. (1)求抛物线的表达式.

(2)把△ABC 绕AB 的中点E 旋转180°,得到四边形ADBC . 判断四边形ADBC 的形状,并说明理由.

(3)试问在线段AC 上是否存在一点F ,使得△FBD

若存在,请写出点F 的坐标;若不存在,请说明理由.

解:(1)由题意知

解得a =b =分 (列出方程组给1分,解出给2分)

∴抛物线的解析式为233

y x x =--分

(2)设点A (1x ,0),B (2x ,0)

20x x --=, 解得1213x x =-=, -------------5分

∴∣OA ∣=1,∣OB ∣=3.又∵tan ∠OCB

=||||

OB OC = ∴∠OCB =60°,同理可求∠OCA =30°.∴∠ACB =90° ----------6分 由旋转性质可知AC =BD ,BC =AD

∴四边形ADBC 是平行四边形 ----------------------------7分 又∵∠ACB =90°.∴四边形ADBC 是矩形 --------------------------8分

(3)延长BC 至N ,使CN CB =.假设存在一点F ,使△FBD 的周长最小.

即FD FB DB ++最小.

∵DB 固定长.∴只要FD +FB 最小.又∵CA ⊥BN

∴FD +FB =FD +FN .

∴当N 、F 、D 在一条直线上时,FD +FB 最小 .---------------------10分

又∵C 为BN 的中点, ∴12

FC AC =(即F 为AC 的中点). 又∵A (-1,0),C (0,-3) ∴ 点F 的坐标为F (12

-

,2-) ∴ 存在这样的点F (12

-

,2-),使得△FBD 的周长最小.---12分 22. 已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212

y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).

(1)求抛物线的解析式;

(2)动点P 在x 轴上移动,当△PAE 是直角三角形且以P 为直角顶点时,求点P 的坐标.

(3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标.

答案:

(1)将A (0,1)、B (1,0)坐标代入212

y x bx c =

++得 1102c b c =???=++?? 解得321b c ?=-???=? ∴抛物线的解折式为213122

y x x =

-+. 3分 (2)设点E 的横坐标为m ,则它的纵坐标为213122

m m -+, 则E (m ,213122

m m -+). 又∵点E 在直线112y x =+上,∴21311122

m m m -+=+. 解得10m =(舍去),24m =.

∴E 的坐标为(4,3).过E 作EF x ⊥轴于F ,设P(b,0).

由90OPA FPE ∠+∠=°,得OPA FEP ∠=∠. Rt Rt AOP PFE △∽△.

由AO OP PF EF =得143

b b =-. 解得11b =,23b =. ∴此时的点P 的坐标为(1,0)或(3,0). 6分

(3)抛物线的对称轴为32x =. ∵B 、C 关于x =2

3对称,∴MC MB =. 要使||AM MC -最大,即是使||AM MB -最大. 8分 由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时||AM MB -的值最大.

易知直线AB 的解折式为1y x =-+.

∴由132y x x =-+???=?? 得3212

x y ?=????=-?? ∴M (23,-21). 10分

基于Dijkstra算法最短路径设计

基于Dijkstra算法的最短路径设计 摘要:Dijkstra算法是用于计算一个节点到其他所有节点最短路径的典型单源路径算法。该算法要求图中不存在负权边。在算法设计中,我们用邻接矩阵来存储图。在该程序中设置一个二维数组来存储任意两个顶点之间的边的权值。用户可以将任意一个图的信息通过键盘输入,然后再输入要查找的两个顶点,程序可以自动求出这两个顶点之间的最短路径。 关键字:最短路径;Dijkstra算法;算法流程图;算法源程序 1.算法定义 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。注意该算法要求图中不存在负权边。 问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。 2.算法描述 2.1算法思想原理 设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2.2算法过程描述 a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 2.3算法适用范围 ⑴单源最短路径; ⑵有向图和无向图; ⑶所有边权非负。

中考专题复习——最短路径问题

A B C D A B A B L A B C D 图(2) E D A C P 图(3) D O C P 中考专题复习——路径最短问题一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 三、例题: 例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B处,则它爬行的最短路径是。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。 例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 ②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。请在图中找出点P的位置,并计算PA+PB的最小值。 ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。四、练习题(巩固提高) (一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。 2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。 3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为。 4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为。 第4题第5题第6题第7题 5、在菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为。 6、如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为____ ___。 第2题 张村李庄 A B A B 第1题第3题 ⌒⌒⌒

中考专题复习——最短路径问题

B C D A L 图(3) C 中考专题复习——路径最短问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 三、例题: 例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 ②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。请在图中找出点P 的位置,并计算PA+PB 的最小值。 ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。 四、练习题(巩固提高) (一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。 3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。 4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值 第2题 张村 李庄 A B B 第1题 第3题

134最短路径问题教案

13.4课题学习:最短路径问题 教学目标: 1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。 2.能利用轴对称平移解决实际问题中路径最短的问题。 3.通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。 教学重点: 将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法。 教学难点: 探索发现“最短路径”的方案,确定最短路径的作图及原理。 导学过程: 一、创设情景,引入新知。 前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究实际生活中的最短路径问题。 二、自主学习,探究新知。 问题1 话说灰太狼从羊村落魄回来途中,不小心掉进茅厕坑,为了不让老婆看到自己落魄不堪的样子,于是决定去河边先洗个澡,冲洗掉身上的脏物,然后再回家,如图所示,请你设计一种路线,教教可怜的灰太狼,告诉他走那条路线回家最近吗? 茅厕 河边

你能将这个问题抽象为数学问题吗? 追问1 这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l抽象为一条直线. 追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (1)从A 地出发,到河边l洗澡,然后到B 地; (2)在河边洗澡的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到洗澡地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l的什么位置时,AC 与CB的和最小(如图). 问题2 如图,点A,B 在直线l的同侧,点C 是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于 点C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何 A·M 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥 N E

要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在 河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N , 则CM+MN+CN 最短 例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 · · C D A B E a

专题训练之最短路径问题(最全面的经典例题)

最短路径问题 1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面 爬到点B处,则它爬行的最短路径是 _______________ 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。 2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 *李庄 张村. ②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。请在图中找出点P的位置,并计算PA+P啲最小值。.B A■ _____________________ L ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。 A沿木块侧 A B

是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂 蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度 忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。 3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径 为 。 5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上 的一个动点,贝S PE+PB 勺最小值为 ___________ 。 6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。 7、 AB 是OO 的直径,AB=2 OC 是O O 的半径,OCL AB,点 D 在 AC 上,AD 二 2CD 点P 是半径OC 上的一个动点,贝S AP+PD 勺最小值为 __________ 。 &如图,点P 关于OA OB 的对称点分别为 C D,连接CD 交OA 于M 交OB 于N 若CD= 18cm 则厶PMN 勺周长为 ___________ 。 9、已知,如图DE >^ ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于 E ,且 AC= 5, BC= 8,则厶 AEC 的周长为 __________ 。 10、已知,如图,在△ ABC 中, AB

c++课设报告《基于Dijkstra算法的最短路径问题求解》[1]

课程设计任务书

目录 1 需求分析............................................................................................ - 1 - 2 算法基本原理 ................................................................................... - 2 - 3 类设计................................................................................................ - 3 - 4 详细设计............................................................................................ - 5 -4.1类的接口设计 . (5) 4.2类的实现 (5) 4.3主函数设计 (7) 5 DOS界面程序运行结果及分析 ....................................................... - 8 -5.1程序运行结果 . (8) 5.2运行结果分析 (9) 6 基于MFC的图形界面程序开发..................................................... - 9 -6.1基于MFC的图形界面程序设计.. (10) 6.2程序测试 (13) 6.3MFC程序编写总结 (14) 7 参考文献.......................................................................................... - 15 -

人教版八年级上册13.4最短路径问题练习题

13.4课题学习最短路径问题 知识点: 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 同步练习: 1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. 2.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短, B A l 3..在图中直线l上找到一点M,使它到A,B两点的距离和最小.

4. 如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水. (1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方? 5. 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?

参考答案: 1. 2.这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点. 为了证明点C 的位置即为所求,我们不妨在直线上另外任取一点C ′,连接AC ′,BC ′,B ′C ′,证明AC +CB <AC ′+C ′B .如下: 证明:由作图可知,点B 和B ′关于直线l 对称, 所以直线l 是线段BB ′的垂直平分线. 因为点C 与C ′在直线l 上, 所以BC =B ′C ,BC ′=B ′C ′. 在△AB ′C ′中,AB ′<AC ′+B ′C ′, 所以AC +B ′C <AC ′+B ′C ′, 所以AC +BC <AC ′+C ′B . 3. 解:如图所示:(1)作点B 关于直线l 的对称点B ′; (2)连接AB ′交直线l 于点M . (3)则点M 即为所求的点. 4.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P , 则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12 AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求. (2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短. 5.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.

八年级上《最短路径问题》同步练习含答案

八年级上《最短路径问题》同步练习含答案 基础题 知识点最短路径问题 1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________. 2.已知,如图,在直线l的同侧有两点A,B. (1)在图1的直线上找一点P使PA+PB最短; (2)在图2的直线上找一点P,使PA-PB最长. 3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小. 4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?

中档题 5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置. 6.如图,在△ABC的一边AB上有一点P. (1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;

(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数. 7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点. (1)要使得△PEF的周长最小,试在图上确定点E、F的位置. (2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________. 8.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△周长最小,求∠AMN+∠ANM的度数.

最短路径问题同步练习题一

最短路径问题同步练习 题一 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

知识点: 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 同步练习: 1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA +CB最短,这时点C是直线l与AB的交点.

2.如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短, 3..在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小. 4. 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水. (1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂? (2)若要使厂部到A ,B 两村的水管最短,应建在什么地方? 5. 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短? 6.(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a 所示两直排(图中的AO ,BO ),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的 学生小明先拿橘子再拿糖果,然后到 D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短? 7.如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A 、B 的距离之差最大. 参考答案: 1. A B l

实验报告:基于最短路径分析与应用

资源与环境科学学院实验报告 姓名:康强杰专业:地理信息系统年级:09级 学号:2009160217 评分日期:2012/4/6 上机实习名称:最短路径问题分析与应用 实习目的: 学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理. 同时,研究交通网络中要素的设置如:权重的改变和阻强的设置对最短路径的选择也有着很大的影响,对于现实也有一定的指导意义。 实习原理: 任何一种网络分析功能或方法,都是在给定的条件和要求下,利用网络流向来寻求路线或服务区,该实验是基于ARCGIS中网络分析中几何网络的特征和属性,利用距离、权重和规划条件进行分析,得到结果并应用在实际中。 主要类型包括: 1、路径分析 最佳路径分析 N条最佳路径分析 最短路径 2、地址匹配 3、资源分配 实习步骤: 1.首先打开ArcMap选择E:\Chp7\Ex2\city.mdb,并加载整个数据集city,然后将place点状要 素以HOME 字段属性值进行符号化,1 值是家,0 值是超市。 2.然后分别进行: (1)无权重最佳路径生成 1.1在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放 在家和想去的超市点上。

1.2确认在Analysis下拉菜单中的Options按钮打开的Analysis Options对话框 中的weight和weight filt自身的长短来确定的。 1.3点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve 键,则最短路径将显示出来,总成本将显示在状态列。 (2)加权最佳路径生成 2.1在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家 和想去的某个超市点上。 2.2 选择Analysis下拉菜单,选择Option按钮,打开Analysis Option对话框,选 择Weight标签页,在边的权重(edge weight)上,全部选择长度(length)权重属性。 2.3 点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve 键,则以长度为比重为基础的最短路径将显示出来,这条路径的总成本将显示在 状态列。 2.4 上述是通过距离的远近选择而得到的最佳路径,而不同类型的道路由于道路车 流量的问题,有时候要选择时间较短的路径,同样可以利用网络分析进行获得最佳 路径。 (3)按顺序逐个访问路径生成 3.1 在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标按照车 辆访问的顺序逐个放在点上。 3.2 选择Analysis下拉菜单,选择Option按钮,打开Analysis Option对话框,选择 Weight标签页,在边的权重(edge weight)上,全部选择长度(length)权重属性。 3.3 点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve 键,则从起点按顺序逐一经过超市然后最后回到家的最短有效路径将显示出来,这 条路径的总成本将显示在状态列。 3.4 同样是经过这11个地点,换成权重是时间的,由于道路车流量的不同,如在市 中心车流量特别大,车速慢,故而为节约时间,所以使得路经发生很大的改变,而 从外围的道路行驶了。 ( 4 )阻强问题 4.1 修路的情形出现,即某个路段不可运行,这在网络中的表现是设置阻强,方法 有两种,一种是永久性的,直接将网络边要素的属性修改成不可运行。操作是选择要 进行设置的边要素,将其属性中的Enabled字段改成False即可;另一种是暂时性的, 设置边要素障碍。即利用边要素障碍添加工具将边设置。取同上述距离加权相同的超 市为地点,假设其中一条路段正在修路,则产生的新的最佳路径如图18(图中标注“╳” 即为阻强设置边)。可以看出路段的维修状况使得最佳路径产生了改变,同时最近距 离也随之发生改变。 4.2 十字路口发生问题,即网络中的结点不可运行,这时在网络中的表现也是设置阻 强,方法和线状要素的一样,改变结点属性或利用点要素阻强添加工具将点设置,取 同上述距离加权相同的超市为地点,假设其中某个路口出现阻塞,利用该方法产生的 最佳路径。 实习结果:(文字描述、绘图)

最短路径问题同步练习题一

知识点: 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 同步练习: 1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA +CB最短,这时点C是直线l与AB的交点.

2.如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短, 3..在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小. 4. 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水. (1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂? (2)若要使厂部到A ,B 两村的水管最短,应建在什么地方? 5. 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短? 6.(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a 所示两直排(图中的AO ,BO ),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的学 生小明先拿橘子再拿糖果,然后到D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短? 7.如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A 、B 的距离之差最大. 参考答案: 1. A B l

13.4 课题学习 最短路径问题(第1课时)

13.4 课题学习 最短路径问题(第1课时) 学习目标: 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想. 学习重点: 利用轴对称将最短路径问题转化为“两点之间,线段最短”问题 教学过程 一、引入新知: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”. 二、探索新知 问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.你能将这个问题抽象为数学问题吗? 追问1 这是一个实际问题,你打算首先做什么? 将A ,B 两地抽象为两个点,将河l 抽象为一条直 线. 追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如 B A l B · · A

最短路径问题练习题

13.4课题学习最短路径问题 六街中学:罗云膑1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点. 为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下: 证明:由作图可知,点B和B′关于直线l对称, 所以直线l是线段BB′的垂直平分线. 因为点C与C′在直线l上, 所以BC=B′C,BC′=B′C′. 在△AB′C′中,AB′<AC′+B′C′, 所以AC+B′C<AC′+B′C′, 所以AC+BC<AC′+C′B. 【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.

分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l 的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′; (2)连接AB′交直线l于点M. (3)则点M即为所求的点. 点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同. 警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问. 3.利用平移确定最短路径选址 选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决. 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题. 【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水. (1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方? 分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点. (2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或 B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求. 解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,

c课设报告基于Dijkstra算法的最短路径问题求解精编版

c课设报告基于 D i j k s t r a算法的最短 路径问题求解 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

课程设计任务书

目录

1 需求分析 Dijkstra 算法是由荷兰计算机科学家艾兹格·迪科斯彻发现的。算法解决的是有向图中最短路径问题。 举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。 Dijkstra 算法可以用来找到两个城市之间的最短路径。 Dijkstra 算法的输入包含了一个有权重的有向图G ,以及G 中的一个来源顶点 S 。 我们以V 表示G 中所有顶点的集合。图中的每一个边,都是两个顶点所形成的有序元素对。(u ,v )表示从顶点u 到v 有路径相连。 假设E 为所有边的集合,而边的权重则由权重函数w :E → [0, ∞]定义。 因此,w (u ,v )就是从顶点 u 到顶点v 的非负花费值(cost)。 边的花费可以想像成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。 已知有V 中有顶点s 及t ,Dijkstra 算法可以找到s 到t 的最低花费路径. 最短路径)。 这个算法也可以在一个图中,找到从一个顶点s 到任何其他顶点的最短路径。 1.如果将交通网络化成带权图,假如用顶点表示城市,边表示公路段,则由这些顶点和边组成的图可表示沟通个城市的公路图,边的权用以表示两个城市之间的距离或者表示走过这段公路所需要的时间或通过这段路的难易程度等。作为司机和乘汽车的人,自然会关心如下两个问题: (1)从甲地到乙地是否有公路 (2)从甲地到乙地有几条公路,哪条公路最短或花费的代价最小 这就是我们要讨论的最短路径问题。 2.迪杰斯特拉提出的一个求最短路径的算法。其基本思想是:按路径长度递增的顺序,逐个产生各最短路径。 3.首先引进辅助向量dist[],它的每一个分量dist[i]表示已经找到的且从源点0v 到每一个终点i v 的当前最短路径长度。它的初态为:如果从0v 到i v 有弧,则dist[i]为弧的权值;否则dist[i]为∞。其中,长度为 dist[j]=min{dist[i]|i v ∈V}的路径是从0v 出发的长度最短的一条最短路径,此路径为(0v ,i v )。

最短路径问题和最小

最短路径问题——和最小 【典型例题】1、已知二次函数y=x2-2mx+m2-1. (1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.

2、如图,抛物线y =12 x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论; (3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值. 3、已知,如图,二次函数y =ax 2+2ax ﹣3a (a ≠0)图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y =33x +3对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式; (3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.

4.如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式; (2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标; (3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

最短路径算法及应用

最短路径算法及应用 乘汽车旅行的人总希望找出到目的地的尽可能的短的行程。如果有一张地图并在图上标出每对十字路口之间的距离,如何找出这一最短行程? 一种可能的方法就是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。那么我们很容易看到,即使不考虑包含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是不值得考虑的。 在这一章中,我们将阐明如何有效地解决这类问题。在最短路径问题中,给出的是一有向加权图G=(V,E,W),其中V为顶点集,E为有向边集,W为边上的权集。最短路径问题研究的问题主要有:单源最短路径问题、与所有顶点对之间的最短路径问题。 一、单源最短路径问题 所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V 到V中的每个结点的最短路径。 首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。 (一)Dijkstra算法 对于图G,如果所有Wij≥0的情形下,目前公认的最好的方法是由Dijkstra于1959年提出来的。 例1 已知如下图所示的单行线交通网,每弧旁的数字表示通过这条单行线所需要的费用,现在某人要从v1出发,通过这个交通网到v8去,求使总费用最小的旅行路线。 Dijkstra方法的基本思想是从vs出发,逐步地向外探寻最短路。执行过程中,与每个

点对应,记录下一个数(称为这个点的标号),它或者表示从vs到该点的最短路的权(称为P 标号)、或者是从vs到该点的最短路的权的上界(称为T标号),方法的每一步是去修改T 标号,并且把某一个具T标号的改变为具P标号的点,从而使G中具P标号的顶点数多一个,这样至多经过n-1(n为图G的顶点数)步,就可以求出从vs到各点的最短路。 在叙述Dijkstra方法的具体步骤之前,以例1为例说明一下这个方法的基本思想。例1中,s=1。因为所有Wij≥0,故有d(v1, v1)=0。这时,v1是具P标号的点。现在考察从v1发出的三条弧,(v1, v2), (v1, v3)和(v1, v4)。如果某人从v1出发沿(v1, v2)到达v2,这时需要d(v1, v1)+w12=6单位的费用;如果他从v1出发沿(v1, v3)到达v3,这时需要d(v1, v1)+w13=3单位的费用;类似地,若沿(v1, v4)到达v4,这时需要d(v1, v1)+w14=1单位的费用。因为min{ d(v1, v1)+w12,d(v1, v1)+w13,d(v1, v1)+w14}= d(v1, v1)+w14=1,可以断言,他从v1到v4所需要的最小费用必定是1单位,即从v1到v4的最短路是(v1, v4),d(v1, v4)=1。这是因为从v1到v4的任一条路P,如果不是(v1, v4),则必是先从v1沿(v1, v2)到达v2,或者沿(v1, v3)到达v3。但如上所说,这时他已需要6单位或3单位的费用,不管他如何再从v2或从v3到达v4,所需要的总费用都不会比1小(因为所有wij≥0)。因而推知d(v1, v4)=1,这样就可以使v4变成具P标号的点。现在考察从v1及v4指向其余点的弧,由上已知,从v1出发,分别沿(v1, v2)、(v1, v3)到达v2, v3,需要的费用分别为6与3,而从v4出发沿(v4, v6)到达v6所需的费用是d(v1, v4)+w46=1+10=11单位。因min{ d(v1, v1)+w12,d(v1, v1)+w13,d(v1, v4)+w46}= d(v1, v1)+w13=3。基于同样的理由可以断言,从v1到v3的最短路是(v1, v3),d(v1, v3)=3。这样又可以使点v3变成具P 标号的点,如此重复这个过程,可以求出从v1到任一点的最短路。 在下述的Dijstra方法具体步骤中,用P,T分别表示某个点的P标号、T标号,si表示第i步时,具P标号点的集合。为了在求出从vs到各点的距离的同时,也求出从Vs到各点的最短路,给每个点v以一个λ值,算法终止时λ(v)=m,表示在Vs到v的最短路上,v的前一个点是Vm;如果λ(v)=∞,表示图G中不含从Vs到v的路;λ(Vs)=0。 Dijstra方法的具体步骤: {初始化} i=0 S0={Vs},P(Vs)=0 λ(Vs)=0 对每一个v<>Vs,令T(v)=+ ∞,λ(v)=+ ∞, k=s {开始} ①如果Si=V,算法终止,这时,每个v∈S i,d(Vs,v)=P(v);否则转入② ②考察每个使(Vk,vj)∈E且vj Si的点vj。 如果T(vj)>P(vk)+wkj,则把T(vj)修改为P(vk)+wkj,把λ(vj)修改为k。 ③令 如果,则把的标号变为P标号,令 ,k=ji,i=i+1,转①,否则终止,这时对每一个v∈Si,d(vs,v)=P(v),

相关文档
最新文档