一种高性能近红外光人脸检测和眼睛定位算法

一种高性能近红外光人脸检测和眼睛定位算法
一种高性能近红外光人脸检测和眼睛定位算法

人脸识别过程和相关算法(2013)

人 脸 识 别 过 程 图1 人脸识别流程图 1. 人脸的检测和定位:检测图中有没有人脸,将人脸从背景中分割出来,获 取人脸或人脸上的某些器官在图像上的位置。 2. 特征提取:提取特征点,构造特征矢量;多个样本图像的空间序列训练出 一个模型,它的参数就是特征值;模版匹配法用相关系数做特征;而大部分神经网络方法则直接使用归一化后的灰度图像作为输入,网络的输出就是识别结果,没有专门的特征提取过程。 3. 识别:将带识别的图像或特征与人脸数据库里的特征进行匹配,进而将给 出的人脸图像与数据库中的某一个人脸图像及其名字,相关性对应起来。 人脸检测方法 基于知识的方法 a) 优点:规则简单。 视频捕获图像预处理人脸检测人脸特征提取人脸识别人脸数据库比对

b)缺点:难以将人类知识转化为明确的规则。 基于特征的方法 c)优点:可以依据面部器官的几何关系进行人脸检测。 d)缺点:光照、噪声和遮挡可能使得人脸的边界特征被弱化,从而使得算 法难以使用。 基于模版匹配的方法 e)优点:简单高效。 f)缺点:难以应对各种不同的成像条件;关于人脸模式和非人脸模式不存 在一个清晰的、明确的界限。 基于外观的方法 g)优点:通过大量的样本训练使得人脸识别的精确度高。 h)缺点:算法复杂。 基于肤色的系统 i)优点:不受人脸姿态变化的影响。 j)缺点:受光照等外在因素影响较大。

人脸识别方法 基于几何特征的识别方法 a)优点: i.符合人类识别人脸的机理,易于理解。 ii.对每幅图像只需存储一个特征矢量,存储量小。 iii.对光照变化不太敏感。 b)缺点: i.从图像中抽取稳定的几何特征比较困难,特别是特征受到遮挡时。 ii.对强烈的表情变化和姿态变化的鲁棒性较差。 iii.一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息丢失,该方法比较适合于人脸图像粗分类。基于统计的识别方法:隐马尔可夫法 c)优点:人脸识别率高。 d)缺点:算法实现复杂。 基于连接机制的方法 e)优点: i.能够根据有代表性的样本自我学习,具有鲁棒性和自适应性。 ii.以并行的方式处理信息,配以硬件实现,可以显著地提高速度。 f)缺点:算法实现复杂。

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

人脸检测算法原理及OPENCV人脸检测程序分析

人脸检测算法原理及OpenCV 人脸检测程序分析 罗海风 2011-3-30 人脸检测研究背景:人脸检测 基于肤色特征基于灰度特征 启发模型统计模型 肤色区域分割方法人脸模板方法等特征空间方法PCA 、fisherfaces 方法等ANN SVM 概率模型方法 贝叶斯概率模型HMM 集成机器学习 以上所列方法中,基于统计模型的方法是目前比较流行的方法[1],具有较大的优越性。其优点有: 1.不依赖于人脸的先验知识和参数模型,可以避免不精确或不完整的知识造成的错误; 2.采用实例学习的方法获取模型的参数,统计意义上更加可靠; 3.通过增加学习的实例可以扩种检测模式范围,提高鲁棒性。 在统计模型方法中,2001年左右由Viola 和Jones 提出的基于集成机器学习的人脸检测算法相对于其他方法具有明显优势[123]。近期文献也表明目前尚未发现优于Viola &Jones 方法的其他人脸检测方法[4]。该方法不仅检测精度高,最关键的是其运算速度大大快于其他方法。Viola &Jones 人脸检测方法原理: 该方法中几个关键性概念[5]: 1.Haar-like 特征 Haar-like 型特征是Viola 等人提出的一种简单矩形特征,因为类似Haar 小波而得名。Haar

型特征的定义是黑色矩形和白色矩形在图像子窗口中对应的区域的权重灰度级总和之差。上图显示了两种最简单的特征算子。在上述图中,可以看到,在人脸特定结构处,算子计算得到较大的值。 2.积分图 算子数量庞大时上述计算量显得太大,Viola等人发明了积分图方法,使得计算速度大大加快。积分图如上所示,点1处的值为A区域的像素积分,点2处的值为AB区域的像素积分。对整张图片进行一次积分操作,便可以方便的计算出任一区域D像素积分值为4+1-2-3。 3.Adaboost训练算法 在离散Adaboost算法中,Haar-like特征算子计算结果减去某阈值,便可视为一个人脸检测器。因为其准确率不高,称为弱分类器。Adaboost算法的循环中,首先利用各种弱分类器对训练图片库进行分类,准确度最高的弱分类器保留下来,同时提高判断错误的图片的权重,进入下一循环。最终将每次循环所保留的弱分类器组合起来,成为一个准确的人脸检测器,称为强分类器。具体计算流程见[35]。 4.瀑布型级联检测器 瀑布型级联检测器是针对人脸检测速度问题提出的一种检测结构。瀑布的每一层是一个由adaboost算法训练得到的强分类器。设置每层的阈值,是的大多数人脸能够通过,在此基础上尽量抛弃反例。位置越靠后的层越复杂,具有越强的分类能力。 这样的检测器结构就想一系列筛孔大小递减的筛子,每一步都能筛除一些前面筛子楼下的反例,最终通过所有筛子的样本被接受为人脸。瀑布型检测器训练算法见[3]。 OpenCV人脸检测程序流程[6]: OpenCV的人脸检测程序采用了Viola&Jones人脸检测方法,主要是调用训练好的瀑布级联分类器cascade来进行模式匹配。 cvHaarDetectObjects,先将图像灰度化,根据传入参数判断是否进行canny边缘处理(默认不

基于神经网络的人脸检测方法

基于神经网络的人脸检测方法 摘要:自动人脸检测应用十分广泛,如安全访问控制,基于模型的视频编码或基于内容的视频索引,所以它正在成为一个非常重要的研究课题。在本文中,我们在假设不考虑内容,场景的照明条件,大小,方向和外观的前提下,提出了一种检测复杂图像和精确本地半正面人脸的方法。这就是卷积神经网络结构,这种方法不像其他系统,其他系统需要一个手工检测的阶段或特征分类阶段。卷积神经网络结构是从一个大的训练集中自动合成自己的一套特征提取方法,所以它可以直接从未预处理的照片中提取变化的人脸模型,而且可以在神经元模型中利用感受区域,共享权数和空间采样对人脸进行一定程度的旋转,缩放和变形。我们将会对我们的结构,研究策略和检测过程进行详细的描述。最后我们将证明在环境和人脸变化的情况下这种方法相当稳健,具有精确检测的能力。 1简介 因为其广泛的应用范围,人脸检测正在成为一个非常重要的的研究课题。比如在安全访问控制,基于模型的视频编码,基于内容的视频索引等方面。相对于人脸检测,脸部识别和表情分析算法已经得到学术方面的足够关注。近年来,在光线,面部表情和姿势微小变化的情况下,对人脸的识别已经取得相当大的进展。在[1]中你会发现一个现象。就是大多数的人脸识别和表情分析算法是在特定条件下得到的,要么是在同一背景下要么是出现过的图像要么直接是“人脸照片”,在这种情况下,人脸识别相对比较容易。然而,多数情况人脸检测是在复杂的场景下,这并不简单。由于面部表情,表现力和方位的改变面部模型也会呈现巨大的变化。 最近一些检测非人脸照片的技术已经得到了提高。这些方法可大致分为三大类:本地的面部特征检测,模板匹配和图像不变性。第一种方法,低层次的计算机视觉算法[3,7,13]用于检测的面部特征,如眼睛,嘴巴,鼻子,下巴和其他特征部位。第二种方法,几个相关模板用来进一步检测本地特征。这些人脸特征将被作为硬性模板(基于eigenspaces [8])或(模板 [12, 5])。这些方法有很大的缺点,就是即使是很小的约束全局条件被改变也会对人脸模型和提取特征造成强烈的影响,比如噪声,表情的变化和焦点的改变等。最后一种方法,即使在不同的成像条件下图像不变方案也假定图像存在一定空间关系,比如亮度分布,相似点,人脸模型[10]的唯一性。在场景不受限制的情况下,这些算法都不是很健壮。 肤色信息的使用是制约搜索空间的一个重要线索。在[4]中,Garcia and Tziritas提出一个快速检测到人脸的方法,即皮肤颜色过滤和概率分布方法,而所用到的统计数据是从小波包中分解提取得到的。在[5]中,Garcia 将可变的脸部模板进行扩展,从而使这种方法可以精确的定位面部特征。 对于一般灰度图像,不需要遵守人为设定的规则,事实证明,类似于[11,9]中提到的基于神经网络的方法,效果最好。在本文中,我们提出一种新的检测方法,这种方法是基于神经网络的检测方法,这种方法可以对复杂的照片即使是半正面的人脸进行准确的检测。不需要考虑场景的照明条件,人脸大小,方向和人的外貌特征等因素。

一种驾驶员面部识别中眼睛定位算法

2007年10月 湘南学院学报 Oct.,2007  第28卷第5期 Journal of Xiangnan University Vol.28No.5一种驾驶员面部识别中眼睛定位算法 曹菊英1,2,赵跃龙1,3 (1.中南大学信息科学与工程学院,湖南长沙 410083;2.湘南学院物理系,湖南郴州 423000; 3.华南理工大学计算机科学与工程学院,广东广州 510640) 摘 要:介绍了一种精确定位眼睛的方法,该算法先利用改进的人脸图像的垂直灰度积分投影确定脸的左右边界,再根据人脸图像的水平灰度投影曲线来确定眼睛的大致高度;还将传统的积分投影方法与本文提出的微分投影相结合,实验结果表明该算法消除了背景、头发及服装等干扰,定位准确率高. 关键词:驾驶员面部识别;人眼定位;微分投影;积分投影 中图分类号:TP391.41 文献标识码:A 文章编号:1672-8173(2007)05-0076-05 1 引言 人脸特征定位近年来一直是计算机学科研究的热门课题之一,是实现驾驶员疲劳检测重要的前提条件.双眼是人脸的突出特征,它们在人脸中占据比较固定的位置,双眼间的距离刻画了人脸的大小,是人脸识别中尺度归一化的依据.因此双眼的精确定位成为人脸识别前处理阶段非常关键的一步,绝大部分的人脸识别算法都强烈地依赖于双眼的准确定位.人脸识别主要包括人脸定位和人脸识别两个主要技术环节,前者指在背景图像中检测到人脸,准确判别其位置并且将人脸从该背景中分离出来;后者则指对分割出来的归一化人脸图像进行特征提取,进而进行自动识别,判定个体的特定身份等.一直以来相关研究都偏重于人脸识别阶段,人脸特征提取和识别得到了更为广泛和深入的研究,但对于人脸定位研究得比较少,在很多情况下,主要是从简单背景中粗略地提取人脸位置或者利用交互方式来决定人脸的位置,这必然使得人脸的应用受到很大局限,因此人脸精确定位的研究十分必要,从而可知人眼精确定位的研究也是非常必要. 投影是一种重要的图像分析方法,二维图像可以有正交的两个一维投影函数来分析,维数的降低在减少计算量的同时也使其便于分析.Kanade[1]最早将积分投影函数成功应用于人脸识别,Brunelli和Poggio[2]也将其应用与边界图分析,从而确定出面部各个特征的位置.Feng和Yuen[3]提出一种将积分投影应用于定位眼睛的简单方法,可以看出,投影实际是人脸识别中经常用到的一种技术.所以,作者提出了一个简单而有效的方法.该方法先利用垂直灰度积分投影法识别出人脸与背景的左右交界,接着利用灰度图的水平灰度积分投影曲线,确定人眼在垂直方向上的大致位置,及额头和下颚的大致位置,从而实现对图像的第一次粗略定位.再利用人脸检测与识别的先验知识,确定人眼的具体位置,完成图像的标准化.笔者在积分投影方法的基础上,提出了一种微分投影方法并将其两者结合用于眼睛定位,实验结果表明,该算法基本消除了背景、头发及服装等干扰,保留了人脸识别所需的主要信息,更有利于后续的特征提取与识别. 2 驾驶员面部识别预处理及眼睛定位算法 研究的原始图像取自ORL(olivetti research laboratory)人脸图像数据库.该数据库由40个人、每人10幅、灰 收稿日期:2007-03-22 基金项目:湘南学院科研基金资助(06Y020) 作者简介:曹菊英(1975-),女,湖南郴州人,湘南学院物理系讲师,硕士生,研究方向:模式识别和图像处理.

【CN109961021A】一种深度图像中人脸检测方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910164890.2 (22)申请日 2019.03.05 (71)申请人 北京超维度计算科技有限公司 地址 100142 北京市海淀区西四环北路160 号9层一区907 (72)发明人 马宁 徐杰 张颢 向志宏  杨延辉  (74)专利代理机构 北京亿腾知识产权代理事务 所(普通合伙) 11309 代理人 陈霁 (51)Int.Cl. G06K 9/00(2006.01) (54)发明名称一种深度图像中人脸检测方法(57)摘要本发明涉及一种深度图像中人脸检测方法,包括以下步骤:找出深度图像中所有有效深度值的局部最小值点;计算局部最小值点的曲率,去除曲率超出范围的点;如果此时还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点;如果此时还有剩余的局部最小值点,则认为图像中有人脸,否则认为图像 中没有人脸。权利要求书2页 说明书3页 附图1页CN 109961021 A 2019.07.02 C N 109961021 A

权 利 要 求 书1/2页CN 109961021 A 1.一种深度图像中人脸检测方法,其特征在于,包括以下步骤: 找出深度图像中所有有效深度值的局部最小值点; 计算局部最小值点的曲率,去除曲率超出范围的点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸区域,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点; 如果此时还有剩余的局部最小值点,则认为图像中有人脸,输出图像中所有的人脸区域位置,否则认为图像中没有人脸。 2.根据权利要求1所述的方法,其特征在于,所述找出深度图像中所有有效深度值的局部最小值点步骤,包括: 对深度相机输出的深度图像,找出深度图像中所有在局部窗口中有效深度值最小的像素点的位置,如果邻接的多个像素都为局部最小值点,则只取这几个邻接像素的中心位置为局部最小值位置。 3.根据权利要求1所述的方法,其特征在于,所述计算局部最小值点的曲率,去除曲率超出范围的点步骤,包括: 对得到的每个局部极小值点,在一定邻域范围内计算有效深度值梯度幅度的平均值,此梯度幅度平均值反映了物体表面的曲率,通过人鼻尖表面曲率的范围,可以排除一些不是鼻尖的局部最小值点。 4.根据权利要求1所述的方法,其特征在于,所述在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点步骤,包括:对于剩余的每个局部最小值点,找出深度图像中该位置的纵向廓线,由局部最小值点的深度和位置信息可以估计出该距离下真实人脸在纵向廓线上的最大范围,该范围作为人脸可能存在的范围,在该范围内,用该局部最小值点的深度值加上一个深度差值,作为深度切割的阈值,用该阈值切割出可能存在的人脸纵向廓线,并计算可能的人脸廓线的长度,由局部最小值点的深度可以估计出该距离下真实人脸廓线的长度,通过对比可以去除一些纵向剖线不符合真实人脸尺寸的局部最小值点。 5.根据权利要求1所述的方法,其特征在于,所述计算纵向剖线上鼻子廓线占人脸廓线长度的比值,排除比值超出一定范围的局部最小值点步骤,包括: 根据符合真实人脸尺寸的每个局部极小值点,计算其在人脸廓线上的梯度,如果梯度值不大于0,则继续计算其在人脸廓线上的上一个像素点的梯度;当梯度值大于0时,此时的像素点位置即为鼻子廓线的上边缘位置; 所述像素点位置的深度值与对应的局部最小值点位置的深度差值即为鼻子的高度;所述像素点位置与对应的局部最小值点位置的差值即为鼻子廓线的长度; 2

人脸识别的主要方法

1.1 人脸识别的主要方法 目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。人脸识别的方法根据研究角度的不同,有不同的分类方法。根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。本文重点研究基于正面的、静态的灰度图像的识别方法。 对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。下面分别进行介绍。 1.1.1 基于特征脸的方法 特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。变换得到对应特征值依次递减的特征向量,即特征脸。 特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。 通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。主分量特征

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

人脸识别技术的主要研究方法

人脸识别技术的主要研 究方法 The manuscript was revised on the evening of 2021

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。 4、基于代数特征的人脸识别方法

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别技术的几个主要研究方向

人脸识别技术的几个主要研究方向 1 引言 计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情丰富;人脸随年龄的增长而变化;发型、胡须、眼镜等装饰对人脸造成的影响;人脸所成图像受光照、成像角度以及成像距离等影响。 计算机人脸识别技术是近20年发展起来的,90年代更成为科研热点,仅从1990 年到1999年之间,EI 可检索到的相关文献多达数千篇,关于人脸识别的综述也屡屡可见[1] 。自动人脸识别系统包括两个主要技术环节首先是人脸检测和定位,然后是对人脸进行特征提取和识别(匹配)。本文着重介绍人脸识别技术的各类方法,通过对比指出各类方法的优缺点及今后的发展方向。 2 人脸检测和定位 人脸检测和定位即对于给定的一幅图像检测图像中是否有人脸,若有则确定其在图像中的位置,并从背景中分割出来。这是个极富挑战性的问题,因为人脸是非刚体,且人脸在图像中的大小和方向以及人的肤色和纹理等方面有很大的可变形。人脸检测问题主要有四种:(1)对于给定的一幅人脸图像,将其中的人脸定位并给出其位置;(2)在一幅混乱的单色场景图中检测出所有的人脸;(3)在彩色图像中检测(定位)所有人脸;(4)在某一视频序列中,检测和定位出所有人脸。文献[2]对人脸检测进行了较为详细的综述,指出常用的人脸检测方法有四种:(1)基于知识的方法;(2)基于人脸固定特征的方法;(3)基于模板匹配的方法;(4)基于外貌的方法(Appearance-based methods),在基于模板匹配的方法中所采用的是预先确定的模板,而在基于外貌的方法中其模板的选择是通过对一系列图像的学习而确定的。一般来说,基于外貌的方法依靠统计和学习技术来找出人脸和非人脸图像的相关特征。在该方法中有特征脸法、基于聚类的方法、神经网络方法和支持向量机的方法。CMU库是常用的人脸检测库,主要的算法评定指标为错误接受率(FAR)和错误拒绝率(ARR)。 3 人脸特征提取和识别 目前大部分研究主要是针对二维正面人脸图像,也有基于三维人脸模型的方法,还有一种所谓的混合系统的身份鉴定系统。 3.1 二维正面人脸识别 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

人脸检测中的眼睛定位算法研究.

人脸检测中的眼睛定位算法研究 摘要眼睛是一个在人脸检测中极为重要的人脸特征,因此一种快速可靠的精确定位眼睛的算法对许多实际的应用是十分重要的。本文分析了几种常用的眼睛定位算法,并提出了一种基于肤色信息、人脸面部几何特征和人眼灰度信息的算法。算法采用由粗到细的检测策略,先对Anil K.Jain 的Cb、Cr椭圆聚类方法进行了改进,用改进的算法进行肤色提取,经过肤色区域的分析,对人脸区域进行预检测,然后结合人眼几何特征进行初步定位,再利用人眼的灰度信息进行精确定位。该算法定位效率高,并对背景、尺寸等细节具有很好的适应性,在人脸实时检测系统中具有很好的应用价值。关键词眼睛定位;肤色提取;几何特征;复杂度 1 引言双眼是人脸的突出特征,它们在人脸中占据比较固定的位置,双眼间的距离刻画了人脸的大小,是人脸识别中尺度归一化的依据。因此双眼的精确定位成为人脸识别前处理阶段非常关键的一步,绝大部分的人脸识别算法都强烈地依赖于双眼的准确定位。只要人眼被精确定位,则脸部其他特征,如眉、鼻、嘴等,可由潜在的分布关系比较准确地定位。人脸可以较好地归一化,预处理的效果也更明显,同时也可提高识别速度和降低识别算法的复杂度。正因为眼睛定位在人脸识别中具有如此重要的地位,于是人们研究各种算法来实现眼睛定位,主要可以分为以下几类:霍夫变换法、变形模板法、边缘特征分析法和对称变换法等,本文结合人脸的肤色和几何特征以及人眼的灰度信息提出了一种快速、稳定的人眼定位算法。 2 常用的几种眼睛定位算法 (1) 霍夫变换法假设经预处理已经得到包含眼球的图像Ep,为了节省检测眼球的时间并避免镜片反光点边缘产生的干扰,先用小灰度聚类法粗定眼球中心点,以此缩小检测范围,聚类的过程是将图像Ep中灰度值最小的n个像素,按列递增的顺序排序,若相邻的列数差值都未超过预先设定的门限T1,说明只有一个聚类中心,求出这些像素行列的平均值就是要找的眼球中心点;若超过了门限T1,说明这n个像素可以聚成两类,对左眼,因为阴影、镜脚集中在左边,所以取右边那类的平均值;对右眼,则取左边那类的平均值;n的选择可根据图像Ep的总像素数目及眼球占图像的大致百分比决定。在用霍夫变换检测眼球前,先用Canny算法提取边缘。对于比较细长的眼睛,由于眼球的上半部分较多地被眼皮覆盖,所以改用检测下半圆,这样更可靠且省时。设图像空间为(i,j),i和j分别表示行和列,三维变换空间为(ie,je,R),其中ie、je分别代表眼球圆心的行和列,R为半径。下半圆表达式 为:(1)对于变换空间的每一个坐标点(ie,je,R),在图像空间都对应一个半圆,在这个半圆上存在的边缘点数就是变换空间上坐标点(ie,je,R)对应的值。变换空间上的峰值点坐标即为所求的眼球半圆参数。实验证明,霍夫变换确实具有抗干扰能力强的优点。当眼球与眼白的对比度较低时,提取出来的边缘是断裂或不很规则的,即使如此,仍能根据变换空间中的峰值点准确地定位眼球圆心[2]。 (2) 变形模板法模板匹配法主要是模板的选择,根据所选模板的维数可分为二维可变形模板和三维可变形模板。图1为二维简单眼睛模板,由于人脸的旋转角度是任意的,当旋转角度比较大时,其中一部分眼白就会看不见,所以为了适应人脸向两侧作较大角度的旋转,就增加了两个单眼白的简单眼睛模板,当垂直旋转角度大于30°时,就使用仅有左眼

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

人脸识别技术研究背景与方法

人脸识别技术研究背景与方法 1人脸识别技术研究背景 .................................................................................... 错误!未定义书签。 1.1人脸检测技术概述 ................................................................................. 错误!未定义书签。 1.2人脸检测的研究内容 ............................................................................. 错误!未定义书签。 2 人脸检测方法 ................................................................................................... 错误!未定义书签。 2.1基于知识的方法 ..................................................................................... 错误!未定义书签。 2.2基于特征的方法 ..................................................................................... 错误!未定义书签。 2.3模板匹配 ................................................................................................. 错误!未定义书签。 2.4基于外观的方法 ..................................................................................... 错误!未定义书签。 2.5 其他方法 ................................................................................................ 错误!未定义书签。 2.6人脸检测方法评析 ................................................................................. 错误!未定义书签。1人脸识别技术研究背景 在计算机及网络技术高速发展的现代社会中,信息安全显示出前所未有的重要性。身份识别及鉴定是保证系统安全的重要前提,在国家安全、公安、司法、电子商务、电子政务、安全检查、保安监控等应用领域,都需要准确的身份识别及鉴定。目前,个人身份鉴别主要依靠ID卡(如身份证、工作证、智能卡和储蓄卡等)和密码等手段,然而这些手段存在携带不便、容易遗失、由于使用过多或不当而损坏、密码易被遗忘和破解等诸多问题。由于技术的发展,犯罪分子伪造假证件的手段越来越高明,如假身份证、假工作证、假文凭等在现实社会中也不时发生;在信息界,黑客攻击别人的计算机系统,破译计算机口令亦常有之。美国每年在福利发放、信用卡交易、移动电话以及ATM交易方面由于身份诈骗而造成的经济损失高达60亿美元。因此,目前广泛使用的依靠证件、个人识别号码(PIN)、口令等传统方法来确认个人身份的技术面临着严峻的挑战,已不能适应现代科技发展和社会进步的需要。 人们希望有一种更加方便可靠的办法来进行身份鉴别,生物特征识别技术给这一愿望带来了实现的可能。早在古埃及时人们就开始通过人体生物特征的测量(如人脸、人手等)来鉴别人的身份;在刑侦领域,人们也早已使用最有效的人体生物特征之一—指纹来确定罪犯。人们可能会遗忘或丢失他们的卡片或密码,但绝不会遗忘或者丢失自己的生物特征,如人脸、指纹、虹膜、掌纹等。因此基于生物特征识别技术的个人身份识别系统具有更好的安全性、可靠性和有效性,正越来越受到人们的重视,并开始进入人们社会生活的各个领域,迎接新时代的挑战。美国政府在“9.11”事件以后连续签署了三个国家安全法案,要求采用生物识别技术。2003年6月,联合国国际民用航空组织公布了其生物技术的应用规划,将

相关文档
最新文档