双棱镜光干涉实验仪说明书

双棱镜光干涉实验仪说明书
双棱镜光干涉实验仪说明书

用菲涅耳双棱镜测量光的波长

自从1801年英国科学家杨氏(T.Young)用双缝做了光的干涉实验后,光的波动说开始为许多学者接受,但仍有不少反对意见。有人认为杨氏条纹不是干涉所致,而是双缝的边缘效应,二十多年后,法国科学家菲涅耳(Augustin J.Fresnel,1788-1827)做了几个新实验,令人信服地证明了光的干涉现象的存在,这些新实验之一就是他在1826年进行的双棱镜实验。它不借助光的衍射而形成分波面干涉,用毫米级的测量得到纳米级的精度,其物理思想、实验方法与测量技巧至今仍然值得我们学习。本实验通过用菲涅耳双棱镜对钠灯波长的测量,要求掌握光的干涉的有关原理和光学测量的一些基本技巧,特别要学习在光学实验中如何计算测量结果的不确定度。

实验原理

菲涅耳双棱镜(简称双棱镜)实际上是一个顶角A极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜ABD和ACD所组成,故名双棱镜。当一个单色点光源S从它的BC面入射时,通过上半个棱镜ABD的光束向下偏折,通过下

半个棱镜ACD的光束向上偏折,相当于形成S′

1和S′

2

两个虚光源。与杨氏实验中

的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。

图1 点光源通过双棱镜的折射交叠区观

λχd

D =

其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距χ值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ。

图2 二次成像光路

测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为?的凸

L ,当D >4?时,可移动L 而在测微目镜中看到

两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=21d d

正如杨氏实验可把双孔改为双缝一样,为了增加干涉条纹的亮度,可把上述实验中的点光源改为线光源,只要线光源的方向与双棱镜的棱边方向平行即可。当然,若线光源与棱边不平行或线光源的宽度太大变成了面光源,则干涉条纹会相互重叠而模糊直至消失,这是光源的空间相干性问题。 实验装臵

本实验装臵由双棱镜、测微目镜、光具座、线光源和透镜等组成。

测微目镜是用来测量微小实像线度的仪器,其结构如图3所示,在目镜焦平面附近,的一块量程为8mm的刻线玻璃标尺,其分度值为1mm(如图3(b)中的8条短线所示)在该尺后0.1mm处,平行地放臵了一块分划板,分划板由薄玻璃片制成,其上刻有十字准线和一对双线,人眼贴近目镜筒观察时,可同时看到这块分划板和玻璃标尺的刻线,如图3(b)所示,分划板的框架与读数鼓轮相连,当读数鼓轮旋转时,分划板会左右移动:鼓轮每转一圈(100小格),分划板移动1mm(即每小格0.01mm),测量微小实像时,先调节目镜与分划板间的距离,使能清晰地观察到分划板上的准线;然后调节测微目镜与待测实像的距离使实像也清晰并与准线无视差;以后旋转鼓轮使准线对准待测像的一边,读下此时玻璃标尺的读数和鼓轮读数;再旋转鼓轮使准线对准待测像的另一边,读下玻璃标尺的读数和鼓轮读数;最后把前后两次读数相减,即得待测像的长度。

测微目镜的不确定度值为0.004mm,测量时应注意鼓轮必须同一方向旋转,中途不要倒退,以避免螺距误差。

图3 测微目镜

本实验所用的线光源由在普通钠灯或柱形激光束前加一个方向可变的宽为0.03-0.04mm狭缝构成。狭缝、双棱镜、透镜和测微目镜都安放在光具座上。

实验内容

一、必做部分(一):观察双棱镜的干涉现象

(1)打开激光电源。在光具座上依次安放光缝、双棱镜、测微目镜,使两束光的光斑交叠区进入目镜的中心。(可用小纸片观察,判断交叠区是否进入目镜的中心?) (2)减小狭缝的宽度至从测微目镜中刚能看到交叠区的亮光。

(3)缓慢调节狭缝的方向,直至与双棱镜的棱边平行,此时在测微目镜中应可观察到干涉条纹。

(4)改变光源、狭缝、双棱镜和测微目镜的位臵,观察、记录与分析干涉条纹的改变情况。

(5)以钠灯替代激光光源、观察记录与分析干涉条纹的情况。

二、必做部分(二):测量钠灯黄光的波长 (1)估测透镜的焦距?。

(2)调节双棱镜的位臵,使透镜与狭缝的距离小于2?,以便能用二次成像法测d。(透镜的位臵应在何处?透镜与狭缝的距离与双棱镜的位臵有什么关系?为什么要使透镜与狭缝的距离能小于2 ?才能用二次成像法测d?)

(3)以钠灯为光源,在条纹保持清晰的条件下,逐渐移远测微目镜,使条纹变宽而仍清晰。(只要条纹足够亮而清晰,测微目镜移得远一些好,为什么?)

(4)在测微目镜中读出10个条纹的间距,从而求得x值,由于干涉条纹并不细锐,且条纹又较暗,难以判断估读不确定度)(1χB u 的大小,故应测量5次以上求平均,以)(χA u 代替)(1χB u 。(为节省时间,并减少测微目镜刻度不均匀引入的误差,可采用逐差法,即先依次读出第1、2、3、…条亮或暗条纹位臵的刻度值,然后移过10条,再读出第11、12、13、…或第21、22、23、…条条纹位臵的刻度值;将后一组数据与前一组数据逐次相减,以求得10x的值。)

(5)在光具座上分别读出测微目镜和狭缝的位臵,由此算出D 及其不确定度。(注

①光具座上只能读出各基座中心位臵的刻度,而测微目镜的分划板位臵与其基座的中心位臵并不重合,狭缝的位臵与其基座的中心位臵也不一定重合,因此,应对上述刻度值进行修正,才能得到D )。

(6)把测微目镜移到离狭缝略大于4?的位臵。(为什么不可太大?)

(7)在测微目镜与双棱镜之间加上透镜L 并前后移动,当两虚光源在测微目镜的分划板上清晰成像时,分别测出缩小像和放大像d1、d2。由于清晰成像的位臵不易确定,故d1和d2都要移动透镜,反复测量5次以上求平均,以A 类不确定度代替B1类不确定度。)

(8)求出钠灯黄光的波长及其不确定度。请自行导出u(x)、u(D)、u(d1)和u(d2)传递至u(λ)的公式)。

(9)用激光光源替代钠光,用上述相似的方法测量,激光的波长。

三、选做部分:观察其他光源的双棱镜干涉条纹

用汞灯或白炽灯代替钠灯,观察并记录其干涉条纹,讨论它们和钠灯干涉条纹的异同及其原因。 思考题

1.为什么狭缝宽度较大时干涉条纹消失?

2.为什么狭缝方向必须与双棱镜的棱边平行才能看到干涉条纹?

3.如果双棱镜反面(即让光从A 处入射)安放,对实验结果有何影响?

4.本实验中认为虚光源和真正的光源(狭缝)与观察屏的距离是相同的,这是一种近似。请证明,虚光源与观察屏的距离应为21

212D d d d d D -

+=

,其中

D 2是两次成像时

透镜移动的距离。但本实验中,为什么不用此法求D ?(提示:从不确定度的大小考虑) 5.若要求光波波长测量误差在1%左右,请考虑测量x 、d 、D 时各量允许误差的分配方案。 参考资料

1.沈元华、陆申龙,基础物理实验。北京:高等教育出版社.2003:240-245

2.贾王润、王公治、凌佩玲,大学物理实验。上海:复旦大学出版社.1987:307-310 实验数据例

钠光灯作光源,双棱镜干涉实验测钠光波长。 干涉条纹宽度x 的测量结果见表1。

表1

20x =3.5146mm;x =0.1757mm

狭缝的滑座上指示读数与测微目镜上滑座上指示读数差值L1=48.20cm ,实际上测微目镜内测量准线位臵与测微目镜滑座上刻线差值为-3.50cm (修正量),所以D =48.20cm +3.50cm =51.70cm 。(缝镀膜层正好与滑块刻线对齐,修正量为零)用二次成像法测量虚光源的像的结果见表2。 表2

d=mm d d 727.1280.1330.221=?=

?

将上述结果代入公式nm D d

9.58670.5110

727.11757.04

=??=

?=

χλ钠光波长公认值

,3.589nm =钠λ两者百分差=|

3

.5893

.5899.586-|=0.4%

测量时还应注意:

1.二次成像法测虚光源的间距时,小像d不宜太小,以减小测量误差。

2.测量缝与测微目镜分划板间距D时,有二修正量须测量。

(1)测微目镜分划板与滑块座刻线间距ΔD

1

(2)缝镀膜层与滑块间距ΔD

2

计算D=D'-ΔD

1+ΔD

2

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

菲涅尔双面反射镜干涉 (测量实验) 一、实验目的 观察双平面干涉现象及测量光波波长 二、实验原理 如附图7所示的是双面镜装置是由两块平面反射镜M 1和M 2组成,两者间夹一很小的 附图7 菲涅尔双面镜 角?。S 是与M 1和M 2的交线(图中以M 表示)平行的狭缝,用单色光照明后作为缝光源。从同一光源S 发出的光一部在M 1上反射,另一部分在M 2上发射,所得到的两反射光 是从同一入射波前分出来的,所以是相干的,在它们的重叠区将产生干涉。对于观察者来说,两束相干光似乎来自S 1和S 2,S 1和S 2是光源S 在两反射镜中的虚像,由简单的几何光学原理可证明,由S 光源发出的,后被两反射镜反射的两束相干光在屏幕上的光程差与将S 1、S 2视为两相干光源发出两列相干光波到达幕上的光程差相同。与双棱镜实验相似,根据双棱镜的实验中推导出的公式/xd D λ=?,亦可算出它的波长λ。 三、实验仪器 1、钠光灯(可加圆孔光栏) 2、凸透镜L : f=50mm 3、二维调整架: SZ-07 4、单面可调狭缝: SZ-22 5、双面镜 6、测微目镜Le (去掉其物镜头的读数显微镜) 7、读数显微镜架 : SZ-38 8、三维底座: SZ-01 9、二维底座: SZ-02 10、一维底座: SZ-03 11、一维底座: SZ-03 12、凸透镜: f=150mm 13、He —Ne 激光器(632.8nm) 14、白屏H : SZ-13 15、二维调整架: SZ-07 16、通用底座: SZ-01 17、通用底座: SZ-01

四、仪器实物图及原理图 图十一(1) 图十一(2) 五、实验步骤 1、把全部仪器按照图十一的顺序在平台上摆放好(图上数值均为参考数值), 靠拢后目测调至共轴。而后放入双面镜。 2、调节双面镜的夹角,使其与入光的夹角大约为半度,如图十一(2)。(亦 可用激光器替换钠灯,白屏H代替微测目镜,使细激光束同时打在棱边 尽量靠近的双面镜的两个反射镜上,在远离双面镜交棱的白屏上看到干 涉条纹。) 3、然后如图放入测微目镜,找到被双面镜反射的光线。调节单缝的宽度并 旋转单缝使它与双面镜的双棱平行,用测微目镜观察双平面反射镜干涉

大物实验——双棱镜干涉实验(七)

双棱镜干涉实验 学生姓名:陈延新学号:111050104 班级:应用物理1101 实验项目名称:双棱镜干涉实验 一、实验目的: 1、掌握菲涅尔双棱镜获得双光干涉的方法; 2、验证光的波动性,了解分波阵面法获得相干光的原理; 3、观察双棱镜产生光干涉现象和特点,用双棱镜测定光波的波长 4、通过用菲涅耳双棱镜对钠灯波长的测量,掌握光学测量的一些基本技巧,培养动手能力。 二、实验仪器: 单导体激光器,钠光源,扩束镜,双棱镜,二维调节架,透镜,测微目镜,测量显微镜,白炽光,光具座 三、实验原理: (1)、菲涅耳双棱镜实际上是一个顶角极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S′1和S′2两个虚光源。与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。

其中,d是两虚光源的间距,D是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x值,D为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即 △x=Dλ/d , λ=△xd/D (1) 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为f的凸透镜L,当D>4f 时,可移动透镜L而在测微目镜中看到两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=2 d(2) 1d (2)、实验装置 光具座,双棱镜,测微目镜,钠光源,可调狭缝 测微目镜是用来测量微小实像线度的仪器,其结构如图3所示,在目镜焦平面附近,的一块量程为8mm的刻线玻璃标尺,其分度值为1mm (如图3(b)中的8条短线所示)在该尺后0.1mm处,平行地放置了

双棱镜干涉实验

双棱镜干涉实验 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】光具座、白屏、单色光源钠灯、测微目镜、短焦距扩束镜、白炽灯、氦氖激光器、毛玻璃屏、滑块(若干个)、手电筒可调狭缝、双棱镜、辅助透镜、白屏、凸透镜(不同焦距的数个)。. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变 化,那么在两列 光波相交的区 域,光强分布是 不均匀的,而是 在某些地方表现 为加强,在另一些地方表现为减弱(甚至可能为零), 这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域 图1 图2 P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹. 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折

光的干涉教案

光的干涉 【教学目标】 1、知识与技能: (1)在学生已有几何光学知识的基础上引导学生回顾人类对光的本性的认识发展过程(2)在复习机械波干涉的基础上使学生了解产生光的干涉的条件和杨氏实验的设计原理。 (3)使学生掌握在双缝干涉实验中产生亮条纹和暗条纹的原因及条件,并了解其有关计算,明确可以利用双缝干涉的关系测定光波的波长。 (4)通过干涉实验使学生对光的干涉现象加深认识。 2、过程与方法 在教学的主要设置了两个探究的问题 (1)在机械波产生干涉现象的知识基础上,学生通过自主学习掌握光的干涉条件,在双缝干涉实验中产生亮条纹和暗条纹的原因及条件。 (2)小组合作学习探究相邻两条亮条纹(或暗条纹)的间距与什么因素有关。 3、情感态度价值观 培养学生合作的精神、团队的意识和集体的观念,培养学生循着科学家足迹自主探究科学知识的能力,从而真正实现使每个学生都得到发展的目标。 【教学重点】 (1)使学生知道双缝干涉产生的条件,掌握干涉图样的特征。 (2)理解双缝干涉实验中产生亮条纹和暗条纹的条件 (3)理解相邻的亮条纹(或暗条纹)的间距,并能应用这一规律解决实际问题 【教学难点】 (1)对双缝干涉图样中亮条纹和暗条纹产生原因的正确理解 (2)理解影响双缝干涉图样中相邻亮条纹(或暗条纹)间距的因素 【教学方法】 类比、实验、分组探究 【教学工具】 PPT课件、玩具激光光源、光栅(双缝) 【教学过程】 课题引入: 问一:在日常生活中,我们见到许多光学的现象,这些自然现象是如何形成的? 图片展示:如光的直线传播、彩虹、“海市蜃楼” 引入:自然界中的光现象如此丰富多彩,人们不禁要问光的本质到底是什么? 新课教学:

中学物理教学法《双缝干涉》实验

1、实验名称:光的双缝干涉、光具盘几何光学演示实验 2、实验目的:解中学物理教学中对几何光学、光的干涉、衍射实 验的要求,熟悉光具盘、双缝干涉实验仪的结构、性能,熟练 掌握它们的使用方法和操作技能;通过实验培养借助仪器说明 书学习独立使用仪器的能力;体会新型光具盘在设计上的特色 和尚存在的问题 3、实验教学目的:⑴双缝干涉:学会利用双缝干涉原理测量光的 波长;培养严谨的记录数据、分析数据的习惯。⑵光具盘:学 会利用光具盘中的实验仪器验证几何光学中的基本原理。 4、实验教学要求:认识区分常用几何光学仪器和元件,了解它们 的特点、光路元和用处;本演示实验光路的安装和调整使学生 通过自己动手操作,掌握一定的实验测量方法。学会利用双缝 干涉原理测量光的波长。学会利用光具盘中的实验仪器验证几 何光学中的基本原理。 5、实验在这一章有什么意义:进一步了解光的性质,明白光的干 涉原理和干涉图样的形成。通过光具盘验证光学的原理可以使 学生更直观地看到这些光学原理所对应的光学现象,理论还要 通过实验说话,有助于学生更深刻的理解光的波动性。 6、实验仪器:j2515型双缝干涉试验仪、j2501-1型光具盘演示仪、 学生电源。 7、实验原理:⑴双缝干涉:两条靠的很近的平行双缝,能把一个 线光源发出的光分成两束相干光,当这两列相干光在空间相遇

时,会出现相互加强或相互减弱的现象,即在光程差等于零或等于波长整数倍的地方,相互加强形成亮点;在光程差等于半波长的奇数倍的地方,相互抵消形成暗点。若在双缝后面置一屏幕,则可以见到明暗相间的干涉条纹。⑵光具盘:根据已有光学原理,自行组装光具盘中的光学仪器从而验证所学光学原理对应现象的真实性。 8、 实验的基本方法、基本过程:①按照说明书对实验仪器进行安 装,并进行调节使各部分等高共轴。②在遮光管一端装上观察系统,调节使之出现双缝。③先观察白色光干涉现象,然后观察单色光并记录.④计算。 9、 数据记录 1.红光 d=0.200mm L=600mm 游标尺读数 1 2 3 4 平均值 X 1(mm) 10.52 10.50 10.52 10.50 10.51 X 7(mm) 22.52 22.54 22.54 22.52 22.53 mm X X L d L d 4171067.66 51.1053.22600200.017-?≈-?=--?=?X ?= 红λ 2.绿光 d=0.200mm L=600mm 游标尺读数 1 2 3 4 平均值 X 1(mm) 9.92 9.90 9.92 9.92 9.915 X 7(mm) 19.52 19.52 19.54 19.54 19.53 mm L d L d 4171034.56 915.953.196002.017-?≈-?=-X -X ?=?X ?=绿λ

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

菲涅尔双棱镜干涉测波长

实验17 菲涅耳双棱镜干涉测波长 利用菲涅耳双棱镜可以获得两束相干光以实现光的干涉。双棱镜实验和双平面反射镜实验及洛埃镜实验一起,在确立光的波动学说的历史过程中起了重要作用。同时它也是一种用简单仪器测量光波波长的主要元件。 双棱镜是利用分波阵面法获得相干光的光学元件,本实验用双棱镜实验装置测单色光的波长。 实验目的和学习要求 1. 学习用双棱镜干涉测量单色光波长的原理和方法; 2. 进一步掌握光学系统的共轴调整; 3. 学会测微目镜的使用; 4. 练习逐差法处理数据和计算不确定度。 实验原理 如果两列光波其频率相同,振动方向相同,相位相同或位相差恒定,且振幅差别不太悬殊的情况下,它们在空间相遇时叠加的结果,将使空间各点的光振幅有大有小,随地而异,形成光的能量在空间的重新分布。这种在空间一定处光强度的稳定加强或减弱的现象称为光的干涉。获得相干光源,依其原理不同可分为分振幅法和分波阵面法,牛顿环和劈尖干涉是分振幅的干涉,双棱镜是利用分波阵面法而获得相干光源的。 菲涅耳双棱镜可以看作是由两块底面相接、棱角很小(约为1°)的直角棱镜合成的。若置波长为λ的单色狭条光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内再放一屏,即可观察到明暗相间的干涉条纹。(如图17-1)因为干涉场范围比较窄,干涉条纹的间距也很小,所以一般要用测量显微镜或测微目镜来观察。 图17-1 双棱镜干涉光路 现在讨论屏上干涉条纹的分布情况,分别从相干光源S1和S2发出来的光相遇时,若它们之间的光程差δ恰等于半波长(λ/2)的奇数倍,则两光波叠加后为光强极小值;若δ恰等于波长λ的整数倍,两光波叠加后得光强极大值。即 暗纹条件δ = (2-1)λ / 2 = ± 1, ±2 ,……(17-1)明纹条件δ = λ= 0 , ± 1, ±2 , ……(17-2)如图(17-2)所示,设S1和S2是双棱镜所产生的两相干虚光源,其间距为,屏幕到S1S2平面的距离为D,若屏上的P0点到S1和S2的距离相等,则S1和S2发出的光波到P0的光程也相等,因而在P0点相互加强而形成中央明条纹。

双棱镜干涉的深入研究实验报告

双棱镜干涉的深入研究实验 一、问题提出 实验课上我们已经掌握了用双棱镜获得双光束干涉的方法,加深对干涉条件的理解,并且学会了如何用双棱镜测定钠光的波长。本次设计性实验中我们将进一步掌握双棱镜的干涉原理及调节方法,测定两个虚光源之间的距离与狭缝-双棱镜间距之间的关系。主要从以下问题探讨: (一)实验测量双棱镜的楔角,并比较角度不同干涉现象的差异; (二)用多种方法来测两个虚光源之间的距离,并比较优缺点; (三)测定两虚光源之间的距离与狭缝-双棱镜间距之间的关系曲线; (四)利用双棱镜干涉观察He-Ne激光的干涉条纹,并测量氦氖光的波长;(五)将钠光灯换成大灯泡,观察白光的干涉条纹。 二、实验原理 (一)双棱镜楔角的测量 利用分光计测量:将分光机调平处于使用状态,使望远镜光轴与双棱镜的一个面垂直,这时在望远镜的视野中能够清晰看见绿色小十字叉丝的像。 C 双棱镜的外形图:A B 一束沿AB面法线方向的平行光投射于望远镜中, 测量α时, 当望远镜对准AB面时, 由望远镜物镜的焦面上发出的光束射到AB面上,一部分反射,形成要测量的像,一部分透射进入棱镜后,分别在AC和BC面上反射回到望远镜中, 所以在测量中, 实际看到的是三个绿色小十字叉丝像。AB面反射的像较亮,AC和BC 面反射的像较暗,望远镜叉丝对准较亮的十字叉丝像测量。当望远镜转到AC和BC 面一侧时,在望远镜中实际看到4个十字像,中间2个像较暗,边上2个较亮,望远镜叉丝应对准A一侧的亮像测量[2]。 将待测双棱镜置于分光计的载物台上,固定望远镜子,点亮小灯照亮目镜中

的叉丝,旋转分光计的载物台,使双棱镜的一个折射面对准望远镜,用自准直法调节望远镜的光轴与此折射面严格垂直,即使十字叉丝的反射像和调整叉丝完全 重合。记录刻度盘上两游标读数V 1、V 2 ;再转动游标盘联带载物平台,依同样 方法使望远镜光轴垂直于棱镜第二个折射面,记录相应的游标读数V 1',V 2 ',由 此得双棱镜的楔角α为: α=(|V 1'-V 1 |+|V 2 '-V 2 |)/4 (二)多种方法测两光源之间的间距 1.二次成像法 在“用双棱镜干涉测量光波的波长”时关键是测量两虚相干光源的间距d,目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距,其实验装置和光路图如图1所示: 图1中狭缝光源S发出的光波经双棱镜上下两部分折射后形成两虚相干光源 S 1和S 2 ,d通过透镜L在两个不同位置的二次成像求得,即d= 2 1 d d,d 1 为 两虚相干光源通过透镜所成的放大实像间的距离d 2 为两虚相干光源通过透镜所成的缩小实像间的距离[3]。

13.4 实验:用双缝干涉测量光的波长教案

13.4 实验:用双缝干涉测量光的波长 【教学目标】 (一)知识与技能 1.掌握明条纹(或暗条纹)间距的计算公式及推导过程。 2.观察双缝干涉图样,掌握实验方法。 (二)过程与方法 培养学生的动手能力和分析处理“故障”的能力。 (三)情感、态度与价值观 体会用宏观量测量微观量的方法,对学生进行物理方法的教育。 【教学重点】 双缝干涉测量光的波长的实验原理及实验操作。 【教学难点】 x ?、L 、d 、λ的准确测量。 【教学方法】 复习提问,理论推导,实验探究 【教学用具】 双缝干涉仪、光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头、刻度尺 【教学过程】 (一)引入新课 师:在双缝干涉现象中,明暗条纹出现的位置有何规律? 生:当屏上某点到两个狭缝的路程差Δ=2n ·2 λ ,n =0、1、2…时,出现明纹;当Δ=(2n +1) 2 λ,n =0、1、2…时,出现暗纹。 师:那么条纹间距与波长之间有没有关系呢?下面我们就来推导一下。 (二)进行新课 1.实验原理 师:[投影下图及下列说明]

设两缝S 1、S 2间距离为d ,它们所在平面到屏面的距离为l ,且l >>d ,O 是S 1S 2的中垂线与屏的交点,O 到S 1、S 2距离相等。 推导:(教师板演,学生表达) 由图可知S 1P =r 1 师:r 1与x 间关系如何? 生:r 12=l 2+(x - 2d )2 师:r 2呢? 生:r 22=l 2+(x +2 d )2 师:路程差|r 1-r 2|呢?(大部分学生沉默,因为两根式之差不能进行深入运算) 师:我们可不可以试试平方差? r 22-r 12=(r 2-r 1)(r 2+r 1)=2dx 由于l >>d ,且l >>x ,所以r 1+r 2≈2l ,这样就好办了,r 2-r 1=Δr =l d x 师:请大家别忘了我们的任务是寻找Δx 与λ的关系。Δr 与波长有联系吗? 生:有。 师:好,当Δr =2n ·2λ,n =0、1、2…时,出现亮纹。 即l d ·x =2n ·2 λ时出现亮纹,或写成x =d l n λ 第n 条和第(n -1)条(相邻)亮纹间距离Δx 为多少呢? 生:Δx =x n -x n -1 =[n -(n -1)] d l λ 师:也就是Δx =d l ·λ 我们成功了!大家能用语言表述一下条纹间距与波长的关系吗? 生:成正比。 师:对,不过大家别忘了这里l 、d 要一定。暗纹间距大家说怎么算? 生:一样。 师:结果如何? 生:一样。 师:有了相邻两个亮条纹间距公式Δx = d l ·λ,我们就可以用双缝干涉实验来测量光的波长了。 2.观察双缝干涉图样 (教师指导学生按步骤进行观察,也可引导学生先设计好步骤,分析研究后再进行,教师可将实验步骤投影)

杨氏双缝实验实验报告

杨氏双缝干涉 一、实验目的 (1) 观察杨氏双缝干涉现象,认识光的干涉。 (2) 了解光的干涉产生的条件,相干光源的概念。 (3) 掌握和熟悉各实验仪器的操作方法。 二、实验仪器 1:钠灯(加圆孔光阑) 2:透镜L 1(f=50mm ) 3:二维架(sz-07) 4:可调狭缝s (sz-27) 5:透镜架(sz-08,加光阑) 6:透镜L 2(f=150mm ) 7:双棱镜调节架(sz-41) 8:双缝 三、实验原理 由光源发出的光照射在单缝s 上,使单缝s 成为实施本实验的缝光源。由杨氏双 缝干涉的基本原理可得出关系式△x= L λ/d ,其中△x 是像屏上条纹的宽度──相邻两条亮纹间的距离,单位用mm ;L 是从第二级光源(杨氏狭缝)到显微镜焦平面的距离,单位用mm ;λ是所用光线的波长,单位用nm ;d 是第二级光源(狭缝)的缝距(间隔),单位用mm 。 9 :延伸架 10:测微目镜架 11:测微目镜 12:二维平移底座(sz-02) 13:二维平移底座(sz-02) 14:升降调节座(sz-03) 15:二维平移底座(sz-02) 16:升降调节座(sz-03)

四、实验步骤 (1)调节各仪器使光屏上出现明显的明暗相间的条纹。 (2)使钠光通过透镜L1汇聚到狭缝s上,用透镜L2将s成像于测微目镜分划板M 上,然后将双缝D置于L2近旁。在调节好s,D和M的mm刻线平行,并适当调窄s之 后,目镜视场出现便于观察的杨氏条纹。 (3)用测微目镜测量干涉条纹的间距△x,用米尺测量双缝至目镜焦面的距离L,用显微镜测量双缝的间距d,根据△x=Lλ/d计算钠黄光的波长λ。 五:数据记录与处理 数据表如下: M/条x1(mm)x2(mm x(mm)λ(mm) r1(cm) r2(cm) d1(mm) d2(mm) r(cm) d(mm) r的平均值:d的平均值: 根据公式△x=L*λ/d求得λ(如表所示),最后求得λ的平均值为 六:误差分析

高中物理选修3-4教学设计4:13.3 光的干涉教案

13.3光的干涉的教学设计 一、教材分析 1.国内以往教材对光的教学都是按光学的两大分支——利用几何学的概念和方法研究光的传播规律的几何光学和研究光的本性以及光与物质相互作用的规律的物理光学而分两章进行,两部分教学内容的处理相对独立.新课标下的光学教材,突出“光的本性”这条主线,将两部分内容整合为一,全章教材内容编排灵动活跃,贴近光学研究高新理念与成果,具有时代气息. 2.教材将《光的干涉》安排在学生可感知的光折射现象研究(第1 节)之后,意在建立有层次的光本性认知平台.在光折射现象研究中得到折射定律后,教材及时引导学生作深层思考:从实验中得出的折射定律1 212sin sin n θθ=与从惠更斯原理得出的结论形式一致,是否可以 推测光可能是一种波?“光线”是否应该是光波的波线?为将对光的认知同化至波的图式中去作了自然的铺垫,这样的编排与高中学生的认知水平相适应的,也顺乎人类对光本性认识的进程. 3.本节围绕波的特征现象之一 ——光的干涉的研究展开,以完成“光是一种波”的推理与同化.教材着力于展示典型的光干涉实验及光干涉现象,分析光干涉图样的规律及发生光干涉的条件.教材贯穿了如下的科学方法: 不完整的事实(折射定律1 212sin sin n θθ=与从惠更斯原理得出的结论形式一致) ↓ 假说(光是一种波) ↓ 可检验的依据(是波就会干涉) ↓ 新事实的检验(双缝干涉图样) 二、学情分析 1.学生大多在生活中没有光的干涉现象的体验,但通过高中物理学习,已有水波、声波等机械波干涉的经验与理论,高二学生已有一定的自主构建新知识框架的能力,可以从已感知的机械波干涉现象与规律延伸至待认定的光是波的推想.

实验用双缝干涉测光的波长(精)

实验用双缝干涉测光的波长 ●教学目标 一、知识目标 1.复习巩固双缝干涉实验原理. 2.观察双缝干涉图样,掌握实验方法. 3.测定单色光的波长. 二、能力目标 培养学生的动手能力和分析处理“故障”的能力. 三、德育目标 1.培养工作中的合作精神. 2.耐心细致的实验态度. ●教学重点 L 、d 、λ的准确测量. ●教学难点 “故障”分析及排除. ●教学方法 1.通过复习弄清测量原理. 2.学生动手实验,观察图样测定波长. ●教学用具 双缝干涉仪、光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头、刻度尺. ●课时安排 1课时 ●教学过程 一、复习基础知识 如图20—29所示,灯丝发出的光,经过滤片后变成单色光,再经过单缝S 时发生衍射,这时单缝S 相当于一单色光源,衍射光波同时达到双缝S 1和S 2之后,再次发生衍射,S 1、S 2双缝相当于两个步调完全一致的单色相干光源,通过S 1、S 2后的单色光在屏上相遇并叠加,当路程差P 1S 2-P 1S 1=k λ(k =0、1、2…)时,在P 1点叠加时得到明条纹,当路程差P 2S 2-P 2S 1= (2k +1)· 2 (k =0、1、2…)时,在P 2点叠加时得到暗条纹.相邻两条明条纹间距Δx ,与入射光波长λ,双缝S 1、S 2间距d 及双缝与屏的距离L 有关,其关系式为:Δx =d L λ,只要测出L ,d ,Δx ,根据这一关系就可求出光波波长λ.

若不加滤光片,通过双缝的光源将是白光,因干涉条纹间距(条纹宽度)与波长成正比,因此在亮纹处,各种颜色的光宽度不同,叠加时不能完全重合,从而呈现彩色条纹. 二、测量方法 两条相邻明(暗)条纹间的距离Δx 1用测量头测出.测量头由分划板、目镜、手轮等构成,(课本图实—3),转动手轮,分划板会左、右移动.测量时,应使分划板中心刻线对齐条纹的中心(课本图实—4),记下此时手轮上的读数a 1,转动手轮,使分划板向一侧移动,当分划板中心刻线对齐另一条相邻的明条纹中心时,记下手轮上的刻度数a 2,两次读数之差就是相邻两条明条纹间的距离,即Δx =|a 1-a 2|. Δx 很小,直接测量时相对误差较大,通常测出n 条明条纹间距离a ,再推算相邻两条明(暗)条纹间的距离,即条纹宽度Δx =1 n a . 三、学生活动 1.观察双缝干涉图样 (教师指导学生按步骤进行测量,也可引导学生先设计好步骤,分析研究后再进行,教师可将实验步骤投影) 步骤:(1)按课本图实—2,将光源、单缝、遮光管、毛玻璃屏依次安放在光具座上. (2)接好光源,打开开关,使灯丝正常发光. (3)调节各器件的高度,使光源灯丝发出的光能沿轴线到达光屏. (4)安装双缝,使双缝与单缝的缝平行,二者间距约5~10 cm. (5)放上单缝,观察白光的干涉条纹. (6)在单缝和光源间放上滤光片,观察单色光的干涉条纹. 2.测定单色光的波长 (1)安装测量头,调节至可清晰观察到干涉条纹. (2)使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,转动手轮,使分划板中心刻线移动;记下移动的条纹数n 和移动后手轮的读数a 2,a 1与a 2之差即为n 条亮纹的间距. (3)用刻度尺测量双缝到光屏间距离L . (4)用游标卡尺测量双缝间距d (这一步也可省去,d 在双缝玻璃上已标出) (5)重复测量、计算,求出波长的平均值. (6)换用不同滤光片,重复实验. 四、实验过程中教师指导 (1)双缝干涉仪是比较精密的实验仪器,实验前教师要指导学生轻拿轻放,不要随便拆分遮光筒,测量头等元件,学生若有探索的兴趣应在教师指导下进行. (2)滤光片、单缝、双缝、目镜等会粘附灰尘,要指导学生用擦镜纸轻轻擦拭,不用其他物品擦拭或口吹气除尘. (3)指导安装时,要求学生注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直,引导学生分析理由. (4)光源使用线状长丝灯泡,调节时使之与单缝平行且靠近. (5)实验中会出现像屏上的光很弱的情况.主要是灯丝、单缝、双缝、测量头与遮光筒不共轴线所致;干涉条纹的清晰与否与单缝和双缝是否平行很有关系.因此(3)(4)两步要求应在学生实验中引导他们分析,培养分析问题的能力. (6)实验过程中学生还会遇到各种类似“故障”,教师要鼓励他们分析查找原因.

菲涅耳双棱镜干涉实验

研究性实验报告 光的干涉实验(分波面法)激光的双棱镜干涉

菲涅耳双棱镜干涉 摘要:两束光波产生干涉的必要条件是:1)频率相同;2)振动方向相同;3)相位差恒定。产生相干光的方式有两种:分波阵面法和分振幅法。本次菲涅耳双棱镜干涉就属于分波阵面法。菲涅耳双棱镜干涉实验是一个经典而重要的实验,该实验和杨氏双缝干涉实验共同奠定了光的波动学的实验基础。 一、实验重点 1)熟练掌握采用不同光源进行光路等高共轴调节的方法和技术; 2)用实验研究菲涅耳双棱镜干涉并测定单色光波长; 3)学习用激光和其他光源进行实验时不同的调节方法。 二、实验原理 菲涅耳双棱镜可以看成是有两块底面相接、棱角很小的直角棱镜合成。若置单色光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内放置一个屏,即可观察到明暗相间的干涉条纹。

如图所示,设虚光源S 1和S 2的距离是a ,D 是虚光源到屏的距离。令P 为屏上任意一点,r 1和r 2分别为从S 1和S 2到P 点的距离,则从S 1和S 2发出的光线到达P 点得光程差是: △L= r 2-r 1 令N 1和N 2分别为S 1和S 2在屏上的投影,O 为N 1N 2的中点,并设OP=x ,则从△S 1N 1P 及△S 2N 2P 得: r 12=D 2+(x-2 a )2 r 22=D 2+(x+2a )2 两式相减,得: r 22- r 12=2ax 另外又有r 22- r 12=(r 2-r 1)(r 2+r 1)=△L(r 2+r 1)。通常D 较a 大的很多,所以r 2+r 1近似等于2D ,因此光程差为: △L=D ax 如果λ为光源发出的光波的波长,干涉极大和干涉极小处的光程差是: = k λ (k=0,±1, ±2,…) 明纹 =212 k λ (k=0,±1, ±2,…) 暗纹 由上式可知,两干涉条纹之间的距离是:

第十三章用双缝干涉测量光的波长【公开课教案】

学校:临清实验高中学科:物理编写人:孙秀芝审稿人:孔庆生 选修3-4第十三章第3节用双缝干涉测量光的波长 一、教材分析 本节是利用光干涉的理论知识进行实验与应用,在实际生活应用中有重要意义,在考试中的地位也举足轻重。 二、教学目标 (1)认识光的干涉现象及产生干涉的条件; (2)理解光的干涉条纹形成原理,认识干涉条纹的特征; (3)用波动说说明明暗相间的干涉条纹,时间上是稳定的,空间上存在的。 三、教学重点难点 [重点难点:本节的重点是利用两相邻亮条纹中心间距的表达式测单色光的波长 四、学情分析(根据个人情况写) 五、教学方法 实验观察、理论分析、学案导学 六、课前准备 双缝干涉仪包括:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二)情景导入、展示目标。 (三)合作探究、精讲点拨。 1、实验目的: (1)观测白光及单色光的双缝干涉图样 (2)测定单色光的波长 2、实验原理: (1)光源发出的光经滤光片成为单色光,单色光通过单缝后相当于线光源,经双缝产生稳定的干涉图样,通过屏可以观察到干涉条纹;如果用白光通过双缝可以观察到彩色条纹。(2)若双缝到屏的距离用l表示,双缝间的距离用d表示,相邻两条亮条纹间d的距离用 Δx表示,则入射光的波长为 l x d? = λ。实验中d是已知的,测出l、Δx即可测出光的波长 3、实验器材: 双缝干涉仪包括:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺 4、实验装置: 如教材上图所示,将直径约为10cm、长约为1m的遮光筒平放在光具座上,筒的一端有双缝,另一端装上毛玻璃做光屏,其上有刻度,先取下双缝,打开光源,调节光源高度,使他发出的一束光恰好沿遮光筒的轴线照亮光屏,然后放好单缝和双缝,两屏相距5cm-10cm,使缝互相平行,且位于轴线上,这时可看到彩色干涉条纹,若在单缝屏和光源之间放置一块滤光片,则可以观察到单色干涉条纹。 5、实验步骤:

菲涅耳双棱镜干涉实验指导书

实验五 菲涅耳双棱镜干涉 [实验目的] 1. 观察和研究菲涅耳双棱镜产生的干涉现象; 2. 测量干涉滤光片的透射波长(λ0)。 [仪器和装置] 白炽灯,干涉滤光片,可调狭缝,柱面镜,菲涅耳双棱镜,双胶合成像物镜,测微目镜。 [实验原理] 如图1a 所示,菲涅耳双棱镜装置由两个相同的棱镜组成。两个棱镜的折射角α很小,一般约为5 ~ 30'。从点(或缝)光源S 发出的一束光,经双棱镜折射后分为两束。从图中可以看出,这两折射光波如同从棱镜形成的两个虚像S 1和S 2发出的一样。S 1和S 2构成两相干光源,在两光波的迭加区产生干涉。 a 、 从图1b 看出,若棱镜的折射率为n ,则两虚像S 1、S 2之间的距离 a n l d )1(2-= (5-1) 干涉条纹的间距 λa n l l l e )1(2' -+= (5-2) 式中,λ为光波的波长。 对于玻璃材料的双棱镜有n =1.50,则 λa l l l e ' += (5-3) 可得到 e l l la ' += λ (5-4) 在迭加区内放置观察屏E ,就可接收到平行于脊棱的等距直线条纹。若用白光照明,可接收到彩色条纹。 对于扩展光源,由图2可导出干涉孔径角: ' 'l l a l += β (5-5) 和光源临界宽度: ?? ? ??+== '1l l a b λβλ (5-6) 从式(5-5)和(5-6)看出,当l'=0时,β=0,则光源的临界宽度b 变为无穷大。此时,干涉条纹定域在双棱镜的脊棱附近。b 为有限值时,条纹定域在以下区域内: λ αλ-≤ b l l ' (5-7) a) 图 1 双棱镜干涉原理图

光的干涉教学设计说明

广东省第五届高校师范生教学技能大赛物理教学技能参赛教案 光的干涉

《光的干涉》教学设计 ?教材选用 人教版普通高中课程标准实验教科书·物理选修3-4·第十三章第三节。 ?教学容分析 (一)作用与地位 本节是在《机械波》的基础上展开的,上承几何光学,也是后面学习《光的衍射》等知识的基础,本节揭示了光的波动性,促使人类对光的本性有更进一步的认识。同时也与选修3-5《光电效应》共同构成光的波粒二象性,所以本节具有重要的研究意义。 (二)课程标准 1、观察光的干涉现象; 2、知道产生干涉现象的条件。 (三)课程特点 课程标准是课程的宏观结构,教材是课程的微观结构。从教材特点看,本节通过提出猜想:如果光真的是一种波;随后进行氏双缝实验,通过得到干涉图样,进而证明光是一种波;最后讨论路程差与半波长的关系,得出明暗条纹出现的条件。 但教材中并没有突出“空间”干涉;双缝干涉实验的示意图并没有采用形象化的展示,从而影响了学生对光的干涉机理的理解;增加了学习的难度,所以我对教材做了以下的处理: 1.增加创新演示实验,利用丁达尔效应展示干涉通路,有助于学生对物理规律的深刻理解; 2. 通过演示光波直观图示,形象的展示光波的干涉机理,化抽象的光波为直观; 3.增强教学中的逻辑性,注重知识的构建过程; ?学生情况分析 (一)思维特点 按皮亚杰的理论,高二学生正处在形式运算的思维阶段, 遵循从简单到复杂,从直观到抽象的认知规律,但是他们的抽象思维能力还不够强,常常会需要具体的表象或类比于相似的具体经验来支持思维过程。 (二)知识基础

学生已经学习了机械波的容,对机械波的干涉和波的叠加原理有一定认识。 (三)认知困难 但学生知识的迁移能力相对薄弱,且光的干涉机理比较抽象,加之对光干涉无本质的认识。 ?教学目标分析 (一)知识与技能 (1)知道光产生干涉的条件,知道光是一种波; (2)知道光的干涉现象和干涉条纹的分布特点; (3)知道路程差与明暗条纹之间的关系。 (二)过程与方法 (1)通过光的干涉与机械波干涉的类比,培养学生比较分析的能力和知识迁移的能力。 (三)情感、态度、价值观 (1)通过观察实验,培养学生实事的科学态度。 (2)通过了解氏双缝干涉实验,培养学生的物理学史情怀,增加对物理学的热爱。 教学重难点 重点:光的干涉特点和产生条件 重点:明暗条纹产生的原因 ?教学策略分析 一、教学方法 主要采用实验法、讲授法、并辅以提问法等教法,把教学过程设计成以激发学生兴趣的吹肥皂泡实验为切入点,以观察实验和已有知识为基础,以“为什么肥皂泡表面的条纹始怎么形成的?”等问题为主线的师生对话活动,(1)实验法 通过探究氏双缝实验,观察光干涉的特点,得出光是一种波;通过创新演示实验,利用丁达尔效应显现干涉通路,展示光干涉的空间性,进一步理解光的波动性;通过演示直观图示模拟波在空间P点的三种叠加情况(峰峰、谷谷、峰谷),理解光的干涉机理。

双缝干涉实验的研究

本科毕业论文(设计) 题目:双缝干涉实验的研究 学生:王晓敏学号: 201040610236 学院:物理与电子科学学院专业:物理学 入学时间: 2010 年 9 月 13 日 指导教师:屈奎职称:讲师 完成日期: 2014 年 5 月 12 日

诚信承诺 我谨在此承诺:本人所写的毕业论文《双缝干涉实验的研究》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

双缝干涉实验的研究 摘要:通过简单的方法和常用的材料分别设计制作出适合于实验室测量用和教室演示用双缝干涉实验器材。介绍了光源的选择和双缝的制作,并对刻线的不同情况对干涉图像的影响进行了图示说明。 关键词:双缝干涉;自制器材;波长; Study of the Double-slit Interference Experiment Abstract: A method and a simple design commonly used materials are suitable for laboratory measurements and classroom presentations with double-slit interference experiment equipment. Select the source and describes the production of double-slit, and the different situations engraved lines on interference images were illustrated. Key words: double-slit interference; homemade equipment; wavelength

13.3实验:用双缝干涉实验测光的波长教案

用双缝干涉实验测光的波长 ㈠设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 ㈡教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 ㈢重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 ㈣教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 图—1 双缝干涉仪

2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm 、长约1m 的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm ,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 单色光的双缝干涉图样:明暗相间、等距分布。 3. 猜测: 相邻的两条明(暗)条纹的间距△x 与哪些因素有关? 图—3 单色光的双缝干涉图样 图—2 白光的双缝干涉图样 S 1S 2图—4 实验示意图

看说双缝实验

看说双缝实验 一项人类无法给出合理解释的科学实验,一种神秘力量在主导着感官 罡罡先生 2018-07-06 07:07:20 把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。 无数的科学家马上开始动手设计实验。当科学家在确定电子已经通过双缝后,迅速的在后面的板上放上摄像机的结果是,出现了两道条纹!反之亦然,如果迅速的拿掉摄像机,又会出现干涉条纹,即使我们在决定拿掉摄像机的时候,电子已经通过了双缝!这说明了什么?这意味着当我们没有看电子的时候,电子就不是实在的东西,它像个幽灵向四周散发开来,以波的形态悬浮在空间中。你一睁开眼睛,所有的幻影就立马消失,电子的波函数在瞬间坍缩,变成一个实实在在的粒子,随机出现在某个位置上,让你能看到它。 这个实验几乎颠覆了几千年来人们对客观世界的主流认识,具体而言,就是在人类认识世界的过程中,人的意识决定着客观对象的呈现方式。听起来好像天方夜谭,可这真真实实就是电子双缝干涉实验带给我们的震撼。在二十一世纪初科学界评选的令人头皮发炸的十大实验中,该实验高居榜首。用“毛骨悚然”来形容该实验一点也不为过。

相关文档
最新文档