反应烧结碳化硅表面改性的初步研究

反应烧结碳化硅表面改性的初步研究
反应烧结碳化硅表面改性的初步研究

第16卷 第9期

2008年9月 光学精密工程

 Optics and Precision Engineering

Vol.16 No.9

 Sep.2008

收稿日期:2007211222;修订日期:2008201203.

基金项目:国家自然科学基金资助项目(No.60478035)

文章编号 10042924X (2008)0921603205

反应烧结碳化硅表面改性的初步研究

王彤彤1,2,高劲松1,王笑夷1,陈 红1,郑宣鸣1,范镝1,申振峰1,2

(1中国科学院长春光学精密机械与物理研究所光学技术研究中心,吉林长春130033;

2中国科学院研究生院,北京100039)

摘要:应用电子束蒸发硅,霍尔离子源电离甲烷,并辅助沉积的方法在反应烧结碳化硅(RB SiC )基底上沉积了碳化硅

(SiC ∶H )改性薄膜。X 射线衍射(XRD )测试表明制备的碳化硅改性薄膜为α相。通过控制沉积速率,制备了硬度为9.781~13.087GPa ,弹性模量为89.344~123.413GPa 的碳化硅改性薄膜。比较同样条件下镀制银膜的抛光良好微晶

玻璃和经过精细抛光的改性RB SiC ,结果表明两者反射率相近;附着力实验表明,制备的薄膜和基底结合良好;在温度冲击实验下,制备的薄膜无龟裂和脱落。

关 键 词:薄膜制备;碳化硅薄膜;表面改性;离子辅助电离;硬度和弹性模量中图分类号:O484.1;TN304.055 文献标识码:A

Preliminary study of reaction bonded silicon carbide su rface modification

WAN G Tong 2tong 1,2,GAO Jin 2song 1,WAN G Xiao 2yi 1,CH EN Hong 1,

ZH EN G Xuan 2ming 1,FAN Di 1,SH EN Zhen 2feng 1,2

(1.O ptical Technolog y and Research Center ,Changchun I nstit ute of O ptics ,Fi ne Mechanics

and Physics ,Chi nese A cadem y of S ciences ,Chan gchun 130033,Chi na;

2.Grad uate U ni versit y of Chi nese A cadem y of S ciences ,B ei j i n g 100039,Chi na )

Abstract :SiC :H surface 2modified coatings were fabricated on Reaction Bonded Silicon Carbide (RB SiC )subst rates.Silicon was evaporated by E 2beam and met hane was ionized as reactive gas by End 2Hall ion source.X 2ray Diff raction (XRD )result s show t he fabricated film is αp hase ,it s hardness and elastic modulus are in t he range of 9.781~13.087GPa and 89.344~123.413GPa ,respectively.Af 2ter surface 2modification polishing and coating silver ,t he reflectance of modified RB SiC film is close to t hat of fine polished Zerodur glass coating wit h silver.Moreover ,t he fabricated coatings to t he sub 2strate show very good adhesion and no fall 2off and cracks in t hermal impact test f rom liquid nit rogen temperat ure to boiling water temperat ure for 5cycles.

K ey w ords :t hin film fabrication ;silicon carbide t hin film ;surface modification ;ion assisted ionizing ;

hardness and elastic modulus

1 引 言

外太空未知领域和自身居住的地球一直是人类不停探索的对象,科技的迅猛进步使空间应用的望远镜和相机获得了空前的发展。反射镜作为光学系统中的主要部件,在满足轻量化要求的同时,还要求反射镜材料具有可以在恶劣环境下长时间工作的物理特性,从而提出了低密度、高硬度、高弹性模量、高比刚度、低热膨胀系数、均匀线膨胀系数等极高的参数标准[122]。经过多年的研究和发展,反应烧结碳化硅(Reaction Bonded Sil2 icon Carbide,RB SiC)因为其优异的物理、机械性能,可以直接制作出近净尺寸的反射镜基底和较低的花费等特点,成为近些年来各大公司和科学家们主要应用的空间望远镜和相机的反射镜基底材料。不过因为RB SiC制备的工艺限制,除了碳化硅以外,还有一定比例的硅掺杂其中,导致了双金属性,因此需要对其进行表面改性来提高光学性能[325]。通常的改性方法是采用物理汽相沉积硅或者化学汽相沉积β相碳化硅。由于硅的物理性质要比RB SiC差,而且RB SiC基底中的碳化硅通常为α相,所以和β相碳化硅之间有较大的晶格常数差异,致使改性膜和基底之间的物理性质有较大不同。因此如果能制备出和基底同为α相并具有相近性质的碳化硅改性膜是很有意义的。

通过离子源电离反应气体并辅助沉积的方法,本文已经成功地制备出Ge1-x C x薄膜[627],因此拟采用这种方法来制备碳化硅改性膜并进行研究。

2 实 验

霍尔离子源可以通过电离惰性气体,输出离子流密度均匀并具有较高能量的等离子体,而且霍尔离子源结构简单、工作稳定、易于维护,很适合用于长时间的连续镀膜工艺。

本实验基底采用国内生产的RB SiC和K9玻璃。在镀膜之前,基底用去离子水,乙醇和石油醚分别进行10min的超声波清洗,采用拱形夹具固定。在制备之前,基底通过烘烤加热到250℃并恒温1h。在镀制薄膜之前,真空度抽至2×10-3Pa。纯度为99.995%的硅被施加8kV高压的电子枪发射出的高能电子束加热蒸发。同时在霍尔离子源通入纯度为99.999%的氩气作为工作气体,氩气在霍尔离子源中被电离,霍尔源中喷出的具有一定能量的氩离子和通入真空室中纯度为99.999%的甲烷气体分子发生碰撞。作为反应气体的甲烷在和离子源输出的氩离子碰撞后,被电离,生成初始的反应物质。电子枪蒸发的硅和电离的甲烷在烧结碳化硅基底表面上结合,形成碳化硅。由于霍尔离子源的轰击作用,碳和硅在基底上的表面迁移率大大增加,提高了碳和硅结合的几率,进而提高了薄膜的整体性能。薄膜的沉积厚度应用Telemark公司生产的MDC2 360C型晶体控制仪控制。图1是制备改性碳化硅薄膜的工艺示意图

图1 电子枪蒸发,霍尔离子源辅助制备碳化硅改性薄膜的工艺示意图

Fig.1 Schematic diagram of fabrication of SiC coat2 ing by E2beam evaporation with end2Hall ion

source assistance

3 结果和讨论

3.1 薄膜的晶体结构

为了确定制备的碳化硅改性膜的晶体结构,应用日本Rigaku公司制造的XRD测试仪对同一制备条件不同沉积速率下的碳化硅改性薄膜的晶体结构进行了测试,图2是在沉积速率为0.3 nm/s下测试的结果。

通过XRD测试结果,确定制备的碳化硅改性薄膜为α相。在图2中可以看出由于制备的碳化硅晶化并不完全,造成了衍射峰不是严格的对称,产生这种情况主要有两个原因。其一是霍尔离子源输出的离子能量较低,甲烷被电离的程度

4061 光学 精密工程 第16卷 

图2 XRD 测试结果

Fig.2 XRD test result

不够完全,导致成膜的过程中含有一定量的H 原子;另一个原因就是烘烤的温度不够。3.2 碳化硅薄膜的硬度和弹性模量图3是碳化硅改性膜成膜过程的示意图。离化率的高低决定了作为反应气体的甲烷被电离的程度,这也影响着碳化硅改性膜的组成。从图3可以看出,由于甲烷是正四面体结构,4个氢原子分布在4个顶点,在初始电离的情况下,每个H 原子的电离几率和第一电离能都是完全相同的。大多数的甲烷分子在氩离子的碰撞下失去一个氢,影响,剩下的氢原子很难从碳原子上被完全电离。随着这种难度的增大,含氢原子少的碳化硅组分逐渐减少。因此制备的薄膜为含有一定量氢的碳化硅(SiC :H )改性膜

图3 碳化硅改性膜成膜过程示意图

Fig.3 Formation process of SiC :H coating for

modification

使用Nano Indenter XP 纳米压痕硬度仪测量了不同沉积速率下碳化硅改性膜的硬度和弹

性模量,测量参数如下:压力为400μN ,行程为6mm ,运行时间为5min ,速度为1.2mm/min 。

图4是在不改变其他实验参数,改变沉积速

率下测试的碳化硅改性膜的硬度和弹性模量值。

沉积速率变化在0.1~0.5nm/s 之间

图4 不同沉积速率下的硬度和弹性模量

Fig.4 Hardness and elastic modulus at different

deposition rates

从图4可以看出,随着沉积速率的增加,碳化硅改性膜的硬度和弹性模量都增加,但是当沉积速率达到0.3nm/s 时,硬度和弹性模量和0.4nm/s 的沉积速率相比并无明显变化,而继续提高沉积速率则硬度和弹性模量开始降低。在以前制备Ge 1-x C x 薄膜时也观察到了类似的结果[8]。由于碳和硅都属于第四主族,原子序数相差较小,可以形成稳定的化合物。因此可以说在某一个沉积速率下碳和硅能生成具有固定化学计量比的化合物。

当沉积速率较低时,硅的含量较少,被电离的甲烷在基底表面相互之间成键的几率较高,除了C -Si 键之外,会有一定的C -C 键存在,也有一

部分的C -H ,Si -Si 键存在,这种成键方式引入了杂质,降低了制备的薄膜的硬度,同时这种成键方式在薄膜中的不均匀性,也导致了不会获得很高的弹性模量。沉积速率提高,意味着蒸发的硅增加,硅和碳之间的结合几率大大增加,薄膜之中

C -Si 键居于主体,薄膜的晶体结构也随着薄膜

的生长趋于有序,整体趋向生成具有固定化学计量比的化合物。因此随着沉积速率的增加,制备的改性薄膜的硬度和弹性模量增加。当沉积速率达到0.3nm/s ,0.4nm/s 时,在这两种沉积速率下碳化硅改性膜的硬度和弹性膜量基本相同,这意味着薄膜的生长已经达到了一个相对稳定状态。当继续增加沉积速率时,硅蒸发的更多了,成膜的时候,Si -Si 之间更容易成键,薄膜的整体性

5

061第9期

王彤彤,等:反应烧结碳化硅表面改性的初步研究

质开始表现为硅膜的的性质。因此单纯依靠提高

蒸发速率并不能提高碳化硅改性膜的硬度和弹性模量,这就需要通过以后继续优化工艺参数,进一步提高改性膜的性能。3.3 改性抛光结果

RB SiC 由于其中含有硅,导致了金属二相性,因此即使经过精细的抛光,也很难达到很低的粗糙度,根据Beckmann 2K irchhoff 的标量散射理论[9]及Church 等对粗糙表面的测量结果[10],证明了粗糙度决定了表面散射的程度,如果粗糙度高,表面散射就高,相应的就会影响反射率。

应用美国Digital Inst rument 公司生产的Di 2mension 3100型原子力显微镜对未改性的反应烧结碳化硅基底进行了测试,结果如图5所示。图中黑色部分为硅,灰色部分为碳化硅。从图5中可以清晰地看到因为金属的二相性,虽然硅和碳化硅两种材料抛光都比较好,很平滑,但是由于两种材料的抛光速度不同,使接触的位置产生了高低差异,形成了台阶,这种结构就造成了光在照射到表面的时候散射会提高,降低了反射效率。改性的目的就是要弥补这种缺陷,降低甚至消除这种散射损失

图5 RB SiC 基底的原子力显微镜测试结果

Fig.5 T opographic image of RB S iC surface taken by AFM

图6是使用原子力显微镜测试的镀制了碳化硅改性膜后的结果。和没有改性之前相比,已经观察不到金属二相性造成的台阶状结构。但是由于基底表面最初存在的高低不平的结构,导致镀制了碳化硅改性膜的基底表面依然粗糙不平,所以需要再进行精细的抛光来获得更加光滑的表面。

为了直观地对比改性前后的效果,采用Lamda 900UV/Vis

分光光度计分别测量了同一

图6 RB SiC 改性后的原子力显微镜测试结果

Fig.6 Topographic image of RB SiC surface after sur 2

face modification taken by A FM

次实验中镀制银膜的3个样品:抛光良好的微晶玻璃和改性前、后经过抛光的RB SiC 基底。

图7的测量结果中可以看出,在没有改性之前RB SiC 基底和抛光良好的微晶玻璃之间的反射率有7%左右的差距,而在改性之后两者仅有1%左右的差距,已经非常接近抛光良好的微晶玻璃。可见改性之后,散射有了明显的降低,反射率得到了比较显著的提高

图7 微晶玻璃和改性前、后RB SiC 基底镀银的反射

率测试结果

Fig.7 Reflectance of Zerodur glass ,RB SiC sub 2

strates before and after modification ,all coa 2ted with silver

3.4 附着力测试

膜层和基底的附着力,一直是衡量膜层质量好坏的一个标准。对用于表面改性的碳化硅薄膜,要求膜层和基底有非常好的结合,因为在抛光的过程中和实际的空间应用中,如果出现掉膜会严重影响反射镜的性能。把一个面积大小为5mm ×5mm 的铝质挂钩使用AB 胶固化在镀制了碳化硅改性膜的RB SiC 基底上,然后在对碳

6

061 光学 精密工程

第16卷 

化硅改性膜施加持续增加的拉力,当施加150N

的拉力(5.88×106Pa )时,铝质挂钩从AB 胶固化处脱落,而碳化硅改性膜无任何变化,所以碳化硅改性膜和RB SiC 基底有良好的附着性。制备的碳化硅改性膜和RB SiC 基底都为α相,因此晶格系数相近,两者匹配较好,具有良好的结合性。3.5 温度冲击实验

空间应用的碳化硅反射镜需要在恶劣的环境下长时间稳定工作,温度变化带来的影响是主要问题之一,所以必须测试温度冲击对制备的碳化硅薄膜的影响。

首先把镀制有碳化硅薄膜的碳化硅基底放置于液氮(77K )中30min ,接着迅速取出,放入已经准备好的沸水中30min ,然后取出放入液氮中30min ,重复这个过程5次。

目测温度冲击后的碳化硅薄膜,表面无变化,无脱膜,无龟裂,证明了制备的碳化硅薄膜在强烈的温度冲击下非常稳定。

4 结 论

采用了霍尔离子源电离甲烷,并辅助沉积的方法在反应烧结碳化硅基底上镀制了碳化硅(SiC :H )改性膜。测试结果表明,这种α相碳化硅薄膜具有较高的硬度和弹性模量,同时在改性抛光后可以获得和抛光良好的微晶玻璃近似的反射率。在和基底具有良好的附着性的同时,薄膜在温度冲击下也具有良好的稳定性。

本文感谢长春光机与物理所应用光学实验室的老师完成XRD 测试,以及吉林大学材料科学学院的老师帮助测量了硬度和弹性模量。

参考文献:

[1] 高明辉,刘磊,任建岳.空间相机反射镜碳化硅材料性能测试[J ].光学精密工程,2007,15(8):117021174.

GAO M H ,L IU L ,REN J Y.Characteristic test of SiC for space camera ’s mirror [J ].O pt.Precision Eng.,

2007,15(8):117021174.(in Chinese )[2] 张剑寒,张宇民,韩杰才,等.空间用碳化硅反射镜的设计制造与测试[J ].光学精密工程,2006,14(2):1792184.

ZHAN GJ H ,ZHAN G Y M ,HAN J C ,et al ..Design ,fabrication and testing of space 2borne SiC mirror[J ].O pt.

Precision Eng.,2006,14(2):1792184.(in Chinese )

[3] BREIDEN T HAL R S ,SKE Y R G ,GEAN Y J J.Optical surfacing of one 2meter class reaction 2bonded silicon carbide

[J ].S PI E ,1995,2453:2482253.

[4] J O HNSON S.SiC coatings on RB SiC mirrors for ultra 2smooth surfaces[J ].S PI E,1993,2018:2372247.[5] TAN G H ,HUAN G ZH R ,TAN SH H.PVD SiC and PVD Si coatings on RB SiC for surface modification [J ].

S PI E ,2006,6149:61490A 21261490A 26.

[6] 王彤彤,高劲松,王笑夷,等.用低压反应离子镀的方法制备Ge 1-x C x 单层非均匀增透膜的研究[J ].光学技术,

2007,33(2):3022304.

WAN G T T ,GAO J S ,WAN G X Y ,et al ..Study of single layer inhomogeneous G e 1-x C x antireflection coating prepared by RL VIP technique[J ].O ptical Technique ,2007,33(2):3022304.(in Chinese )

[7] 王彤彤,高劲松,王笑夷,等.离子源辅助电子枪蒸发制备G e 1-x C x 薄膜[J ].光子学报,2007,36(4):7152718.

WAN G T T ,GAO J S ,WAN G X Y ,et al ..Preparation of Ge 1-x C x thin film by e 2gun evaporation assisted with

ion source[J ].A cta Photonica S inica ,2007,36(4):7152718.(in Chinese )

[8] 王彤彤,高劲松,王笑夷,等.低压反应离子镀制备Ge 1-x C x 薄膜的硬度研究[J ].光学仪器,2006,28(4):79282.

WAN G T T ,GAO J S ,WAN G X Y ,et al ..Study hardness of G e 1-x C x coatings prepared by RL V IP technique

[J ].O ptical I nst ruments ,2006,28(4):79282.(in Chinese )

[9] B EC KMANN P ,SPIZZICHINO A.T he scattering of elect romagnetic w aves f rom rough surf aces [M ].New Y ork :

Pergamon Press ,1963.

[10] CHU RCH E L ,TA KACS P Z ,L EONARD T A.The prediction of BRDF ’s from surface profile measurements

[J ].S PI E,1989,749:1362150.

作者简介:王彤彤(1979-),男,吉林长春人,博士研究生,主要研究方向为光学薄膜的理论和制备。E 2mail :wangttbox

@https://www.360docs.net/doc/701612446.html,

高劲松(1968-),男,吉林白城人,研究员,主要研究方向为光学薄膜的前沿研究以及特种光学薄膜。E 2mail :gaojs @https://www.360docs.net/doc/701612446.html,

7

061第9期

王彤彤,等:反应烧结碳化硅表面改性的初步研究

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,IGBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f ,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL HD)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极 管的V f 更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关 联差别很大:快速硅二极管具有负的温度系数,150°C下的V f 比25°C下的V f 低。 对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不均匀。这里,SiC肖特基二极管显示出最佳的性能。但与常规硅二极管相比,SiC肖特基二极管的静态损耗较高。由于二极管是基于10A额定电流进行比较的,考虑不同供应商的器件之间有时不同

SiC粉体的表面改性

SiC粉体的表面改性 一、背景 1.简介: 碳化硅分子式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。 碳化硅晶体结构分为六方晶系的α-SiC和立方晶系的β-SIC,β-SiC于2100℃以上时转变为α-SiC。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体。 碳化硅在大自然也存在罕见的矿物,莫桑石。 2.问题: 经机械粉碎后的SiC 粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高。加入表面改性剂,改善SiC 粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。 二、过程 1.改性方法分类: 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 (1)固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。 SiC粉体制备最初是采用Acheson法,用焦炭在高温下(2400 ℃左右)还原SiO2制备的。 20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。 L N. Satapathy等以Si+2C为起始反应物,采用 2.45GHz的微波在

1200-1300℃时保温5分钟即可实现完全反应,再通过650℃除碳即可获得纯的β-SiC,其平均粒径约0.4μm。 硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。 SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 (2)液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。 溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等以粒径9.415μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术。 一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC粉末。 (3)气相法 气相合成碳化硅陶瓷超细粉末目前主要是运用气相反应沉积法(CVD)、等离子体法(Plasma Induced CVD)、激光诱导气相法(Laser Induced CVD)等技术高温分解有机物,所得粉末纯度高,颗粒尺寸小,颗粒团聚少,组分易于控制,是目前比较先进的方法,但成本高、产量低,不易实现大批量生产,较适合于制取实验室材质和用于特殊要求的产品。 我们主要讲的是用硅烷偶联剂对SiC进行改性,也就是液相法。 2.实验过程: (1)原料: 选用自行加工的SiC 粉体,D50 = 0.897 μm,SiC 含量为98.98% (质量分数,下同);硅烷偶联剂(KH–550,NH2CH2CH2CH2Si(OC2H5)3);丙三醇(分析纯);甲苯(分析纯);丙酮(分析纯);氮气(99.99%)。 (2)工艺过程: 硅烷偶联剂的烷氧基是与SiC 粉体表面的—Si—OH 反应的主要基团,它极易水解生成醇类[8],故表面改性反应必须选择在非水和非醇类介质中进行。在四口烧瓶中加入350 mL 甲苯、50 g SiC 微粉和相应比例的硅烷偶联剂,通入N2,在N2 气流下升温至85 ℃并搅拌反应6 h。反应结束后,产物趁热真空抽滤,经多次超声分散(超声介质为水、丙酮;时间为30 min)、离心洗涤(介质:水、丙酮;时间:25 min)后,于105 ℃烘箱中干燥12 h,冷却后待用。 三、表征 1.粘度

反应烧结SiC的制造和性能

反应烧结SiC的制造和性能 新型陶瓷材料由于具有各种特殊的性能被应用于许多工业领域,为解决材料使用问题发挥着越来越重要的作用。 新型陶瓷具有多种功能,按性能分为电学、电子功能、力学功能、光学功能、热学功能、生物功能等等。近几年来,特别引起人们注意的是机械力学功能陶瓷。我们根据省科委下达的科研项目,通过大量调研,开展了对反应烧结SiC材料制造与性能的研究。 利用传统的SiC粉料,采用压制成型工艺传统烧成法制造不出高密度SiC 材料,如采用热压烧结、无压烧结或反应烧结工艺可达到其目的。反应烧结SiC 已是30多年来的商品化材料,首先是出现在美国的气相渗硅工艺,以后英国原子能协会的反应堆高性能材料元件通过液相渗硅工艺研制成功,后来各国对此材料采用挤出成型、等静压成型、压制成型、注浆成型、注射成型等不同工艺进行了详细的研究,分别制造出了机械密封件、轴承、火箭喷嘴、烧嘴、阀件、发动机转子等多种部件,其中部分已形成商品化应用到工业中取代硬质合金等昂贵的金属材料,取得了显著的经济效益。 工艺概述 RB-SiC是由于碳化硅粉与石墨或炭黑混合,加入少量粘结剂,通过各种成型方法成型,去掉粘结剂后,将坯体放在特殊设计的真空炉中,使之与熔硅接触,坯体被融硅润湿、渗透,Si与坯体枝、中的石墨或C反应形成新SiC沉积到原来的SiC上,把原来的SiC结合在一起,剩余的气孔由Si填充。最终的制品含有约8-10%的游离Si,该材料的特点是可通过调节坯体中C含量来调节制品的游离Si量,从而制造不同性能的制品。 SiC材料各相含量的控制原理 反应烧结SiC的一个重要特点是在坯体渗Si后尺寸无变化或很少有变化,因此要形成理论密度的SiC,坯体中必须含有一定量气孔,以满足石墨或C转化成SiC时的体积增大的需要,假如坯体全由C组成,理论最大C密度应按如下计算:

烧结碳化硅方式对比__烧结碳化硅分类

烧结碳化硅方式对比__烧结碳化硅分类 烧结碳化硅烧结方式有哪三种呢?烧结碳化硅的三种烧结方式虽然各有千秋,但是在科技发展如此迅速的今天,迫切需要提高碳化硅陶瓷的性能,不断改进制造技术,降低生产成本,实现碳化硅陶瓷的低温烧结。以达到降低能耗,降低生产成本,推动碳化硅陶瓷产品产业化的目的。山东中鹏特种陶瓷有限公司生产的烧结碳化硅具有碳化硅材料耐强腐蚀性、耐磨性、高导电性、高温稳定性等性能,在新能源、化工、船舶及科研国防军事技术等领域应用。 【烧结碳化硅分类】 (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在

1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/701612446.html,nge 研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能 制备形状简单的SiC部 件,而且一次热压烧结过 程中所制备的产品数量 很小,因此不利于工业化 生产。 (3)反应烧结 反应烧结SiC又称自结 合SiC,是由a-SiC粉和 石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反应生成β-SiC,把原来存在的a-SiC颗粒结合起来。 【烧结碳化硅方式对比】 1.热压烧结:只能制备简单形状的碳化硅部件,生产效率低,不利于大规模商业化生产。 2.无压烧结(常压烧结):能生产复杂形状和大尺寸碳化硅部件,是目前普遍认可的有优势的烧结方法。 3.反应烧结:能制备复杂形状的碳化硅部件,烧结温度低,但是产品高温性能不佳。 特点:如果允许完全渗Si,那么整个过程中可获得气孔率为零,无几何尺寸变化的材料。

碳化硅粉体的制备及改性技术

随着科学技术的发展, 现代国防,空间技术以及汽车工业等领域不仅要求工程材料具备良好的机械性能,而且要求其具有良好的物理性能。碳化硅(SiC)陶瓷具有高温强度和抗氧化性好、耐磨性能和热稳定性高、热膨胀系数小、热导率高、化学稳定性好等优点,因而常常用于制造燃烧室、高温排气装置、耐温贴片、飞机引擎构件、化学反应容器、热交换器管等严酷条件下的机械构件,是一种应用广泛的先进工程材料。它不仅在正在开发的高新技术领域(如陶瓷发动机、航天器等)发挥重要作用,在目前的能源、冶金、机械、建材化工等[1]领域也具有广阔的市场和待开发的应用领域。为此,迫切需要生产不同层次、不同性能的各种碳化硅制品。碳化硅的强共价键导致其熔点很高,进而使SiC粉体的制备、烧结致密化等变得更加困难。本文综述了近些年碳化硅粉体的制备及改性、成型和烧结工艺三个方面的研究进展。 [1]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模型[J].武汉理工大学学报, 2002, 24(4): 48-50 1 碳化硅粉体的制备及改性技术 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 1.1 固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。SiC粉体制备最初是采用Acheson法[2],用焦炭在高温下(2400 ℃左右)还原SiO2制备的,但此方法获得的粉末粒径较大(>1mm),耗费能量大、工艺复杂。20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。随着微波与固体中的化学物质有效而特殊的聚合作用逐渐被弄清楚,微波加热合成SiC粉体技术也日趋成熟。最近,L N. Satapathy等[3]优化了微波合成SiC的工艺参数。他们以Si+2C为起始反应物,采用2.45 GHz的微波在1200-1300 ℃时保温5分钟即可实现完全反应,再通过650 ℃除碳即可获得纯的β-SiC,其平均粒径约0.4 μm。硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 [2] 宋春军,徐光亮. 碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展[J].材料科学与工艺,2009,17(2):168~173 [3] L N. Satapathy,P D. Ramesh,Dinesh Agrawal,et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J].Materials Research Bulletin, 2005, 40(10):1871-1882. [4] 杨晓云, 黄震威. 球磨Si, C 混合粉末合成纳米SiC 的高分辨电镜观察. 金属学报,2000, 36(7): 684-688. 1.2 液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等[5]以粒径9.415 μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术:一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC 粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC 粉末。

碳化硅陶瓷的发展与应用

碳化硅陶瓷的发展与应用 1073112 王苗 摘要:碳化硅陶瓷以其优异的抗热震、耐高温、抗氧化和耐化学腐蚀等特性而广泛地应用于石油、化学、汽车、机械和宇航等工业领域中,并日益引起人们的重视。本文对各种SiC 陶瓷的制备方法、性能特点及其应用现状进行了综合评述。 关键词:碳化硅陶瓷发展与应用 Abstract: Silicon carbide ceramics have been widely used in petroleum, chemical, automotive,mechanical and aerospace industries because of their excellent resistance to thermal shock, high temperatures, oxidation and chemical corrosion. In this paper, the fabricating methods, mechanical properties and current applications of various SiC ceramics are revicwed. Key Words: SiC Ceramics Development and Application 1 前言 现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈高, 迫切需要开发各种新型高性能结构材料。碳化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性, 因此, 已经在许多领域大显身手, 并日益受到人们的重视。例如, SiC陶瓷在石油化学工业中已被广泛地用作各种耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、切削刀具和机械密封部件在宇航和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。 本文首先对SiC 的基本性质及SiC粉末的合成方法进行了简单介绍, 接着重点综述了SiC陶瓷的性能特点, 最后对SiC陶瓷的应用现状与未来发展进行了概括和分析。 2 碳化硅的基本特性 2.1、化学属性 抗化合性:碳化硅材料在氧气中反应温度达到1300℃时,在其碳化硅晶体表层已经生成二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗化合性。当气温达到1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应加重,从而1900K是碳化硅在氧化剂氛围下的最高工作气温。 耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗酸能力非常非常强,抗碱性稍差。 2.2、物理性能 密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是3.20 g/ m m3,其碳化硅磨料的堆砌密度在1.2--1.6 g/ m m3之间,其高矮取决于其粒度号、粒度合成和颗粒形状的大小。 硬度:碳化硅的硬度为:莫氏9.5级。单晶硅的硬度为:莫氏7级。多晶硅的硬度为:莫氏7级。都是硬度相对较高的物料。努普硬度为2670—2815公斤/毫米,在磨料中高于刚玉而仅次于金刚石、立方氮化硼和碳化硼。 导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火材料。 2.3、电学属性 恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

纳米碳化硅材料

纳米碳化硅材料 摘要:本文主要讨论的是关于纳米碳化硅材料的结构、性能及其应用,主要在其 光学性质、力学性质等方面对其进行讨论。 关键词:纳米碳化硅光学性质力学性质 1. 引言 SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常 数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等特性,成为制作 高频、大功率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。 SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极 管的理想材料。近年来的研究表明:微米级SiC晶须已被应用于增强陶瓷基、金 属基和聚合物基复合材料,这些复合材料均表现出良好的机械性能,可以想象用 强度硬度更高及长径比更大的SiC 一维纳米材料作为复合材料的增强相,将会 使其性能得到进一步增强。随着研究的深入,研究者还发现一维SiC纳米结构在 储氢、光催化和传感等领域都有广泛的应用前景。 2. 纳米碳化硅结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物, 自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面 体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立 方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为 工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关 系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃, 也是非常稳定的。下面是三种SiC多形体结构图

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

碳化硅烧结

1、无压烧结 1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。 最近,有研究者在亚微米SiC粉料中加入Al2O3和Y2O3,在1850℃~2000℃温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。 2、热压烧结 50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。有研究者以Al2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B或B与C,Al2O3和C、Al2O3和Y2O3、Be、B4C 与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。 3、热等静压烧结: 近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。 4、反应烧结: SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。 综述:实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。假如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较高,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。 碳化硅陶瓷的应用

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/701612446.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

纳米碳化硅材料

纳米碳化硅材料 王星 (武汉工业学院化学与环境工程学院湖北武汉430023) 摘要:本文介绍了碳化硅的结构,纳米碳化硅几种常用的制备的方法和它掺杂改性以及应用。虽然SiC纳米材料制备规模小、成本高、工序复杂,近期难以实现大规模生产,但SiC纳米材料性能优于传统的SiC材料,能够达到高新技术领域的严格要求,具有更为广泛的用途,为此,应进一步加大对SiC纳米材料的研究。 关键词:纳米碳化硅掺杂改性应用 1 引言 纳米材料的出现是21世纪材料科学发展的重要标志,它所表现出的强大的科学生命力不仅是因为揭示出科学的深刻物理含义,而更重要的是它所发现的新结构、新现象、新效应源源不断地被用来开发具有新结构、新性能的固体器件,对通讯、微电子等高新技术产生极其深远的影响。SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等优点,成为制作高频、大工率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极管的理想材料。所以,对纳米碳化硅材料的研究具有十分重要的意义。 2碳化硅的结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。下面是三种SiC多形体结构图

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的合成方法综述 碳化硅陶瓷具有机械强度高、耐高温、抗氧化性强、热稳定性能好、热导率大、耐磨损性能好、耐化学腐蚀性能好、硬度高、抗热震性能好等优良的特性。碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种。碳化硅陶瓷不仅在高新技术领域发挥着重要的作用,而且在冶金、机械、能源和建材化工等热门领域也拥有广阔的市场。随着高新技术的不断发展,对碳化硅陶瓷的要求也越来越高,需要不同层次和不同性能的各种产品。早在20 世纪50 年代,Popper[ 1] 首次提出反应烧结制备碳化硅。其基本原理是:具有反应活性的液硅或硅合金,在毛细管力的作用下渗入含碳的多孔陶瓷素坯,并与其中的碳反应生成碳化硅,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒,浸渗剂填充素坯中的剩余气孔,完成致密化的过程。 1.1 常压烧结 1.1.1 固相烧结 单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程中没有液相形成。陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。同时,固相烧结可以通过合适的颗粒级配、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结。自20世纪7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂,在2050℃成功地固相烧结出致密度高于98 的SiC陶瓷以来,固相烧结就一直很受关注。虽然SiC-B-C体系固相烧结SiC需要较高的烧结温度,烧结晶粒粗大,均匀性差,而且SiC陶瓷具有较低的断裂韧性、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好、热导能力强l7剖。因此,固相烧结在SiC陶瓷烧结中具有潜在的应用价值。目前,采用SiC-B-C烧结体系来进行固相烧结SiC陶瓷的厂家主要有美国的GE公司。 1.1.2 液相烧结 由于陶瓷粉体中总有少量的杂质,大多数材料在烧结过程中都会或多或少地出现液相。另外,即使在没有杂质的纯固相系统中,高温下还会出现“接触”熔融现象,因而纯粹的固相烧结实际上不易实现,大多数的烧结实属液相烧结。液相烧结是以一定数量的多元低共熔点氧化物为烧结助剂,在高温下烧结助剂形成共溶液相的烧结过程,烧结晶粒细小均匀呈等轴晶状。其烧结体系的传质方式为流动传质,可降低致密化所需要的能量,容易实现低温下的烧结致密化,缩短烧结时问。同时,低共溶液相的引入和独特的界面结合弱化,使材料的断裂模式为沿晶断裂模式,材料的断裂韧性和强度显著提高。Nakano等利用BeO 的高热导能力以及SiC与BeO在烧结过程中形成液相的特点,最终制备出热导率高达270W /(m ·K)的SiC陶瓷。Takada等在2200℃烧结平均粉末粒径为0.5Fro的SiC陶瓷的过程中,加入烧结助剂2 BeO、0.2 ~O.4 BC和0.2 ~O.3 C(质量分数),无压烧结0.5h,获得材料的电阻率和热导率分别为5×l0^12Q ·cm和140w/(m ·K)。在烧结过程中,均匀分布在SiC表面的B原子和C原子与Si原子反应,生成GB-C、Si-B-C、Si- Si 和Si—DSi键,促进Si原子的扩散,提高SiC陶瓷的致密度。 1.2 热压烧结 热压烧结是指在SiC加热烧结的同时,施加一定的轴向压力而进行的烧结。热压烧结可增大SiC粒子间接触面积,降低烧结温度,缩短烧结时间,增加烧结体的致密化,促进SiC烧结。为了使SiC粒子更容易烧结,热压烧结通常需要在SiC粉体中加入B、C、Al、B4C、Y2O3、A12O3。等烧结助剂来促进烧结。B、Al或BC固溶于SiC中,降低SiC 的界面能,C主要与SiC粒子表面的SiO。反应形成低温液相,促进B、A1的扩散。Liu 等以Y2O3和A12O3。为烧结助剂,在2000℃、30MPa的烧结条件下进行烧结,烧结出

相关文档
最新文档