反应烧结碳化硅做耐火材料特性__反应烧结碳化硅影响因素主要有哪些

反应烧结碳化硅做耐火材料特性__反应烧结碳化硅影响因素主要有哪些
反应烧结碳化硅做耐火材料特性__反应烧结碳化硅影响因素主要有哪些

反应烧结碳化硅做耐火材料特性__反应烧结碳化硅影响因素主要有哪些

反应烧结出的产品,表面光滑、密度高、强度也高。反应烧结碳化硅现在不仅应用在电厂脱硫系统、采矿选矿、水泥制造、金属热处理、镀锌镀铝、垃圾焚烧、石油化工机械及太阳能等行业。将来反应烧结碳化硅所制造的部件,会越来越多的应用在超高温、热震、磨损和高腐蚀的材料工业领域。反应烧结碳化硅还可以做耐火材料,那么反应烧结碳化硅做耐火材料特性有哪些呢?

【反应烧结碳化硅做耐火材料特性】

①具有1600℃以上的耐火度;

②高导热率;

③高强度,高耐磨性;

④抗侵蚀性好;

⑤抗热震性好;

⑥低成本,高寿命

【反应烧结碳化硅影响因素主要有哪些】

1:原始粉料的粒度,无论在固态或者液态

的烧结中,细颗粒由于增加了烧结的推动力,

缩短了原子扩散的距离和提高颗粒在液相中

的溶解度而导致烧结过程的加速。一般烧结

速率与起始粒度的1/3次方成正比。

2:外加剂的作用,在固相烧结中,少量外

加剂(烧结助剂)可与主晶相形成固溶体促

进缺陷增加;在液相烧结中,外加剂能改变

液相的性质(如粘度、组成等),因而都能起

到促进烧结的作用

3:烧结温度和保温时间,在晶体中晶格能越大,离子结合越牢固,离子对扩散也越困难,所需的烧

结温度也越高。但是各种晶体键合情况不同,因此烧结温度也相差很大,即使对于同一晶体,烧结温度也不是一个固定的值。但是高温短时间烧结是制造致密陶瓷材料的好方法,但还要考虑材料店传热系数,二次再结晶的温度,扩散系数等各种因数,合理制定烧结温度。

4:盐类的选择以及煅烧条件:在通常情况下,原始配料以眼泪形式加入,经过加热后以氧化物形式烧结。盐类具有层状结构,当其分解是这种结构往往不能完全破坏,原料盐类与生成物之间若保持结构上的关联性,那么盐类的种类、分解温度和时间将影响烧结氧化物的结构缺陷和内部应变,从而影响烧结速率与性能。

5:气氛的影响:一般地说,在由扩散控制的氧化物烧结中,气氛的影响与扩散控制因素有关,与气孔内气体的扩散和溶解能力有关。

6:成型压力的影响,粉料成型时须加一定的压力,除了使其有一定的形状和一定的强度,同时也给烧结创造了颗粒间紧密接触的条件,使其烧结时扩散阻力减小。一般地说,成型压力越大,颗粒间接触越紧密对烧结越有利。但若压力过大使粉料超过塑性变形限度,就会发生脆性断裂。适当的成型压

力可以提高生胚的密度,而生胚的密度与烧结体的致密化程度有正比关系。

【反应烧结碳化硅性能】

反应烧结碳化硅不仅具有优良的常温力学性能,如高的抗弯强度、优良的抗氧化性、良好的耐腐蚀性、

高的抗磨损以及低的摩擦系数,

而且高温力学性能(强度、抗蠕

变性等)是已知陶瓷材料中佳

的。碳化硅喷嘴是碳化硅陶瓷

中的一种,该产品主要用于各

种窑炉,和机械,石油等行业

中。涡流喷嘴是浆液从切线方

向进入喷嘴的漩涡室内,然后从与入口方向成直角的喷孔喷出,整体注浆成型,无内部分离件,喷雾形状为空心圆锥形,喷射区域成环形,多种喷射角度和流量,喷雾形状为圆锥状,喷雾区域呈环形,涡流喷嘴的喷雾粒径细小而均匀,漩涡通道较大,喷嘴不易堵塞。双向涡流喷嘴是设计两个喷孔,在脱硫塔内,一个喷嘴向上喷,一个喷嘴向下喷淋,或者是同时向一个方向喷淋,该喷嘴允许通过的颗粒尺寸为喷孔直径的80~100,常规流量分配为50向上喷,50向下喷,也可以设计为上下两个喷孔流量不同。压力式涡流雾化喷嘴主要由液体切向入口、液体旋转室和喷口组成。

涡流喷嘴的连接方式一般为:缠绕粘结、法兰连接和螺纹连接等。

烧结工艺流程

?烧结工艺流程 烧结是钢铁生产工艺中的一个重要环节,它是将铁矿粉、粉(无烟煤)和石灰按一定配比混匀。经烧结而成的有足够强度和粒度的烧结矿可作为炼铁的熟料。利用烧结熟料炼铁对于提高高炉利用系数、降低焦比、提高高炉透气性保证高炉运行均有一定意义。 由于烧结技术具体的作用和应用太广泛了, 以下介绍一下烧结生产在钢铁工业粉矿造块的意义和作用 我国的铁矿石大部分都是贫矿,贫矿直接入炉炼铁是很不合算b,因此必须将贫矿进行破碎、选出高品位的精矿后,再将精矿粉造块成为人造富矿才能入高炉冶炼。所以,粉矿造块是充分合理利用贫矿的不可缺少的关控环节。 富矿的开采过程中要产生粉矿,为了满足高炉的粒度要兔在整较过程中也会产生粉矿,粉矿直接入炉会51起高炉不顺。恶化高炉技术经济指标,因此粉矿也必须经过造块才能入炉。 粉矿经过迭决后,可以进一步控制相改善合铁原料的性肠获得气孔串高、还原性好、强度合适、软熔温度较高、成份稳定的优质冶金原料,有助于炉况的稳定和技术经济指标的改善。

粒矿造块过程中,还可以除去部份有害杂质,如硫、氟、砷、锌等,有利于提高生铁的质量。因为人造富矿比天然富矿更具有优越性,成为了现代商炉原料的主要来源。 粉矿迭块还可综合利用含铁、合被、台钙的粉状工业废料,如高炉炉尘、钢迢、轧钢皮、均热炉渣、硫酸渣、染料铁红、电厂烟尘灰笔适当配入可以成为廉价的高炉好原料,又可以减少环境污染,取得良好的经济效益和社会效益。 粉矿造铁是现代高炉冶炼并获得优质高产的基础,对于高炉冶炼有君十分重要的意义,是钢铁工业生产必不可少的重要工序,对钢铁生产的发展起着重要作用。 1.2粉矿造块的方法 粉矿造块方法很多,主要是烧结矿和球团矿。此外,还有压制方团矿、辊压团矿、蒸养球团t碳酸化球团,其成球方式和固结方法与球团矿不同,还有小球烧结,国外称为HPs球团化挠结矿,界于球团和烧结之间;还有铁焦生产,是炼焦和粉矿造块相结合。 球团矿的焙烧方法主要乞竖队带式焙烷仇链蓖机—回转窃。目前地方小铁厂还有平地堆烷的。 烧结方法主要有吹风烧结法和抽风烧结法两大类。吹风烧结有平地堆挠、饶结识、挠结盘,抽风烧结有路式侥结、艰面步进式烧绍机、带式烧结机、环形挠结机电即日本矢作式)。 国内外苫遍采用的是常式抽风烧结机,在我国地方小铁广还有相当一部分用平地吹风堆烧和箱式抽风烧结。比外,还有回转窑浇结法、悬浮烧结法。 所谓“烧结”就是指粉状物料加热到熔点以下而粘结成固体的现象. 烧结过程简单来说,就是把品位满足要求,但粒度却不满足的精矿与其他辅助原料混合后在烧结机上点火燃烧,重新造块,以满足高炉的要求。点火器就是使混合料在烧结机上燃烧的关键设备,控制好点火器的温度、负压等,混合料才能成为合格的烧结成品矿。 烧结的主要体系是,配料,混料,看火等。看火的经验:看火主要控制的三点温度是;点火温度,终点温度,和总管废气温度。一般来说把终点温度控制在倒数第2号风箱的温度。 铁矿粉造块 铁矿粉造块目前主要有两种方法:烧结法和球团法。两种方法所获得的块矿分别为烧结矿和球团矿。 铁矿粉造块的目的: ◆综合利用资源,扩大炼铁用的原料种类。 ◆去除有害杂质,回收有益元素,保护环境。 ◆改善矿石的冶金性能,适应高炉冶炼对铁矿石的质量要求。 一、铁矿粉烧结生产

反应烧结SiC的制造和性能

反应烧结SiC的制造和性能 新型陶瓷材料由于具有各种特殊的性能被应用于许多工业领域,为解决材料使用问题发挥着越来越重要的作用。 新型陶瓷具有多种功能,按性能分为电学、电子功能、力学功能、光学功能、热学功能、生物功能等等。近几年来,特别引起人们注意的是机械力学功能陶瓷。我们根据省科委下达的科研项目,通过大量调研,开展了对反应烧结SiC材料制造与性能的研究。 利用传统的SiC粉料,采用压制成型工艺传统烧成法制造不出高密度SiC 材料,如采用热压烧结、无压烧结或反应烧结工艺可达到其目的。反应烧结SiC 已是30多年来的商品化材料,首先是出现在美国的气相渗硅工艺,以后英国原子能协会的反应堆高性能材料元件通过液相渗硅工艺研制成功,后来各国对此材料采用挤出成型、等静压成型、压制成型、注浆成型、注射成型等不同工艺进行了详细的研究,分别制造出了机械密封件、轴承、火箭喷嘴、烧嘴、阀件、发动机转子等多种部件,其中部分已形成商品化应用到工业中取代硬质合金等昂贵的金属材料,取得了显著的经济效益。 工艺概述 RB-SiC是由于碳化硅粉与石墨或炭黑混合,加入少量粘结剂,通过各种成型方法成型,去掉粘结剂后,将坯体放在特殊设计的真空炉中,使之与熔硅接触,坯体被融硅润湿、渗透,Si与坯体枝、中的石墨或C反应形成新SiC沉积到原来的SiC上,把原来的SiC结合在一起,剩余的气孔由Si填充。最终的制品含有约8-10%的游离Si,该材料的特点是可通过调节坯体中C含量来调节制品的游离Si量,从而制造不同性能的制品。 SiC材料各相含量的控制原理 反应烧结SiC的一个重要特点是在坯体渗Si后尺寸无变化或很少有变化,因此要形成理论密度的SiC,坯体中必须含有一定量气孔,以满足石墨或C转化成SiC时的体积增大的需要,假如坯体全由C组成,理论最大C密度应按如下计算:

烧结碳化硅方式对比__烧结碳化硅分类

烧结碳化硅方式对比__烧结碳化硅分类 烧结碳化硅烧结方式有哪三种呢?烧结碳化硅的三种烧结方式虽然各有千秋,但是在科技发展如此迅速的今天,迫切需要提高碳化硅陶瓷的性能,不断改进制造技术,降低生产成本,实现碳化硅陶瓷的低温烧结。以达到降低能耗,降低生产成本,推动碳化硅陶瓷产品产业化的目的。山东中鹏特种陶瓷有限公司生产的烧结碳化硅具有碳化硅材料耐强腐蚀性、耐磨性、高导电性、高温稳定性等性能,在新能源、化工、船舶及科研国防军事技术等领域应用。 【烧结碳化硅分类】 (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在

1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/f710591281.html,nge 研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能 制备形状简单的SiC部 件,而且一次热压烧结过 程中所制备的产品数量 很小,因此不利于工业化 生产。 (3)反应烧结 反应烧结SiC又称自结 合SiC,是由a-SiC粉和 石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反应生成β-SiC,把原来存在的a-SiC颗粒结合起来。 【烧结碳化硅方式对比】 1.热压烧结:只能制备简单形状的碳化硅部件,生产效率低,不利于大规模商业化生产。 2.无压烧结(常压烧结):能生产复杂形状和大尺寸碳化硅部件,是目前普遍认可的有优势的烧结方法。 3.反应烧结:能制备复杂形状的碳化硅部件,烧结温度低,但是产品高温性能不佳。 特点:如果允许完全渗Si,那么整个过程中可获得气孔率为零,无几何尺寸变化的材料。

决策的过程及影响因素资料讲解

决策的过程及影响因素 一、决策的过程 1、判断问题——认识和分析问题 决策是为了解决现实中提出的需要解决的问题或者为了达到需要实现的目标。决策是围绕着问题而展开的。没有问题就不需要决策;问题不明,则难以作出正确的决策。 决策的正确与否首先取决于判断的准确程度,因此,认识和分析问题是决策过程中最为重要也是最为困难的环节。当然在一个组织中总是存在许许多多的问题。例如在一个企业中,存在着企业如何在市场竞争中发展自己、开发什么样的新产品、开发新产品的资金如何筹措等问题需要解决。在一个具有两个或两个以上层次的组织中,仅仅将问题提出来是不够的,还必须在提出问题的基础上,对众多的问题进行分析,以明确各种问题的性质,弄清楚哪些是涉及组织全局的战略性问题,哪些只是涉及局部问题,哪些是非程序性的问题,哪些是程序性问题,由此确定解决问题的决策层次,避免高层决策者被众多的一般性问题所缠绕而影响对重大问题的决策。现代管理要求管理人员运用现代管理科学的“望远镜和显微镜”以及分析问题的系统化技术,揭开纷繁的现象,显示其本质和核心,以使管理决策立足于真正问题之源上。 作为一个高效率的管理者来说,必须时刻注视形势的变化,以免使自己因毫无思想准备而陷入被动状态。环境因素的许多暗示都会预示着是否面临决策的问题。管理者还应对环境的变化进行认真的分析,只有通过对各种预兆进行分析,才能透过表象看到环境变化的本质,才能找到造成问题的真正原因,对事物的发展作出超前的、正确的预计。不过,因为对形势的分析会受到决策者个人行为的影响,因此对同一现象,不同的管理者就可能得出不同的结果,自然也就作出了不同的决策。例如,日本索尼公司的盛田昭夫经常讲一个故事:两个买鞋的商人旅行,来到非洲一个落后的农村地区,其中一个商人向他的公司发电报,说“当地人都赤脚。没有销售前景”;另一个商人也向他的公司发电报,内容却是“居民赤脚,急需鞋子,立即运货”。 因此决策的第一步就要求决策者必须主动地深入实际调查研究,及时发现并提出新问题进而解决问题,以保证组织的健康发展。 2、明确决策目标 在所要解决的问题及其责任人明确以后,则要确定应当解决到什么程度,明确预期的结果是什么,也就是要明确决策目标。所谓决策目标是指在一定的环境和条件下,根据预测,对这一问题所希望得到的结果。 目标的确定十分重要,同样的问题,由于目标不同,可采用的决策方案也会大不相同。目标的确定,要经过调查和研究,掌握系统准确的统计数据和事实,然后进行一定的整理分析,根据对组织总目标及各种目标的综合平衡,结合组织的价

高炉、烧结、球团工艺流程

炼铁工艺是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例装入高炉,并由热风炉向高炉内鼓入热风助焦炭燃烧,原料、燃料随着炉内熔炼等过程的进行而下降。在炉料下降和煤气上升过程中,先后发生传热、还原、溶化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的溶剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气、炉渣两种副产品,高炉渣水淬后全部作为水泥生产原料。 高炉是用焦炭、铁矿石和熔剂炼铁的一种竖式的反应炉(如图2-3)。高炉是一个竖立的圆筒形炉子,其内部工作空间的形状称为高炉内型,即通过高炉中心线的剖面轮廓。现代高炉内型一般由圆柱体和截头圆锥体组成,由下而上分为炉缸、炉腹、炉腰、炉身和炉喉五段。由于高炉炼铁是在高温下进行的,所以它的工作空间是用耐火材料围砌而成,外面再用钢板作炉壳。 1-炉底耐火材料; 2-炉壳; 3-生产后炉内砖衬侵蚀线; 4-炉喉钢砖; 5-煤气导出管; 6-炉体夸衬; 7-带凸台镶砖冷却壁; 8-镶砖冷却壁; 9-炉底碳砖; 10-炉底水冷管;

11-光面冷却壁; 12-耐热基墩; 13-基座 l图2-3 高炉的结构 在高炉炉顶设有装料装置,通过它将冶炼用的炉料(由焦炭和矿石按一定比例组成)按批装入炉内。在高炉下部炉缸的上沿,沿圆周均匀地布置了若干个风口(100m3小高炉有 8-10个,4000m3以上的大高炉则有36-42 个)。加热到1000℃

以上的热风,经铜质水冷风口送入炉内,供焦炭燃烧形成高温煤气。在炉缸的底部设有铁口,可周期性或连续性地排放出液态生铁和炉渣。在风口和铁口之间还设有渣口以排放部分炉渣,减轻铁口负担。 l现代高炉采用优质耐火材料,例如炉底、炉缸部位用微碳孔碳砖,炉身下部和炉腰部位用铝碳砖或碳化硅砖,其它部位用优质高铝砖和高致密度的粘土砖等作炉衬。炉壳用含锰的高强度低合金钢制作,安装有性能好的含铬耐热铸铁、球墨铸铁或铜质立式冷却器,或铜质的卧式冷却器。 l4 工艺流程: 高炉冶炼过程是一个连续的生产过程,全过程是在炉料自上而下,煤气自下而上的相互接触过程中完成的。如图2-4所示。 l炉料从受料斗进入炉腔。在高炉底部的炉缸和炉腹中装满焦炭。炉腰和炉身中则是铁矿石、焦炭和石灰石,层层相间,一直装到炉喉。 l从风口鼓入的热风温度高达1000-1300℃,炉料中焦炭在风口前燃烧,迅速产生大量的热,使风口附近炉腔中心温度高达1800℃以上。 l由于底部焦炭很厚,燃烧不完全,因此,炉气中存在大量CO气体,在炉内造成了良好的还原性气氛,产生的CO气体在炉体中上升。同时,由于下部的焦炭燃烧产生空隙,上面的焦炭、矿石和熔剂在炉体内缓慢下降,速度大约为 0.5-1mm/s。炽热的CO气体在炉内上升过程中加热缓慢下降的炉料,并把铁矿石中铁氧化物还原为金属铁,铁矿石在570-1200℃之间受到CO气体和红热焦炭的还原,形成了海绵铁。海绵铁在1000-1100℃的高温下溶入大量的碳,因而铁的熔点下降,形成了生铁。生铁的熔点约为1200℃,以液体状态滴入炉缸。矿石中未被还原的物质形成熔渣,实现渣铁分离。最后调整铁液的成分和温度达到终点,定期从炉内排入炉渣和生铁。上升的高炉煤气流,由于将能量传给炉料而温度不断下降,最终形成高炉煤气从炉顶导出管排出。

碳化硅陶瓷的发展与应用

碳化硅陶瓷的发展与应用 1073112 王苗 摘要:碳化硅陶瓷以其优异的抗热震、耐高温、抗氧化和耐化学腐蚀等特性而广泛地应用于石油、化学、汽车、机械和宇航等工业领域中,并日益引起人们的重视。本文对各种SiC 陶瓷的制备方法、性能特点及其应用现状进行了综合评述。 关键词:碳化硅陶瓷发展与应用 Abstract: Silicon carbide ceramics have been widely used in petroleum, chemical, automotive,mechanical and aerospace industries because of their excellent resistance to thermal shock, high temperatures, oxidation and chemical corrosion. In this paper, the fabricating methods, mechanical properties and current applications of various SiC ceramics are revicwed. Key Words: SiC Ceramics Development and Application 1 前言 现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈高, 迫切需要开发各种新型高性能结构材料。碳化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性, 因此, 已经在许多领域大显身手, 并日益受到人们的重视。例如, SiC陶瓷在石油化学工业中已被广泛地用作各种耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、切削刀具和机械密封部件在宇航和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。 本文首先对SiC 的基本性质及SiC粉末的合成方法进行了简单介绍, 接着重点综述了SiC陶瓷的性能特点, 最后对SiC陶瓷的应用现状与未来发展进行了概括和分析。 2 碳化硅的基本特性 2.1、化学属性 抗化合性:碳化硅材料在氧气中反应温度达到1300℃时,在其碳化硅晶体表层已经生成二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗化合性。当气温达到1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应加重,从而1900K是碳化硅在氧化剂氛围下的最高工作气温。 耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗酸能力非常非常强,抗碱性稍差。 2.2、物理性能 密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是3.20 g/ m m3,其碳化硅磨料的堆砌密度在1.2--1.6 g/ m m3之间,其高矮取决于其粒度号、粒度合成和颗粒形状的大小。 硬度:碳化硅的硬度为:莫氏9.5级。单晶硅的硬度为:莫氏7级。多晶硅的硬度为:莫氏7级。都是硬度相对较高的物料。努普硬度为2670—2815公斤/毫米,在磨料中高于刚玉而仅次于金刚石、立方氮化硼和碳化硼。 导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火材料。 2.3、电学属性 恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。

消费者购买决策过程及影响因素的作用

武昌工学院 经济与管理学院实验课报告 实验项目消费者购买决策过程及影响因素的作用姓名周贝学号103009020118专业年级广告1001班 指导教师韩琳职称讲师 2013年 5 月 20 日

实验报告 课程:消费者行为学院系:语言文学院专业:广告学 姓名:周贝班级:广告1001班学号:103009020118 实验日期:2013.4.17-2013.5.16 实验课题:消费者购买决策过程及影响因素的作用 实验目的与任务:通过本课程实验课的学习,较全面系统掌握消费者行为学的基本理论知识,熟悉消费者购买决策的主要过程,认识影响消费者购买行为的个体心理因素和社会环境因素,了解工商企业积极应对消费者行为的理念、策略和提高营销水平的措施,从而为系统掌握本学科的基本理论知识而夯实基础,为初步具备从事工商管理、市场营销等工作应有的实际能力提供可靠的知识储备。 实验步骤:一、自己的一次购买经历: 一次室友过生日,想了好久不知道送什么礼物,后来路过花店,看到满目缤纷的鲜花给了我灵感。于是我决定送室友一束鲜花。学校附近只有两处鲜花售点,一处是名为浪漫一生的专营性质的花店,另一处主要卖彩票烟酒,门口搭售鲜花。值得一提的是,后者价格更加低廉。 但是经过对两家的产品、服务等的对比,我仍然在浪漫一生花坊买了花。当我分别向两家询问鲜花的种类、价格、销售方式时,彩票烟酒的那一家老板态度很不友善,鲜花虽新鲜,包装却很随意,并且所有的花就随便插在桶里摆在店门口;而浪漫一生的店主却微笑着解答了我的问题,并且告诉了我一些花语礼仪等,还针对收花的对象而做出了很多合理的购花方案,加上浪漫一生的鲜花都精心的包装摆放,价格虽然稍高,但整体就有一种被精心服务的体验感。于是我最后在浪漫一生花坊购买了一整束薰衣草精心,并经由店主精心包装之后送给了我的室友。室友也很满意。 二、购买决策中的个性心理因素的影响: 1、我需要一束新鲜,包装精美的花束,而不是粗糙的随意搭售的花 2、我要购买鲜花送人,而我对鲜花的礼仪知识理解不多,而浪漫一生的店主可以帮助我 3、我希望在环境舒适、服务优良的商店购物 4、我希望同样的商品,可以以更优惠的价格买到 5、我不喜欢态度恶劣敷衍顾客的老板 三、购买决策中的环境因素影响: 我是鲜花的购买者,按照我的消费习惯与消费观念,我不喜欢与态度恶劣品质低下的销售者打交道。而在我的潜意识里,我喜欢看上去稍微高端一点的不杂乱的销售场所。

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

碳化硅烧结

1、无压烧结 1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。 最近,有研究者在亚微米SiC粉料中加入Al2O3和Y2O3,在1850℃~2000℃温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。 2、热压烧结 50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。有研究者以Al2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B或B与C,Al2O3和C、Al2O3和Y2O3、Be、B4C 与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。 3、热等静压烧结: 近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。 4、反应烧结: SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。 综述:实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。假如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较高,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。 碳化硅陶瓷的应用

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/f710591281.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

烧结基本原理

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结; 2、颗粒间粘结颈长大; 3、孔隙通道的封闭; 4、孔隙球化; 5、孔隙收缩; 6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加 4、冷却阶段:实际的烧结过程,都是连续烧结,所以从烧结温度缓慢冷却一段时间然后快冷,到出炉量达到室温的过程,也是奥氏体分解和最终组

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的合成方法综述 碳化硅陶瓷具有机械强度高、耐高温、抗氧化性强、热稳定性能好、热导率大、耐磨损性能好、耐化学腐蚀性能好、硬度高、抗热震性能好等优良的特性。碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种。碳化硅陶瓷不仅在高新技术领域发挥着重要的作用,而且在冶金、机械、能源和建材化工等热门领域也拥有广阔的市场。随着高新技术的不断发展,对碳化硅陶瓷的要求也越来越高,需要不同层次和不同性能的各种产品。早在20 世纪50 年代,Popper[ 1] 首次提出反应烧结制备碳化硅。其基本原理是:具有反应活性的液硅或硅合金,在毛细管力的作用下渗入含碳的多孔陶瓷素坯,并与其中的碳反应生成碳化硅,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒,浸渗剂填充素坯中的剩余气孔,完成致密化的过程。 1.1 常压烧结 1.1.1 固相烧结 单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程中没有液相形成。陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。同时,固相烧结可以通过合适的颗粒级配、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结。自20世纪7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂,在2050℃成功地固相烧结出致密度高于98 的SiC陶瓷以来,固相烧结就一直很受关注。虽然SiC-B-C体系固相烧结SiC需要较高的烧结温度,烧结晶粒粗大,均匀性差,而且SiC陶瓷具有较低的断裂韧性、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好、热导能力强l7剖。因此,固相烧结在SiC陶瓷烧结中具有潜在的应用价值。目前,采用SiC-B-C烧结体系来进行固相烧结SiC陶瓷的厂家主要有美国的GE公司。 1.1.2 液相烧结 由于陶瓷粉体中总有少量的杂质,大多数材料在烧结过程中都会或多或少地出现液相。另外,即使在没有杂质的纯固相系统中,高温下还会出现“接触”熔融现象,因而纯粹的固相烧结实际上不易实现,大多数的烧结实属液相烧结。液相烧结是以一定数量的多元低共熔点氧化物为烧结助剂,在高温下烧结助剂形成共溶液相的烧结过程,烧结晶粒细小均匀呈等轴晶状。其烧结体系的传质方式为流动传质,可降低致密化所需要的能量,容易实现低温下的烧结致密化,缩短烧结时问。同时,低共溶液相的引入和独特的界面结合弱化,使材料的断裂模式为沿晶断裂模式,材料的断裂韧性和强度显著提高。Nakano等利用BeO 的高热导能力以及SiC与BeO在烧结过程中形成液相的特点,最终制备出热导率高达270W /(m ·K)的SiC陶瓷。Takada等在2200℃烧结平均粉末粒径为0.5Fro的SiC陶瓷的过程中,加入烧结助剂2 BeO、0.2 ~O.4 BC和0.2 ~O.3 C(质量分数),无压烧结0.5h,获得材料的电阻率和热导率分别为5×l0^12Q ·cm和140w/(m ·K)。在烧结过程中,均匀分布在SiC表面的B原子和C原子与Si原子反应,生成GB-C、Si-B-C、Si- Si 和Si—DSi键,促进Si原子的扩散,提高SiC陶瓷的致密度。 1.2 热压烧结 热压烧结是指在SiC加热烧结的同时,施加一定的轴向压力而进行的烧结。热压烧结可增大SiC粒子间接触面积,降低烧结温度,缩短烧结时间,增加烧结体的致密化,促进SiC烧结。为了使SiC粒子更容易烧结,热压烧结通常需要在SiC粉体中加入B、C、Al、B4C、Y2O3、A12O3。等烧结助剂来促进烧结。B、Al或BC固溶于SiC中,降低SiC 的界面能,C主要与SiC粒子表面的SiO。反应形成低温液相,促进B、A1的扩散。Liu 等以Y2O3和A12O3。为烧结助剂,在2000℃、30MPa的烧结条件下进行烧结,烧结出

反应烧结碳化硅陶瓷资料

碳化硅制品的全面概述 碳化硅制品是何物?如何使用碳化硅制品,我们首先要明确碳化硅的定义,然后知道碳化硅制品的组成部分,用哪些工艺?下面做些简单介绍 碳化硅是一种无机非金属材料,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,用于各种要求耐磨、耐蚀和耐高温的机械零部件中。由于材料工作者的不断努力,其性能有了很大的改进,已成为一种重要的工程材料,在机械、冶金、化工、电子等部门得到广泛的应用。 采用常压烧结方法生产碳化硅陶瓷制品,其特点是用较高的烧结温度烧结碳化硅的毛坯,使之达到较高的密度,碳化硅的含量达到98%以上。所得到的碳化硅陶瓷烧结体耐腐蚀性、抗氧化性能及高温强度均较高。在1600oC时强度不降低。因而其制品特别适合于耐磨、耐腐蚀和耐高温的场合使用,如密封环、磨介、喷砂嘴、防弹板等。 特种陶瓷主要运用到那些方面? 特种陶瓷包括各种材料制作的陶瓷制品,例如碳化硅材料生产的碳化硅制品,碳化硅密封环,氧化铝材料生产的99瓷,氧化锆材料生产的电解质等等。所以说,是应用相当广泛的,今天我讲解下应用到高端产品的特种陶瓷。 1 氧化锆材料生产的特种陶瓷 氧化锆陶瓷因其拥有较高的离子电导率,良好的化学稳定性和结构稳定性,成为研究最多、应用最为广泛的一类电解质材料。通过对氧化锆基电解质薄膜制备工艺的改进,降低此类材料的操作温度和制备成本,力争可以实现产业化也是未来研究的重要方向。 2 碳化硅材料生产的特种陶瓷 碳化硅材料是硬度高,成本低的材料,可以生产碳化硅制品,例如碳化硅密封件、碳化硅轴套、碳化硅防弹板、碳化硅异形件等,可以应用到机械密封件上和各种泵上。 在以后的发展中,特种陶瓷会应用得更加广泛,因为新型材料的不断出现,制作的特种陶瓷的功能越来越受到人们的欢迎! 当今市场上存在哪些碳化硅制品 在碳化硅制品行业中,仅仅因为其市场较大,所以涌现了很多的碳化硅制品种类,例如碳化硅密封环、碳化硅轴套、碳化硅轴、碳化硅防弹板等。 1 碳化硅密封环 碳化硅密封环主要运用到机械密封件上,动静环配套使用,外加上固定的配件就组成了机械密封件。它是密封件的核心部位,起到关键作用。 2 碳化硅轴套和轴 碳化硅轴套和轴可以用到磁力泵、高压釜上,它们相互配套使用,轴起到支撑作用,轴套密封在轴上,共同保证磁力泵等在高温下正常密封。 3 碳化硅防弹板 碳化硅防弹板是新型的产物,在国外已经很是流行。碳化硅防弹板硬度高、比重小、弹道性能好,广泛用于各种防弹车、装甲车,舰艇等防护防弹中 随着碳化硅制品的市场越来越大,客户的要求也越来越高,所以,出现的碳化硅制品种类越来越多。

决策的过程及影响因素

决策得过程及影响因素 一、决策得过程 1、判断问题——认识与分析问题 决策就是为了解决现实中提出得需要解决得问题或者为了达到需要实现得目标。决策就是围绕着问题而展开得。没有问题就不需要决策;问题不明,则难以作出正确得决策。 决策得正确与否首先取决于判断得准确程度,因此,认识与分析问题就是决策过程中最为重要也就是最为困难得环节。当然在一个组织中总就是存在许许多多得问题。例如在一个企业中,存在着企业如何在市场竞争中发展自己、开发什么样得新产品、开发新产品得资金如何筹措等问题需要解决、在一个具有两个或两个以上层次得组织中,仅仅将问题提出来就是不够得,还必须在提出问题得基础上,对众多得问题进行分析,以明确各种问题得性质,弄清楚哪些就是涉及组织全局得战略性问题,哪些只就是涉及局部问题,哪些就是非程序性得问题,哪些就是程序性问题,由此确定解决问题得决策层次,避免高层决策者被众多得一般性问题所缠绕而影响对重大问题得决策。现代管理要求管理人员运用现代管理科学得“望远镜与显微镜"以及分析问题得系统化技术,揭开纷繁得现象,显示其本质与核心,以使管理决策立足于真正问题之源上。 作为一个高效率得管理者来说,必须时刻注视形势得变化,以免使自己因毫无思想准备而陷入被动状态。环境因素得许多暗示都会预示着就是否面临决策得问题、管理者还应对环境得变化进行认真得分析,只有通过对各种预兆进行分析,才能透过表象瞧到环境变化得本质,才能找到造成问题得真正原因,对事物得发展作出超前得、正确得预计。不过,因为对形势得分析会受到决策者个人行为得影响,因此对同一现象,不同得管理者就可能得出不同得结果,自然也就作出了不同得决策。例如,日本索尼公司得盛田昭夫经常讲一个故事:两个买鞋得商人旅行,来到非洲一个落后得农村地区,其中一个商人向她得公司发电报,说“当地人都赤脚。没有销售前景";另一个商人也向她得公司发电报,内容却就是“居民赤脚,急需鞋子,立即运货”。 因此决策得第一步就要求决策者必须主动地深入实际调查研究,及时发现并提出新问题进而解决问题,以保证组织得健康发展。 2、明确决策目标 在所要解决得问题及其责任人明确以后,则要确定应当解决到什么程度,明确预期得结果就是什么,也就就是要明确决策目标、所谓决策目标就是指在一定得环境与条件下,根据预测,对这一问题所希望得到得结果。 目标得确定十分重要,同样得问题,由于目标不同,可采用得决策方案也会大不相同。目标得确定,要经过调查与研究,掌握系统准确得统计数据与事实,然后进行一定得整理分析,根据对组织总目标及各种目标得综合平衡,结合组织得价值准则与决策者愿意为此付出得努力程度进行确定。 3、拟订可供选择得行动方案 决策实际上就是对解决问题得种种行动方案进行选择得过程、为解决问题,必须寻找切实可行得各种行动方案、各种行动方案都有其优点与缺陷,决策要求以“满意原则”来确定方案。 在制定备选方案既注意科学性,又要注意有创造性。无论哪一种备选方案,都必须建立在科学得基础上。方案中能够进行数量化与定量分析得,一定要将指标数量

碳化硅陶瓷工艺流程

碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的β-SiC粉末。 3、热分解法: 使聚碳硅烷或三氯甲基硅等有机硅聚合物在1200~1500℃的温度范围内发生分解反应,由此制得亚微米级的β-SiC粉末。

相关文档
最新文档