水稻耐盐指标的测定方法

水稻耐盐指标的测定方法
水稻耐盐指标的测定方法

一、相对电导率的测定

1.4转基因植株相对电导率测定(南京农业大学王景艳)

将新鲜的对照及转化植株烟草叶片用300mmol/LNaCI胁迫处理4h,分别称取.02g各两份,各加5ml超纯水,用DDs一12数字电导仪测定电导率(所用的电极参数为.095)(RC),之后再放入沸水中煮沸15min以杀死植物组织,取出放在自来水中冷却10min,测定其煮沸电导率扭(Rc’),相对电导率为Rc/R c’xloo%(汤章成,1999).

2.8相对电导率的测定方法(湖南农业大学张亚州)

取相同部位的转基因植株叶片和非转基因植株叶片,用去离子水冲洗,再用洁净滤纸吸干表面水分"用剪刀剪成大小基本一致的叶片,各40片,分装在两个大试管中,每管20片,然后在装有叶片的试管中各加入20mL的去离子水,放入真空干燥箱中用真空泵抽气lh以抽出细胞间隙的空气或放在摇床上摇动3h使叶片沉入水底,然后将上述试管置室温放lh,期间不断摇动。lh后用电导仪测其初电导值(S1).测毕将各试管放入沸水浴中,以杀死植物组织.取出试管后用自来水冷却至室温,摇匀,测其终电导值(52).计算公式:相对电导率L=S,/52.

二、脯氨酸含量的测定

1、(华中农业大学万丙良)

游离脯氨酸含量的测定采用磺基水杨酸提取法。分别取0.5g新鲜叶片,加少量(2-3ml)3%磺基水杨酸研磨,磺基水杨酸最终体积为5ml.转入离心管中,沸水浴中提取10min。冷却后以3000rpm离心10min,取上清液待测。取2ml上清液,加2ml冰乙酸,2ml茚三酮,混匀后沸水显色60min,取出冷却后用4ml甲苯萃取,静置片刻,取甲苯相(粉红色)于离心管。3000rpm离心5min,然后在520nm波长处测定OD值.以甲苯为空白对照,在1-6μg/ml范围内作标准曲线。

2、华中农业大学彭英

胁迫处理后第4d取苗5株,-80℃保存以备测定叶片脯氨酸含量。脯氨酸含量测定按照Bates(1973)的方法稍作改动。称取约0.3g~0.5g的水稻叶片加入5ml3%磺基水杨酸溶液,冰浴研磨至匀浆,13000r/min4℃离心15min;吸取2ml上清液加入2ml冰乙酸和2ml2.5%酸性茚三酮(l..25g茚三酮溶于30ml冰乙酸和20ml6mol/L磷酸)显色液,沸水浴加热lh;置于冰上30min 终止反应;加入4ml甲苯后剧烈振荡数秒后,待分层后吸取红色萃取液,测定520nm处吸收值。以纯L一脯氨酸(AJINOMoTO)制作0-10μg/mL的标准曲线。

盐胁迫下水稻种子发芽特性及耐盐性评价

盐胁迫下水稻种子发芽特性及耐盐性评价 摘要在0g/L、6g/L、9g/L、12g/L、15g/L等5个NaCl单盐浓度下,对北方滨海稻区11个推广水稻品种进行了发芽率处理试验,结果表明:发芽率、芽长、根长、根数均随盐浓度升高而呈下降趋势。垦稻95-4芽期耐盐能力最高,为强耐盐品种,辽农21芽期耐盐能力最低。 关键词盐;水稻;发芽;耐盐性 盐碱土壤是制约农业生产的重要因素,目前我国盐碱土地面积约0.37亿公顷,面积相当于现有耕地的1/4。水稻属于不耐盐的甜土作物,而北方滨海盐碱地区土壤含盐量高,近几年由于淡水资源的严重短缺,极大地限制了水稻生产。培育耐盐品种,加快该区水稻发展,是当前盐碱地种稻面临的主要问题之一。如何从现有的优良水稻种质资源中筛选出耐盐强的品种,为耐盐育种提供亲本材料或直接应用于生产,对盐碱地的开发利用是最经济而行之有效的手段。该试验用不同浓度的NaCl单盐溶液处理不同粳稻品种,对供试品种的发芽特性进行了综合评价,为耐盐种质筛选及水稻生产提供了理论依据。 1试验材料与方法 1.1试验材料 目前供试品种为北方盐碱稻区推广的11个水稻品种,分别为津原45、津原47(天津市原种场),辽农21、辽粳28(辽宁省农科院水稻所),盐丰47-8、辽盐98、盐粳68(辽宁省盐碱地所),冀粳14、垦育16、垦优2000、垦稻95-4(河北省农科院滨海所)。 1.2试验方法 采用NaCl单盐溶液进行种子处理,NaCl浓度分别为0g/L(CK)、6g/L、9g/L、12g/L、15g/L 5个处理。将种子置于50℃恒温箱中高温处理48h,随机挑选饱满种子50粒,均匀置于铺有2层滤纸的直径9cm培养皿中,分别加入不同浓度的NaCl溶液10mL,2次重复,放入30℃恒温箱中发芽,至第10天记录种子发芽数。

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

作物耐盐性研究

作物耐盐性状研究进展 ?l耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗 透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增 高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作 用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。 作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土, 把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多 的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧 清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表 示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2耐盐性的鉴定技术和指标

耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌 发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的 对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目 前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓 度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程 中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以 克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的 盐分稀释,保持低水平。 拒盐植物的抗盐机理

50个小麦品种的苗期耐盐性比较4页

50个小麦品种的苗期耐盐性比较 Salt-Tolerance Comparison of Fifty Wheat Varieties at Seedling Stage Ruan Jian1,2,Li Nana3,Cui Haiyan4,Zhang Bin2,Gong Yongchao3,Ding Hanfeng3,Peng Zhenying1,2 (1. College of Life Sciences, Shandong University, Jinan 250100, China; 2. Biotechnology Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; 3. Shandong Centre of Crop Germplasm Resources, Jinan 250100,China; 4. Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China) Abstract The seeds of 50 wheat varieties with different salt-tolerance were taken as experimental materials. They were used for water culture with 1.3% NaCl to investigate their salt-tolerance during germination and seedling stages. The germination rate, plant height and root length on the 8th day were measured and analyzed to evaluate the salt-tolerance differences of the 50 wheat cultivars.The results showed that five first-grade salt-tolerant

水稻耐盐

中科院专家成功克隆水稻耐盐相关数 量性状基因 SKC1定位克隆图 中国科学院上海生科院植物生理生态所植物分子遗传国家重点实验室林鸿宣研究员及其博士生任仲海、高继平等,与美国加州大学伯克利分校栾升教授及其助手李乐攻博士进行合作,在水稻重要农艺性状功能基因研究上取得突破性进展,成功克隆了与水稻耐盐相关的数量性状基因SKC1,并阐明了该基因的生物学功能和作用机理。相关论文已发表于国际顶级遗传学杂志《自然-遗传学》(Nature Genetics)。 林鸿宣研究员领导的研究组,多年来潜心于水稻耐盐数量性状基因的克隆研究,并取得了突破,成功克隆了盐胁迫下控制水稻地上部钾/钠离子含量的数量性状基因SKC1。该基因编码离子转运蛋白,耐盐品种与感盐品种之间存在四个氨基酸替换的自然变异,这是引起SKC1基因功能变化的分子基础。功能分析结果表明,该基因与离子长距离运输有关,控制盐胁迫下水稻地上部的钾/钠离子平衡,即维持高钾/低钠的离子平衡,从而增加水稻的耐盐性。为了更深入探明该基因的功能,林鸿宣研究员与栾升教授领导的两个研究组合作开展了SKC1的电生理功能分析研究,发现SKC1编码的蛋白是钠离子的特异性转运蛋白而不直接运输钾离子,钾离子含量的变化是由于钠离子竞争引起的;该蛋白定位于细胞膜上,在耐盐水稻品种中其功能活性明显强于感盐品种。 该研究得到国家科技部“十五”重大专项、国家自然科学基金委、上海市科学技术委员会和沪港安信分子生物科

学研究基金等的资助。“水稻高产等重要农艺性状相关功能基因研究”重大专项主要负责人之一、中国科学院国家基因研究中心主任韩斌研究员指出,由于我国近几年来对水稻功能基因组研究的大力支持,以及科学家们的不懈努力,我国在该领域取得了世界瞩目的成果。林鸿宣研究员及其合作者对水稻耐盐相关数量性状基因的克隆和功能研究是我国水稻重要功能基因研究所取得的突出成果之一,具有重要的学术意义和广泛的应用前景。

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

作物耐盐性状研究综述

作物耐盐性状研究进展 I耐盐性含义和耐盐机制种类 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。有活性氧清除系统的植物通过SOD超氧化物歧化酶)、POD 过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~ 0.5%时就已对植物生长不利,而盐土表层 含盐量往往可达0.6%?10% 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCI浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 2耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的

泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的盐分稀释,保持低水平。 拒盐植物的抗盐机理 拒盐:不让外界盐分进入植物体(大麦)或允许土壤中的盐分进入 根部,但进入根部后大部分储存在根部,不再向地上部分运输,使地上部分盐分浓度保持较低水平,从而避免盐分的伤害作用。如芦苇 脯氨酸是最重要和有效的有机渗透调节物质。 几乎所有的逆境,如干旱、低温、高温、冰冻、盐渍、低pH 营养不良、病害、大气污染等都会造成植物体内脯氨酸的累积,尤其干旱胁迫时脯氨酸累积最多,可比处理开始时含量高几十倍甚至几百倍。 脯氨酸在抗逆中有两个作用: 是作为渗透调节物质,用来保持原生质与环境的渗透平衡。它可与胞内一些化合物形成聚合物,类似亲水胶体,以防止水分散失。 二是保持膜结构的完整性。脯氨酸与蛋白质相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的水合作用。

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

盐胁迫影响耐盐柳新品系生理指标试验

盐胁迫影响耐盐柳新品系生理指标试验 土壤盐渍化是一个世界性的重大资源问题和生态问题。我国盐渍化土壤面积达2千万hm2,约占总耕地面积的10%[1],其中滨海盐碱地总面积为500万hm2。滨海盐碱地立地条件差,植被景观单调,生物多样性低,树种资源匮乏[2],植物的耐盐机理和耐盐能力研究,可筛选和培育耐盐植物,为滨海盐碱地区造林绿化、沿海防护林工程、生态修复及开发奠定材料和技术基础。 柳树,杨柳科柳属,乔木,生长优势明显,具有适应性强、易繁殖、造林成活率高、生长迅速、抗风,耐盐能力好等特点,是我国沿海滩涂主要的造林树种之一。无论在营造工业用材林,还是在防风固沙,水土保持,盐碱地改造等方面都有广阔的应用前景。本研究项目所用的3种柳树是项目组2009年在如东东凌滩涂0.4%及0.4%以上土壤上通过实生选育出的耐盐柳树新品系。参照赵可夫[3]的划分方法,结合植物的生长发育状况,将植物的耐盐程度分为4级:能够在土壤含盐量超过0.6%范围内正常生长的植物为特耐盐植物;在含盐量为0.6%~0.4%范围内正常生长的植物为强耐盐植物;在含盐量为0.4%~0.2%范围内正常生长的植物为中度耐盐植物;在含盐量为0.2%~0.1%范围内正常生长的植物为轻度耐盐植物。可见这3种柳树为强耐盐植物。本试验通过对3种耐盐柳树不同浓度盐胁迫下生理指标的测定,并逐一进行比较和评价,为建立柳树耐盐鉴定体系建立提供了实验依据和指导。 1 材料与方法 1.1 试验设计与处理 供试的树种为项目组选育的L0903,L0906,L0911耐盐柳树新品系,均为一年生扦插苗,本试验在江苏沿江地区农科所避雨大棚内进行。2011年5月将各品系进行盆栽,盆口径25cm,所用的基质按园土:基质:草炭按照1:2:1(体积比)混合,用多菌灵进行消毒处理。 2011年8月,选择长势相对一致的种苗进行试验。试验采用完全随机组设计,共设3个盐分梯度(NaCl):0,0.2%,0.4%。在每一个梯度下种植10株苗木,3次重复。施盐方式采取分次浇灌的施盐方式,每5天浇一次,每次每盆浇800ml。盐胁迫期间,注意防治病虫害。花盆下垫塑料盘,目的是后期浇水时将流出的溶液及时倒回花盆内,以防止盐分流失。盐胁迫处理历时35天。 1.2 测定指标与方法 过氧化物酶:采用愈创木酚氧化法测定[3]。 超氧化物歧化酶:采用氧化硝基四氮唑蓝法测定[3]。 丙二醛含量:采用硫代巴比妥酸法测定[3]。 可溶性蛋白:采用考马斯亮蓝法测定[4]。 脯氨酸含量:采用磺基水杨酸比色法[4]。 1.3 数据分析 用Excel2003整理实验数据、绘制图表,统计分析数据。 2 结果与分析 2.1 盐胁迫对过氧化物酶活性的影响

水稻耐盐指标的测定方法

一、相对电导率的测定 1.4转基因植株相对电导率测定(南京农业大学王景艳) 将新鲜的对照及转化植株烟草叶片用300mmol/LNaCI胁迫处理4h,分别称取.02g各两份,各加5ml超纯水,用DDs一12数字电导仪测定电导率(所用的电极参数为.095)(RC),之后再放入沸水中煮沸15min以杀死植物组织,取出放在自来水中冷却10min,测定其煮沸电导率扭(Rc’),相对电导率为Rc/R c’xloo%(汤章成,1999). 2.8相对电导率的测定方法(湖南农业大学张亚州) 取相同部位的转基因植株叶片和非转基因植株叶片,用去离子水冲洗,再用洁净滤纸吸干表面水分"用剪刀剪成大小基本一致的叶片,各40片,分装在两个大试管中,每管20片,然后在装有叶片的试管中各加入20mL的去离子水,放入真空干燥箱中用真空泵抽气lh以抽出细胞间隙的空气或放在摇床上摇动3h使叶片沉入水底,然后将上述试管置室温放lh,期间不断摇动。lh后用电导仪测其初电导值(S1).测毕将各试管放入沸水浴中,以杀死植物组织.取出试管后用自来水冷却至室温,摇匀,测其终电导值(52).计算公式:相对电导率L=S,/52. 二、脯氨酸含量的测定 1、(华中农业大学万丙良) 游离脯氨酸含量的测定采用磺基水杨酸提取法。分别取0.5g新鲜叶片,加少量(2-3ml)3%磺基水杨酸研磨,磺基水杨酸最终体积为5ml.转入离心管中,沸水浴中提取10min。冷却后以3000rpm离心10min,取上清液待测。取2ml上清液,加2ml冰乙酸,2ml茚三酮,混匀后沸水显色60min,取出冷却后用4ml甲苯萃取,静置片刻,取甲苯相(粉红色)于离心管。3000rpm离心5min,然后在520nm波长处测定OD值.以甲苯为空白对照,在1-6μg/ml范围内作标准曲线。 2、华中农业大学彭英 胁迫处理后第4d取苗5株,-80℃保存以备测定叶片脯氨酸含量。脯氨酸含量测定按照Bates(1973)的方法稍作改动。称取约0.3g~0.5g的水稻叶片加入5ml3%磺基水杨酸溶液,冰浴研磨至匀浆,13000r/min4℃离心15min;吸取2ml上清液加入2ml冰乙酸和2ml2.5%酸性茚三酮(l..25g茚三酮溶于30ml冰乙酸和20ml6mol/L磷酸)显色液,沸水浴加热lh;置于冰上30min 终止反应;加入4ml甲苯后剧烈振荡数秒后,待分层后吸取红色萃取液,测定520nm处吸收值。以纯L一脯氨酸(AJINOMoTO)制作0-10μg/mL的标准曲线。

盐碱土现状及植物耐盐性研究的意义

1 盐碱土现状及植物耐盐性研究的意义 盐碱土是民间对盐土和碱土的统称。土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。这种方法治标却不能治本。通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。 由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物

植物耐盐碱性生理生化指标的研究进展

植物耐盐碱性生理生化机制的研究进展 盐碱土又称盐渍,包括盐土、盐化土以及碱土、碱化土。盐碱土是陆地上广泛分布的一种土壤类型,约占陆地总面积的25%。我国从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤,总面积约3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1] 赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社, 2001: 32-43.。由于大部分植物在土壤含盐量为0.3%时便受到危害,大于0.5%时即不能生长[1] 张福锁·植物营养生态生理学和遗传学[M]·北京:中国科技出版社,1993.,所以,盐渍土壤使农业生产蒙受了巨大损失,已成为限制农业发展的一个重要因素[2,3] 周荣仁·植物组织培养在选择耐盐植物方面的研究[J]·曲阜师范学院学报(抗盐生理专刊),1984·63-68. 赵可夫·盐分过多对植物的伤害作用和伤害机理[J]·曲阜师范学院学报(抗盐生理专刊),1984·5-22.。要选育耐盐性果树品种,应该对植物的耐盐机理,特别是生理生化机制有所了解,以便使用有效的指标筛选耐盐品种。因此,了解植物的耐盐机理,研究盐胁迫下植物的生理生化机制,对探讨盐胁迫作用机理及提高植物抗盐性具有重要的意义。 植物耐盐性 1.植物耐盐性的含义 植物耐盐性是指植物在盐胁迫下维持生长、形成经济产量或完成生活史的能力,这种能力存在着明显的种间及种内差异。植物在盐渍环境中生长无法阻止盐分进入或排除盐分,只能通过不同生理途径适应或部分适应盐分而使之不受伤害,维持正常的生理活动。植物在盐胁迫下主要表现为生长减慢,代谢受抑制,植物的干重显著降低,叶子转黄,严重时出现盐斑,叶子萎蔫,植株死亡。 2.植物耐盐性的分类 植物耐盐性差别很大,一般根据耐盐能力的不同,可分成非盐生和盐生植物两类。赵可夫等[1]又将盐生植物分为真盐生植物、泌盐盐生植物和假盐生植物三类。目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对其耐盐机理研究得比较多。近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究,并取得了一些成果。如植物要适应盐渍化的环境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3-4]。马建华等[5]认为,植物在高盐土壤中主要先受到水分胁迫,而后是离子胁迫。 2.盐害主要成分 盐碱土中的盐分主要为Na+、Ca2+、Mg2+3种阳离子和CO2-3、HCO-3、Cl-和SO2-44种阴离子组成的12种盐,个别地方还分布着少量的硝酸盐盐土[6]。碱性盐(如Na2CO3、NaHCO3)水解后对植物根有腐蚀作用。盐土表层含盐量达0.2% -0.5%时就可对植物产生不利影响,另据陈瑞珊[7]分析认为,NaCl因溶解度大,造成土壤溶液渗透压升高,当渗透压升高到大于植物体内的渗透压时,体内水分即向外渗出,植物就会失水死亡。 土壤中含量较高的主要为Na+和Cl-,因此耐盐性的研究主要在抗Na+和Cl-方面。不同盐类对同一作物的毒害随盐浓度的不同而改变。在低浓度时,NaCl对高粱的毒性比Na2SO4高,而高浓度时则相反,这在小麦上亦有相似结论[8]。各种盐类对不同植物的毒害程度也有差异。石德成等[9-10]分别报道了NaCl和Na2CO3对星星草的胁迫试验,结果表明,Na2CO3对星星草的伤害大于NaCl 3、植物耐盐性的生理指标 盐逆境是植物生长的主要限制因子之一。植物的耐盐机理十分复杂,不同植物或同一植物不同品种对盐逆境的反应也存在着差异[26],研究植物耐盐机理、利用耐盐生理指标筛选耐盐品种是植物耐盐育种中十分重要的工作[27]。但对于不同植物评价其耐盐性的生理指标不尽相

水稻耐盐机理研究的重要进展

水稻耐盐机理研究的重要进展 水稻耐盐机理研究的重要进展 ——耐盐数量性状基因SKC1的研究 高继平,林鸿宣* (中科院上海生命科学研究院植物生理生态研究所,上海20003 2) 收稿日期:2005-10-20 基金项目:国家科技部(2002AA2Z1003);国家自然科学基金(30170571);上海市科学技术委员会(03DJ14016);沪港安信 分子生物科学研究基金。 作者简介:高继平(1968—),男,博士研究生,助理研究员;林鸿宣(1960—),男,博士,研究员,*通讯作者。 文章编号:1004-0374(2005)06-0563-03 土壤的盐渍化是限制农作物生长,造成作物减 产最严重的非生物胁迫之一。据统计,世界上的盐 碱地面积超过十亿公顷,其中,我国的盐碱土地面 积达到了一亿公顷。而在我国的现有耕地中,至少 有八百万公顷的土地由于不当的灌溉和施肥,导致 土壤中盐分积累,不同程度地影响了作物的产量。

通过遗传改良提高作物的抗逆性是解决这一农业问题的最有效途径之一。因此,需要从基因的角度认识自然界中作物耐盐的机制,这将有助于通过分子育种方法提高农作物抵御盐胁迫的能力,对未来农业的发展有着重要的意义。 水稻是全世界最重要的农作物之一,也是我国 最重要的粮食作物。水稻功能基因组的研究是国际上十分关注的领域,竞争非常激烈。我国近几年来加大这方面的支持力度,经科学家们的不懈努力,我国在水稻功能基因组研究上取得了世界瞩目的成果[1~2]。最近,我国在水稻重要功能基因研究中又取得了突破性进展,我们与美国加州大学伯克利分校栾升教授合作,成功克隆了与水稻耐盐相关的数量性状基因SKC1,并阐明了该基因的生物学功能和作用机理[3]。这对认识作物的耐盐机理以及育种改良均具有重要意义。 1耐盐相关的数量性状基因座(QTL) 作物的抗逆性和许多重要的农艺性状,如产 量、生育期等一样,由多个基因共同控制,性状 的表型表现为连续的分布,表型与基因型之间没有明确的对应关系,这样的性状称为数量性状。控制数量性状的基因在基因组中的位置称为数量性状基

植物耐盐性比较

实验报告 植物耐盐性比较 摘要:通过不同浓度的盐溶液(0、100、200、300、450mmol/L)对小麦种子以及植株进行盐胁迫处理,研究盐胁迫对小麦种子萌发的影响。结果表明,随着盐浓度的增加,小麦幼苗受害程度增加,生长受到了明显抑制,叶片内丙二醛含量也随浓度增加而呈递增趋势。 关键词:盐胁迫,小麦,丙二醛 1 引言: 土壤中可溶性盐过多对植物的不利影响叫盐害(salt injury)。海滨地区因土壤蒸发或者咸水灌溉,海水倒灌等因素,可使土壤表层的盐分升高到1%以上。盐分过多使土壤水势下降,严重地阻碍植物生长发育,这已成为盐碱地区限制作物收成的制约因素。盐胁迫对植物造成的伤害主要有吸水困难、生物膜破坏、生理紊乱(氨害、叶绿素被破坏、光合减弱、气孔关闭、呼吸速率下降、丙二醛含量升高、营养缺乏等)。 我国盐碱土主要分布于北方和沿海地区,约2千万公顷,另外还有7百万公顷的盐化土壤。一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。如果能提高作物抗盐力,并改良盐碱土,那么这将对农业生产的发展产生极大的推动力。台州为滨海城市,滩涂总面积66654公顷,调查盐碱地对植物生长的影响,开发利用广大的中重度盐碱地,既可以阻止土壤盐渍化的进一步加剧,又能扩大农田的种植面积,解决人口增多与耕地减少的矛盾。为此我们在实验室条件下设计简单实验,研究植物耐盐性。

2 材料与方法 2.1 材料 选取饱满的小麦种子,消毒后播种。于一定时间后得幼苗用以实验。 2.2 方法 2.2.1 不同浓度NaCl对小麦幼苗生长的影响 取5个一次性杯子做上标记,分别加入0,100,200,300,450 mmol/L 的NaCl溶液,用保鲜膜扎口,并扎上数孔,选取长势一致的小麦幼苗,每杯种植5棵小麦幼苗,置于相同的环境下生长。 2.2.2 幼苗长势的观察 一周后观察各浓度处理下幼苗的长势并测量株高。 2.2.3 MDA含量测定 称取各处理小麦叶片0.5g,加10%三氯乙酸3mL和少量石英砂,研磨,进一步加2 mL10%三氯乙酸充分研磨。转入离心管,于4000转/分离心10 min,上清液转到试管中。 取2 mL 提取液,加2 mL0.6%TBA,加盖,沸水浴中煮沸15 min,迅速冷却后于532、450及600 nm波长下测定吸光值。 MDA的浓度按照如下公式计算:MDA(μmol/L)=6.45(OD532-OD600)-0.56 OD450;可溶性糖的浓度(mmol/L)=11.71 OD450。最后计算每克鲜重样品中MDA含量= MDA(μmol/L)/0.2(g)×0.004(L),每克鲜重样品中可溶性糖的含量=11.71 OD450/0.2(g)×0.004(L)。 2.2.4 计算与处理 Excel软件统计数据并分析。

6种木本植物耐盐性研究【开题报告】

毕业论文开题报告 生物技术 6种木本植物耐盐性研究 一、选题的背景与意义 植物对土壤盐度的反应因树种而异,即使同一种内,也存在着明显差异。植物的耐盐性是指在盐胁迫下维持生长、形成经济产量或完成生活史的能力。植物耐盐能力评价是耐盐植物引种、育种和筛选的基础,是植物形态适应和生理适应的综合体现。 土壤盐渍化是一个世界性的资源与生态问题,据联合国粮农组织和教科文组织统计,全球有各种盐渍化土地约10亿hm2,占全球陆地面积的10%,广泛分布于100多个国家和地区。我国各种类型的盐渍土总面积为14.87亿亩。其中,现代盐渍化土壤约5.54亿亩;残余盐渍化土壤约6.73亿亩;潜在盐渍化土壤约为2.6亿亩。我国沿海各省、市、自治区约18,000km的滨海地带和岛屿沿岸,广泛分布着各种滨海盐土,总面积可达5×106hm2,主要包括长江以北的山东、河北、辽宁等省和江苏北部的海滨冲积平原及长江以南的浙江、福建、广东等省沿海一带的部分地区。随着国民经济和社会的迅速发展,人口增长与耕地减少的矛盾日益突出,各类盐土资源,特别是我国海岸带盐土作为一种重要的土地后备资源,亟待我们去开发、利用和保护。 国内外研究已经证明,利用生物措施对盐碱地进行改良是缓解土壤盐渍化问题。最切实可行的办法。培育和引种能适应高盐环境的优良耐盐碱植物对改善我国广大滨海及内陆盐碱地生态系统,丰富盐碱地景观,增加树种多样性,提高土地生产力,增加经济收益无疑具有现实而深远的意义。引进国外优良耐盐碱树种及配套栽培技术,不失为一条迅速提升我国沿海防护林建设和盐碱地治理水平的有效途径,一方面可以提高沿海防护林的生态稳定性、防护功能和综合效应,另一方面还能改善沿海发达地区的生态环境和投资环境,为我国东部沿海发达地区率先实现农业和林业现代化提供重要保障。 二、研究的基本内容与拟解决的主要问题: (1)研究的基本内容: 1、盐胁迫下6个树种的生长情况: 测定6种植物在盐胁迫处理后的存活率、株高及形态变化情况 2、盐胁迫下6个树种的生理变化: 测定6种植物在盐胁迫处理后脯氨酸,叶绿素,可溶性糖,丙二醛含量以及电导率等相关生理生化指标的变化情况。

相关文档
最新文档