钝顶螺旋藻多糖Sevage法脱蛋白工艺的研究

钝顶螺旋藻多糖Sevage法脱蛋白工艺的研究
钝顶螺旋藻多糖Sevage法脱蛋白工艺的研究

近十年螺旋藻的应用研究进展

近十年螺旋藻的应用研究进展 邓嘉荣 摘要:螺旋藻是一种纯天然、高蛋白、营养丰富、富含多种生理活性物质的功能性藻类食品,具有很高的医疗保健价值,对许多疾病有抵抗作用.目前螺旋藻在大量研究的基础上形成了以工厂化养殖和深加工为主体的螺旋藻产业,应用前景极其广阔.本文将近十年内对螺旋藻的应用研究进展、分析研究状况等进行介绍,为螺旋藻的研究与开发应用提供资料。 关键词:螺旋藻研究进展开发应用 一、螺旋藻的介绍及发展史 螺旋藻是一类低等生物,原核生物,由单细胞或多细胞组成的丝状体,体长200-500μm,宽5-10μm,圆柱形,呈疏松或紧密的有规则的螺旋旋形弯曲,形如钟表发条,故而得名。具有减轻癌症放疗、化疗的毒副反应,提高免疫功能,降低血脂等功效。[1] 据有关资料介绍,螺旋藻原产于非洲乍得湖,当地居民长期食用这种藻。虽然生活异常困苦,但体格却惊人的强壮,而且长寿,这一现象引起人们重视。从上世纪60年代起,许多科学家就对这种藻类进行研究,发现它的蛋白质含量高达65%,为牛肉的3.3倍、猪肉的4.2倍、鸡蛋的5.5倍,是迄今发现的含蛋白质最丰富的植物。[2] 我国对螺旋藻的研究始于七十年代,作为藻类蛋白源开发列入“七五”国家科技项目,1989年,在云南程海湖建立了第一座螺旋藻工厂化生产中心基地,从应用技术产业化和开拓新的应用领域与技术两个方面,促进螺旋藻新兴产业的发展,至今,已有螺旋藻生产、加工、科研、经营企业三十多家,产业初具规模,科研的深度和广度也有所拓宽。八十年代初期,我国先后从国外数次引进藻种,由中科院武汉水生生物研究所、南京大学、中科院植物研究所、江西省农科院进行基础生物学和培养技术研究。[3] 二、近十年螺旋藻的应用研究 2.1食品类 2.1.1螺旋藻苦荞馍片 采用螺旋藻粉、苦荞面粉和小麦粉,通过选择适宜的配比量、合适的制作工艺、除藻腥味方法,制作了营养价值高、保健效果好、风味独特的螺旋藻苦荞馍片。 苦荞具有降血糖、降血脂、降血压,增强人体免疫力的作用,但是其蛋白质含量比较低,难以形成有效的面筋网络,很难加工;螺旋藻的营养价值高、保健效果

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为2.5?5.0的天冬氨酸蛋白酶,相对分子质量为30000 ?40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生

绿藻多糖的研究进展

综述 绿藻多糖的研究进展 海藻是生长于海洋中的低等植物,是海洋生物的重要组成之一。主要由褐藻、红藻、绿藻、蓝藻四大类海藻组成,其中,褐藻和红藻已经被大规模的人工养殖和工业利用,广泛应用于生产和实践中,在食品工业、纺织工业、医药卫生等领域发挥重要作用,而绿藻则未被广泛开发和利用,只有部分产量高的绿藻被用作饲料、饵料、肥料等,绿藻被人类认识和利用的程度远不如褐藻和红藻。然而,绿藻却是种类最多的一类海藻,绿藻是藻类植物中最大的一门,约有350个属,7500~8000种。绿藻的分布很广,在淡水和海水中均有分布,海产种类约占10%,淡水产种类约占90%。海产种多分布在海洋沿岸,往往附着在10公尺以上浅水中的岩石上。绿藻营养价值很高,含有大量糖、蛋白质、脂肪、无机盐和各种维生素,人们通过不断的提取、分离、鉴定,得知藻类中具有较高活性的物质是海藻多糖类。20世纪60年代初,英国的Percival研究组开始对孔石莼所含的碳水化合物进行研究,1961年,日本的三田对石莼的水提多糖水解后进行了纸色谱分析,结果表明含有D-葡萄糖、L-鼠李糖、D-木糖、和D-葡萄糖醛酸等。至此揭开了人类研究绿藻多糖的序幕,此后相继有学者投入到绿藻多糖的研究中来,取得了很多令人鼓舞的成果,迄今为止,日本和法国对绿藻多糖的研究报道较多[1],而我国对绿藻多糖的研究则较少。大量的研究证明,从绿藻中提取的天多 糖来源广泛、品种多、毒副作用低、安全性高、具有多种生物活性,成为近年来研究开发的热点。 1绿藻多糖的组成与结构 目前,人们只对绿藻门中某些种属的多糖进行了较为详尽的研究,这些种属的多糖表现出了较强的生物活性。总体来看,对多糖研究较多的绿藻种属主要有石莼属(Ulva)、松藻属(Codium)、浒苔属(Enteromorpha)、礁膜属(Monostroma)、小球藻属(Chlorella)、刚毛藻属(Cladophora)等等。绿藻多糖主要位于细胞间质中,多为水溶性硫酸多糖。它也存在于细胞壁之中,细胞壁微纤维主要不是由纤维素组成,而是由木聚糖或甘露聚糖构成,另外,细胞质内尚有少量的多糖存在。水溶性硫酸多糖是绿藻多糖的主要成分,其组分和结构随绿藻种类的不同而不

核桃乳饮料加工工艺

核桃乳饮料加工工艺集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

核桃乳饮料加工工艺 摘要:国内市场对核桃及其加工品的需求日益增长, 但是我国核桃采后处理技术比较落后, 在核桃脱青皮、破壳、壳仁分离等加工关键环节和设备成套性方面处于空白。为提高我国核桃产业化加工技术水平, 实现核桃生产的商品化, 介绍了美国和我国核桃生产和加工的现状, 分析了美国核桃加工工艺和成套设备, 并针对关键加工设备的结构和工作原理进行探讨研究, 基本摸索出了美国核桃加工工艺和设备布局的总体方案。结合我国核桃生产实际情况, 设计出适合我国中小型核桃加工厂的加工工艺和成套设备。 关键词:核桃饮料风味稳定性加工工艺; Study on the Production Technology of Walnut Dairy Beverage D Abstract:The domestic market grows demand to the walnut and processed products day by day, but the post- processing technology of walnut is quite backward in China, the key links which is walnut peelling off shelling, separating shell from kerne l and the sets of equipment is in the b lank. In order to improve the leve l o f walnut industrial processing techno logy in China, realizes the walnut production comm erc ialization, w

螺旋藻的功效与作用

螺旋藻的功效与作用 螺旋藻(Spirulina)是一类低等植物,属于蓝藻门,颤藻科。它们与细菌一样,细胞内没有真正的细胞核,所以又称蓝细菌。蓝藻的细胞结构原始,且非常简单,是地球上最早出现的光合生物,在这个星球上已生存了35亿年。它生长于水体中,在显微镜下可见其形态为螺旋丝状,故而得名。丽江程海湖是世界三大、中国唯一出产天然螺旋藻的地区,此外国内各地区的螺旋藻都是人工养殖的,而且生产的质量也参差不齐。螺旋藻因其营养均衡、全面而风行世界,成为最佳的健康保养食品。螺旋藻含有丰富的蛋白质、氨基酸、维生素、B-胡萝卜素、矿物质、藻多糖、藻蓝素、叶绿素和亚麻酸等营养活性物质。美国、日本、德国和中国等国的科学家和医学权威证明,螺旋藻确实对多种病症有预防和治疗辅助作用,且没有任何副作用。螺旋藻得以公认的作用主要是免疫调节功能,另外在抗疲劳、延缓衰老和促进生长发育、调节血脂、抑制肿瘤、抵抗辐射、耐缺氧等方面也有独到作用。螺旋藻具有许多神奇的保健功效,它真正是我们人类的福星。 1.增强免疫系统功能 螺旋藻所含的丰富藻兰蛋白、活性多糖、过氧歧化酶物质具有提高人体免疫力,促进新陈代谢的作用。普通人在使用时,经常还能加速伤口愈合,防止皮肤角质化。 2. 抗疲劳、抗缺氧 现代人生活节奏快,社交应酬繁多,但饮食趋于简单、方便,或高热量高脂肪美味佳肴摄入过多,大多数人承受着巨大的工作压力,作息紊乱、无暇锻炼,导致机体代谢失常,工薪和白领阶层总感觉疲劳困倦,精力不济,抵抗力下降。螺旋藻因能快速补充人体所需营养,增强人体系统功能,碱化血液,抗疲劳,抗缺氧,经常服用能使人精力充沛,减少患病。 3.促进婴幼儿健康成长 婴幼儿、尤其是缺少母乳喂养的婴幼儿非常需要赖氨酸、苏氨酸等必需氨基酸,这些都可从服用螺旋藻得到补偿。另外,螺旋藻丰富的矿物质和微量元素是偏食儿童良好的营养来源,可逐渐纠正儿童偏食的不良习惯,还能有效地预防营养性贫血。 4.均衡青少年发育成长期的营养结构 青少年所处的青春发育期,学习繁重,运动体能和营养素消耗大,膳食营养不合理极易造成隐性营养不良,发育不良,记忆下降,还会导致视力减退。螺旋藻丰富、均衡的营养结构,能保证青少年在这段特殊成长期的营养,增进体能和智力。 5.延缓老年人衰老 人体代谢中产生大量的氧自由基,破坏人体生命分子结构,使细胞功能快速衰退,这是人体衰老的主要原因。螺旋藻所含的维生素E、β-胡萝卜素、γ-亚麻酸和超氧化物岐化酶都是抗衰老物质,可通过抗氧化作用清除自由基,延缓细胞衰老。而且螺旋藻含有丰富的铁、钙等元素,极易被吸收,可辅助防治老年人常见的腰腿酸疼、骨质疏松、贫血、高血压和动脉硬化病症。 6.抵抗辐射 现代人生活和工作中,不断接触电脑、电视、微波炉等电器,有的由于环境原因也很难避免遇到辐射,长期下去身体必将受到损害。螺旋藻多糖体能提升机体免疫力,有效缓解或消除辐射对肉体和骨髓细胞的毒性抑制作用。 7.保护女性健康 帮助减肥、护肤和美容螺旋藻含铁丰富,极易吸收,这是经常需要补铁的孕妇及哺乳期妇女需要补充的营养,能维护妇女健康,保证胎儿或婴幼儿的良好发育,增进泌乳妇女奶水量。它又是目前发现的营养最全面的纯天然减肥珍品,其中的Phonylanine 物质使食用者产生饱食感,减少食量,可对营养偏缺或营养失调造成的肥胖症进行控制。螺旋藻同时也是理想的美容食品,服用螺旋藻能防止皮肤粗糙,可柔嫩肌肤,祛除色斑,保持皮肤生理弹性和青春色彩。 8.预防和缓解糖尿病 从营养学角度讲,人若吃进过多的高热量动物性蛋白,食物中碳水化合物代谢不正常转化成葡萄糖从尿中排出,往往会引起糖尿病。现今,糖尿病已肆虐全球,被视为不可治愈病,糖尿病患者的并发症引起的心血管及神经系统病变常威胁到人的生命。螺旋藻是一种理想的高蛋白低热量食品,含有叶绿素、丰富的植物性蛋白、改善糖代谢的维生素B1、大量的钾和锌,而其中的维生素B6、镁及γ-亚麻酸可促进胰岛素合成,促进恢复胰岛素分泌的机能,使血糖值下降。因此螺旋藻是预防和缓解糖尿病的理想营养食品。

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

藻类植物资源研究进展

藻类植物资源开发利用研究进展 徐渊 (河北师范大学生命科学学院生物科学2009级学号:2008013859) 摘要:藻类是一种非常重要的植物资源,与人类的生活息息相关。目前对藻类植物资源的开发利用还远远不够,藻类资源的开发利用潜力巨大。本文主要概述了藻类植物资源在生物燃料,生物医药,环境保护等方面的研究进展。 关键词:藻类植物生物燃料藻类多糖 进入21世纪,人类在取得巨大成就的同时,也面临着许多危机。能源需求不断增加而传统能源的储量不断减少,能源危机加剧[1]。工业生产,化石燃料燃烧造成大气污染、水污染、酸雨、温室效应等一系列环境问题。环境污染,抗生素的滥用致使人体免疫力下降,细菌出现抗药性,哮喘、艾滋病、癌症等多种疾病发病率升高。人类健康受到很大威胁。从藻类中提取油脂,生产柴油,可以缓解能源危机。藻类多糖可以应用于多类疾病的治疗。藻类对水质的敏感,可用于监测水质。藻类植物资源有多方面的重要价值,所以值得人类大力开发利用。下文将详细叙述目前人类在藻类植物资源开发利用方面的研究进展。 1藻类植物资源在开发生物燃料方面的研究进展 就目前来看,人类通过藻类开发的生物能源主要有生物柴油和生物乙醇,利用藻类开发生物能源,有许多方面的优势。但是仍然面临着许多技术难题。美国和日本在开发生物能源的研究方面处于世界领先的位置。 1.1藻类植物资源在开发生物燃料方面的优势 未来生物燃料的的发展方向应该是通过藻类植物来生产[2]。这是因为藻类有许多方面的优势,①作为低等植物,藻类繁殖能力特别强,光合作用效率高,在单位面积上具有很高的产量。②藻类植物种类非常多,而且分布范围很广阔,利用藻类生产生物燃料不会受气候和地域的干扰[3]。③藻类的油脂含量非常高。 ④藻类可以大量吸收空气中的二氧化碳,对缓解温室效应有一定意义。⑤藻类在生长的过程中可以吸收水体中的氮元素和磷元素,防止水体富营养化。⑥藻类可以在海洋中生长,可以利用海洋来培养藻类,开发藻类资源,这样就不会占用耕地。另外,用玉米和甘蔗为原料可以生产乙醇,并且是目前国际上生物乙醇生产原料。生物乙醇有低毒性,容易降解,并且燃烧后对环境污染小等优点。但是现在全球人口增长很快,用粮食来生产燃料乙醇以代替石油,煤等化石燃料是非常不切合实际的。而以海洋藻类来生产乙醇,可以避免用粮食生产乙醇的缺点,有非常好的前景。 1.2藻类生物柴油的研究现状 生物柴油是从油料作物,藻类中提取油脂或利用动物油脂,再通过与醇类物质发生酯交换反应来合成的。生物柴油环保,使用时安全,并且可再生。用油料植物生产柴油的技术已经很成熟,并且广泛的应用于工业生产。利用藻类生产生物柴油主要有藻类培养,藻类收集,提取藻类中的油脂,酯交换反应生产生物柴油,把粗制品生物柴油加工成精品等几步。在利用藻类生产石油的过程中,从藻类中提取柴油的技术已经掌握,培养出含有高油脂的藻类的技术,藻类收集中的固液分离技术以及利用基因工程改造藻类技术还在进一步改进[4]。正是由于部分的技术还不太成熟,导致利用藻类生产石油的成本较高,无法大规模应用于工业生产。不过,目前以美国为代表的许多国家都致力藻类生物柴油的研究,为了

蛋白饮料加工的关键工艺原理、工艺要点与产品配方原则

蛋白饮料加工的关键工艺原理、工艺要点与 产品配方原则 植物蛋白饮料是指用蛋白质含量较高的植物果实、种子、核果类或坚果类的果仁等为原料,与水按一定比例磨碎。去渣后,加入饮料配得的乳浊液液体制品。成品蛋白质含量不低于5g/ml。 一、蛋白饮料分类 目前比较公认的蛋白饮料的分类是据蛋白质来源分为含乳饮料和植物蛋白饮料两大类。 二、蛋白饮料加工的关键工艺原理 1、含乳饮料 1.1工艺原理:含乳饮料分为中性型乳饮料和酸性乳饮料,又按照蛋白质及调配方式分为配制型含乳饮料和发酵型含乳饮料。 配制型含乳饮料:蛋白质含量不低于1.0%的称为乳饮料。 发酵型含乳饮料:发酵型含乳饮料中蛋白质含量不低于1.0%的称为乳酸菌乳饮料,蛋白质含量不低于0.7%的称为乳酸菌饮料。 (1)中性乳饮料 中性乳饮料主要以水、牛乳为基本原料,加入其他风味辅料,如咖啡、可可、果汁等,再加以调色、调香制成的饮用牛乳。中蛋白质含量不低于 1.0%的称为乳饮料 (2)酸性乳饮料 酸性乳饮料:酸性乳饮料包括发酵型酸乳饮料和调配型酸乳饮料。 ①发酵型乳饮料是指以鲜乳或乳制品为原料经发酵,添加水和增稠剂等辅料,经加工制成的产品。其中由于杀菌方式不同,可分为活性乳酸菌饮料和非活性乳酸菌饮料。 ②调配型酸乳饮料是以鲜乳或乳制品为原料,加入水、糖液、酸味剂等调制而成的制品,产品经过灭菌处理,保质期比乳酸菌饮料要长 2、植物蛋白饮料 2.1工艺原理含乳饮料:是以鲜乳或鲜乳制品为原料未经发酵或经发酵,加入水或其他辅料加工制得的液状或糊状产品,其成品的蛋白质的含量不低于1% 植物蛋白饮料:植物蛋白饮料以富含蛋白质的植物加工而成,有调配型和发酵型两种,以调配型为多。通常根据丹迪的资源开发利用,产品有豆奶、花生乳、绿豆乳、银杏露等。 三、工艺要点

螺旋藻的8大功效与作用

螺旋藻的8大功效与作用 螺旋藻的功效与作用到底有哪些呢?笔者总结了一下,主要有以下8条: 1、强力抗疲劳,提高免疫力 现代人生活节奏明显加快,社交应酬多,工作压力大,常使人感觉精力不济,疲劳困倦,抵抗力下降。螺旋藻不但能快速补充人体所需的营养,并能碱化血液,抵御酸性体质的危害。加速新陈代谢,调节和平衡人体系统,增强内脏器官功能,抗缺氧、抗疲劳使人精力充沛,并显著减少生病的机会。经常服用螺旋藻,精力充沛身体好。 为什么有些人经常患感冒、咽炎呢?根本原因在于身体虚弱。螺旋藻含有丰富的氨基酸、维生素和矿物质为您补充各种生命要素;藻蓝蛋白、多糖等生物活性物质可以调节人体的生理机能,全面提高人体的免疫功能,增强人体的抗病能力。常服螺旋藻,远离感冒困扰! 2、抵抗辐射,享受现代生活 螺旋藻是世界上公认的抗辐射辅助治疗食品,螺旋藻多糖能增加机体免疫力,能有效抵御辐射对骨髓细胞增殖的抑制作用。1986年苏联切尔诺贝利核电站发生爆炸,日本人送去的救援物资就是螺旋藻。现代社会,手机、电视、电脑等电磁辐射让我们无处藏身,这些看不见的杀手时时威胁着人们的健康。经常接触电磁辐射,大多都有眼睛发干、头痛、烦躁、疲倦、注意力难以集中、脸上长斑等症状。 螺旋藻的面世,让人类可以轻松享受现代文明,坦然面对多种辐射。 3、辅助治疗疾病 a、高血压,高血脂、高血糖等心血管疾病 螺旋藻含有大量的叶绿素,还有丝氨酸、钾盐、维生素B6、亚麻酸等人体必须的脂肪酸,这些能帮助人体合成胆碱,有效地降低三高,对减少血液的粘滞性,保持血管弹性,防止动脉硬化有卓越功效。 b、糖尿病 螺旋藻低糖低脂、高蛋白、高维生素、是糖尿病患者最理想的营养食品。内含丰富的γ-亚麻酸、叶绿素和锌、镁元素,有增强胰岛素的功能,给糖尿病人带来有益的食疗作用。c、肝病 螺旋藻含丰富的维生素和优质的水溶蛋白,有良好的护肝解毒,修复肝组织损伤的功效。高含量的蛋氨酸与丝氨酸,在镁与维生素B6的辅助下合成多量的胆碱,对脂肪肝、肝硬化有意想不到的效果。并能有效地针对烟酒过量而引起的肝、肺机能衰退,减轻烟酒造成的危害。 d、肿瘤、放化疗 螺旋藻中抗肿瘤因子,主要是β-胡萝卜素、藻蓝蛋白与多糖类物质。人体自由基增多而损伤细胞导致癌症,β-胡萝卜素是最有效抑制自由基的活性之一。藻类蛋白、藻类多糖已为国内外医学界公认能提高免疫功能,在抑制或杀伤肿瘤细胞的方面有显著疗效。同时能减轻肿瘤患者在放、化疗后的副作用,对升高白细胞有确切效果。 e、螺旋藻还能保护视力、加速病后身体康复及术后伤口愈合;对失眠、情绪抑郁、体弱及头晕、头痛等都有较好的辅助疗效。

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为的天冬氨酸蛋白酶,相对分子质量为30000 40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌中尚未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国内外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生物研究所首先从黑曲霉中筛选出一株产酸性蛋白酶菌株,并和上海酒精厂协作进行中试生产,填补了我国酸性蛋白酶制剂的空白.近年来国内在酸性蛋白酶上的研究大都致力于选育产酶活力高、抗逆性好的菌种,并获得了一些很有应用前途的产酶菌株。目前用于酸性蛋白酶生产的高产菌株主要有黑曲霉、宇佐美曲霉和青霉及它们的突变株。李永泉等,对宇佐美曲霉所产的酸性蛋白酶进行了发酵过程动力学研究.戚淑威等对青霉产酸性蛋白酶的适宜条件和酶学性质进行了分析。谢必峰等,采用硫酸铵盐析法和离子交换层析法分离纯化了黑曲霉产酸性蛋

蓝藻中多糖的研究进展

蓝藻中多糖的研究进展 随着分子生物学和细胞生物学的发展, 多糖及其缀合物作为支持组织和能量来源的传统观念早已被突破, 而被认为是生物体内除核酸以外的又一类重要的信息分子。因此与多糖有关的研究越来越受到人们的关注多糖类化合物在自然界分布十分广泛,随着海洋生物多糖的药用潜力逐渐被开发出来,海藻在海洋植物中数量和品种最多。且多糖含量占干质量的50%以上[1]成为目前最具有前景的一类活性物质,海藻多糖是由多个相同或不同的单糖基通过糖苷键相连而成的高分子碳水化合物[2]具有很高的应用价值,此外它还具有多种生物活性与药用价值,如抗病毒免疫调节抗肿瘤抗氧化等国内外学者曾对海藻多糖的生物活性进行了综述最近几年又有了新的研究进展本文简要介绍海藻多糖的生物活性及提取分离的方法。 1 海藻多糖的生物活性 1.1 抗病毒 海藻在海洋环境中生存会遭受外界生物的侵袭长期的进化使其对某种微生物产生抗活性化合物目前已从鸭毛藻酸藻松节藻孔石莼和海黍子中分离得到具有抗病毒活性的海藻多糖[1]Hayashi等人[3]研究了岩藻多糖对单纯疱疹病毒HSV 的防御作用发现岩藻多糖能使小鼠免受HSV 病毒感染其机理可能是通过直接抑制病毒复制增强先天和后天的免疫防御功能来防御HSV 病毒的感染朱萧等人[4]研究表明钝顶螺旋藻多糖PSP 可抑制病毒吸附感染细胞内病毒的复制随着PSP 浓度及作用时间的增加PSP 对抗单纯疱疹病毒 2 型DNA的抑制作用显著增强具有良好的剂量和时效关系PSP 在体外具有明显的抗HSV-2 病毒作用该作用发生在病毒吸附病毒基因复制等多个环节上 1.2 免疫调节 20 世纪70 年代后人们对糖类物质的生物学功能有了进一步认识发现多糖参与细胞的各种生命活动如免疫细胞间的信息传递与感受林丽琴等人[5]研究了紫球藻多糖对免疫低下小鼠的调节作用发现其可显著抑制小鼠的脾指数胸腺指数碳廓清能力单核细胞吞噬功能对小鼠免疫功能具有一定的正向调节作用且安全性较高常静瑶等人[6]研究表明螺旋藻多糖对小鼠细胞因子有促进免疫的作用推测螺旋藻多糖主要是通过对肠黏膜系统的受体相互作用刺激相应

微生物多糖的研究进展样本

微生物多糖的研究进展 生命科学技术学院08级2班杜长蔓 摘要: 就微生物多糖的种类, 生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,特别在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微 生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可经过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有经过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,可是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到当前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶 ( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③ 应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,当前全世界微生物多糖年加工业产值可达80 亿左右。 关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用 0引言

螺旋藻

螺旋藻---------人类二十世纪重要发现 金陵女子学院 食品科学与工程 16070220

----------引言 世界对螺旋藻的评价 人类二十世纪两大重要发现:原子能和螺旋藻, 而后者的作用远远大于前者。[法国克里门特博士] 二十一世纪最理想的食品[联合国粮农组织] 人类新世纪最佳保健品[世界卫生组织] 明天最理想最完美的食品[联合国教科文组织] 完全根除儿童营养不良[国际儿童塞金会组织] 21世纪最理想的营养源[联合国世界食品协会] 未来的超级营养食品[国际微生物蛋白质会议] 超级营养食品[联合国世界粮农会议」 新资源营养食品[中国国家卫生部] 国家级星火项目[中国国家科委] 最佳蛋白质来源[美国食品和药品管理局] 优质健康食品[日本保健食品协会] 既然世界对螺旋藻评价如此之高,下面对螺旋藻进行更深入的了解 ----------基础篇 分类 螺旋藻(Spirulina)分类学上属于蓝藻门、蓝藻纲、颤藻目、颤藻科,革兰氏阴性菌,是一种古老的低等原核单细胞水生植物,也称浮游性原始藻类植物。螺旋藻只是其中的一个"属",约有36-38种,其中多数为淡水种类,仅有4 种分布在海洋中。它们与细菌一样,细胞内没有真正的细胞核,所以又称蓝细菌。蓝藻的细胞结构原始,且非常简单,是地球上最早出现的光合生物,在这个星球上已生存了35亿年。它生长于水体中,在显微镜下可见其形态为螺旋丝状,故而得名。据藻类学分类,螺旋藻这个属已发现而有记载的计35 种,其中钝顶螺旋藻(Spirulina platensis) 和极大螺旋藻(Spirulina maxima) 是最具有开发价值的品种 分布状况 螺旋藻在许多热带湖泊、池塘中广泛分布,但生物量很少,不形成水华。它们只有在热带盐碱湖泊中大量繁殖,在某些苏打湖,或者全年某几个月里几乎成为这些湖泊唯一的藻类物种。

蛋白酶的工厂设计

年产1500m3蛋白酶的工厂设计 摘要 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。酸性蛋白酶是一种羧基蛋白酶,它的分子质量为30-40kD,等电点(pH3.0-5.0) 酸性蛋白酶现已广泛应用于食品、饲料、酿造、毛皮与皮革、医药、胶原纤维等各个行业之中。本设计采用豆饼粉、玉米粉、淀粉为主要的培养基原料,并选用黑曲霉(Aspergillus niger )3.350菌种发酵。其中豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1%,氯化钙0.5%,磷酸氢二钠0.2%。 本设计利用通风搅拌式发酵罐进行发酵,同时利用离子交换树脂对母液进行提取,提高了酸性蛋白酶的生产效率,减少了生产成本。设计还包括发酵罐,全厂平面图,车间平面布置图,工艺流程图。 关键词:酸性蛋白酶发酵工厂设计

The Process Design of the Protease used for Section with the Capacity of 1500m3 Annually Abstract protease is a kind of Peptone and peptide. It has been discover across in animal giblets ,the stem of plant,fruit , microbial and so on.Most of the Microbial protease are ectoenzyme .According to its best Optimum pH function ,Microbial protease Can be divided into Acid protease ,Neutral protease and alkaline protease .Acid protease is a kind of Carboxyl protease , Its molecular weight is 30-40 kd, lower isoelectric point (pH3.0-5.0) Acid protease in food, medicine, textile, leather, feed, cosmetics, washing industries have applications, natural health, avirulent and harmless, quite safe. So in this paper the basic content of more acid protease, production process and application development were introduced. This design USES the bean cake powder, corn flour, starch as the main medium of raw materials, and selects the Aspergillus Niger, Aspergillus Niger) 3.350 bacterial fermentation. With bean cake powder 3.75%, corn flour 3.75%, 0.625% fish meal, 1% ammonium chloride, calcium chloride 0.5%, disodium hydrogen phosphate 0.2%. This design using the ventilation agitator in fermentor, using ion exchange resin in mother liquid was extracted at the same time, improve the efficiency of the acid protease production, reduce the production cost. The design also includes Fermentor, The factory plan, Shop floor plan, Flow Chart. Key Words: Acid protease ; fermentation; plant-design;

抗癌曾免疫体质:螺旋藻

螺旋藻 螺旋藻的功效: 减轻癌症放疗、化疗的毒副反应;提高免疫功能;降低血脂。主癌症的辅助治疗;高脂血症;缺铁性贫血;糖尿病;营养不良;病后体虚;用作保健食品。 螺旋藻的药理作用: 1、抗辐射损伤作用:放射照射前、后给小鼠口服螺旋藻,均能提高小鼠存活率,有效剂量为每只3.75-15mg(156-625mg/kg体重,服用次数2-5次)。螺旋藻预防给药3次,经7.5Gy 照射后第9天,对受照射动物敏感器官的观察表明,螺旋藻可使照射小鼠的胸腺重量、骨髓DNA含量高于对照组,这表明螺旋藻对免疫器官和造血组织有保护作用,这可能是螺旋藻抗辐射损伤作用的机制之一。 2、抗菌作用:钝顶螺旋藻对革兰阳性菌有抑菌作用,含脂质和三萜类化合物的钝顶螺旋藻的乙醇提取物抑菌活性最强,含甾醇的提取物也有抑菌作用,但作用较弱。钝顶螺旋藻对革兰阴性菌无抑制作用。 3、抗癌作用:螺旋藻对短期一次注射和长期多次注射1,2-二甲肼诱导的NIH小鼠和标准差大鼠大肠变性隐窝的形成有抑制作用。螺旋藻多糖对体内腹水型肝癌细胞有显着的抑制率,治疗组为54.0%,防治组达91.4%,对癌细胞DNA、RNA和蛋白质的抑制作用均随作用时间延长而加强。 4、光敏作用:用含0.25mg/ml的藻蓝蛋白(藻青素)处理培养的小鼠骨髓瘤细胞,再经514nm 激光辐照300J/cm2,发现癌细胞存活率仅15%;而单纯采用激光辐照或藻蓝蛋白处理,细胞存活率为69%和71%。人大肠癌细胞株HR8348培养后分别用100μg,50μg,25μg的钝顶螺旋藻的藻蓝蛋白处理,经光波为630nm的铜激光辐照12J/cm2,用MTT法检测培养癌细胞存活率分别为22.2%,37.6%和89.7%,显示良好的剂量效应。对肉瘤S180小鼠,分别给予藻蓝蛋白注射2mg或口服20mg后,经铜激光辐照瘤体15天后,有效率分别为50%和53%,与对照组相比,具显着差异。体内外试验证实藻蓝蛋白确有光敏作用,且无毒副反应,是一种理想的光敏剂。 5、对免疫系统的作用:螺旋藻多糖可使小鼠的血清溶血素提高39.5%-98.0%,腹腔巨噬细胞的吞噬率提高32.5%-51.5%,吞噬指数提高0.9-1.8倍,T淋巴细胞数提高46.8%-87.7%,脾脏白髓淋巴细胞排列密集,红髓内巨噬细胞明显增多,酸性α-乙酸萘酯酯酶(ANAE)阳性淋巴细胞增加7.3%-12.8%。 6、降低胆固醇:将30位高胆固醇、轻度高血脂的男性,分为两组,A组每日服螺旋藻4.2g,持续8星期,血清总胆固醇在4星期内从6.3mmol/L(244mg/dl)降至6.1mmol/L(233mg/dl),降幅达4.5%。B组服4星期便停止,总血清胆固醇降低,后恢复到最初的水平。低密度脂蛋白胆固醇在4星期内显着降低达6.1%,原来高胆固醇水平的人,血清胆固醇降幅更大。 7、提高铁的生物有效性和调理贫血症:选纯种Wistar大鼠,用低铁饮食法复制缺铁性贫血模型,用螺旋藻进行恢复试验,以硫酸亚铁为阳性对照组,以低铁饲料为阴性对照组,按螺旋藻含量由小到大分为3个实验组,含量分别为1%,8%,15%。结果:实验2组和实验3组体重高于阳性对照组,实验1组体重与阳性对照组接近,阳性对照组体重高于阴性对照组。提示单纯性缺铁可影响大鼠生长,致大鼠体重增长缓慢,而螺旋藻有加速大鼠体重增长的作用,对大鼠缺铁性贫血恢复效果显着。另一项在日本进行的试验是,对8名青年妇女较长期限制她们的饮食,显现次长期贫血症--血红蛋白低于正常水平,然后在每顿饭后食用4g螺旋藻,服用80天后,血红蛋白提高21%,从109g/L上升为132g/L,不再贫血。

酸性蛋白酶的作用机理(仅供参照)

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分

子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研

螺旋藻中生物活性物质的药理作用研究进展

螺旋藻中生物活性物质的药理作用研究进展 部音利冯亚非* (广东海洋大学食品科技学院湛江 524088) 螺旋藻属于蓝藻门、蓝藻纲、段殖体目、颤藻科、螺旋藻属,是大规模工业化生产的微藻类之一。自从1940年法国药学家克雷曼博士在非洲发现它的营养价值之后,科学家们对螺旋藻的研究就从未中断。国内外大量研究表明,螺旋藻不仅是营养成分最全面、最均衡的食品之一,而且能够增强机体免疫力、抗肿瘤、抗氧化、降血脂、防贫血,并对糖尿病、胃肠道溃疡、过敏症等有一定的疗效。螺旋藻的主要生物活性物质有螺旋藻多糖、藻胆蛋白、β-胡萝卜素、γ-亚麻酸和SOD等,近年来对它们的药理活性进行了大量研究并取得了一些成果,为螺旋藻的进一步药用开发奠定了基础。 1 螺旋藻多糖 1.1 化学结构 研究表明,螺旋藻多糖是一种酸性杂多糖,由L-鼠李糖、D-木糖、D-葡萄糖、D-半乳糖、D-阿拉伯糖、D-甘露糖和葡萄糖醛酸等组成[1],钝顶螺旋藻多糖的相对分子质量为12590,极大螺旋藻多糖相对分子质量为29500,这两种多糖均由藻体制备,糖苷键为α型。另有研究报道,钝顶螺旋藻中分离得到硫酸酯化多糖,有D-果糖的存在。 1.2 药理活性 1.2.1 提高免疫力、抗肿瘤作用 抗肿瘤功能是螺旋藻多糖最重要的生物活性作用之一,也是研究最活跃的部分。药理和临床实验证明[2],螺旋藻多糖具有抑制小鼠S-180肉瘤、乳腺癌细胞B37、白血病细胞Ks62、腹水型肝癌细胞和HL60人早幼粒细胞性白血病等细胞生长的生物学效应。一般认为,螺旋藻多糖不能损伤癌细胞DNA的复制模板,也不能直接杀伤癌细胞,而只是代谢性地抑制癌细胞DNA的合成,因此螺旋藻多糖的抗肿瘤作用主要是通过提高机体的免疫功能而间接抑制肿瘤的生长。螺旋藻多糖作为一种免疫增强剂,一方面能增强骨髓细胞的增殖活力,有利于巨噬细胞、T淋巴细胞和B淋巴细胞等免疫细胞的形成和活性的激活;另一方面能促进白细胞介素II的生成,通过促进血清蛋白的生物合成调节机体抗体的形成;再者,螺旋藻多糖能促进脾、胸腺等免疫器官的生长,减轻或消除免疫抑制剂对机体免疫系统的抑制作用。 1.2.2 抗氧化、抗衰老作用 自由基学说认为,人体衰老与自由基密切相关,超氧化物歧化酶(SOD)是人体内自由基清除剂。研究表明,螺旋藻多糖能提高由D—半乳糖创建的衰老型实验小鼠红细胞、脑和肝的SOD活力,并能明显改善与衰老有关的各项指标,表现出良好的抗衰老作用。李春坚的研究也表明,螺旋藻可显著提高小鼠全血SOD 和谷胱甘肽过氧化物酶的活性。对螺旋藻多糖的抗氧化特性进行研究中,发现当 *湛江市科技招标项目(0409089) 作者简介:部音利(1984—),女,硕士研究生,研究方向海洋药物。通讯方式:广东湛江市海滨大道南40#金豪花苑18D,邮编:524005,E-mail: fyfmy@https://www.360docs.net/doc/70552778.html,.

相关文档
最新文档