简易旋转倒立摆及控制装置(C题)

简易旋转倒立摆及控制装置(C题)
简易旋转倒立摆及控制装置(C题)

全国电子设计大赛旋转倒立摆

全国电子设计大赛旋转倒 立摆 Prepared on 22 November 2020

目录 摘要 本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。 关键字:倒立摆,mega128a,编码器 第一章系统方案比较与选择

总实现方案 方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。 方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。 方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。 通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。 主控制器方案比较与选择 为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。 方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。

2013大学生电子设计大赛简易旋转倒立摆及控制装置(C题 )

2013年全国大学生电子设计竞赛试题 参赛注意事项 (1)9月4日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高 专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制 作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)9月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 简易旋转倒立摆及控制装置(C 题 ) 【本科组】 一、任务 设计并制作一套简易旋转倒立摆及其控制装置。旋转倒立摆的结构如图1所示。电动机A 固定在支架B 上,通过转轴F 驱动旋转臂C 旋转。摆杆E 通过转轴D 固定在旋转臂C 的一端,当旋转臂C 在电动机A 驱动下作往复旋转运动时,带动摆杆E 在垂直于旋转臂C 的平面作自由旋转。 二、要求 1.基本要求 (1)摆杆从处于自然下垂状态(摆角0°)开始,驱动电机带动旋转臂作 往复旋转使摆杆摆动,并尽快使摆角达到或超过-60°~ +60°; (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成 圆周运动; (3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近165°位置,外力 撤除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于5s ;期间旋转臂的转动角度不大于90°。 图1 旋转倒立摆结构示意图

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

单级旋转倒立摆系统

《现代控制理论》课程综合设计 单级旋转倒立摆系统 1 引言 单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。其中摆的长度1l =1m ,质量1m =0.1kg ,横杆的长度2l =1 m ,质量2m =0.1kg ,重力加速度20.98/g m s =。以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出。控制的目的是当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。 图1 单级旋转倒立摆系统模型 单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。 本文综合设计以以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出,建立状态空间模型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。 2 模型建立 本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆

分别进行受力分析,定义以下物理量:M 为加在横杆上的力矩;1m 为摆杆质量; 1l 为摆杆长度;1I 为摆杆的转动惯量;2m 为横杆的质量;2l 为横杆的长度;2I 为横杆的转动惯量;1θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂直方向的夹角;N 和H 分别为摆杆与横杆之间相互作用力的水平和垂直方向的分量。倒立摆模型受力分析如图2所示。 图2 倒立摆模型受力分析 摆杆水平方向受力平衡方程: 2 111222(0sin )2 l d N m l dt θθ=++ (1θ2l —横杆的转动弧长即位移) 摆杆垂直方向受力平衡方程: 211 1122(cos )22 l l d H m g m dt θ-=- 摆杆转矩平衡方程: 22111222sin cos 22 d l l J H N dt θθθ=- 横杆转矩平衡方程: 21 222 d M Nl J dt θ-= N

简易旋转倒立摆及控制装置

简易旋转倒立摆及控制装置(C 题) 参赛队员姓名: 指导教师姓名 参赛队编号: 参赛学校:

简易旋转倒立摆及控制装置(C 题) 摘要:简易旋转倒立摆及控制装置是复杂的高阶闭环控制系统,控制复杂度较高。系统以飞思卡尔MK10DN512ZVLL10单片机为核心,以Mini1024j编码器为角度传感器,配合直流电机组成旋转倒立摆系统,经过充分的系统建模,并考虑单片机运算速度,最终确定采用改进的“模糊PID”控制算法,通过软件控制,可以满足基本部分要求和发挥部分要求。 系统的突出特点在于充分的力学理论分析,通过力学建模和控制系统仿真,获得了大量的定性分析结果,为系统的建立提供了很好的理论依据。 关键字:倒立摆模糊PID 力学建模状态机

一、系统方案 1. 系统方案论证与选择 倒立摆系统是一个复杂的快速、非线性、多变量、强耦合、自然不稳定的系统。对于该控制系统而言,合适的控制算法、精确的反馈信号、适合的电机驱动等都对系统的稳定性、控制精度及抗干扰性起重要作用。针对上述问题,分别设计多种不同的解决方案,并进行选择论证。 (1)控制算法选择 方案一:采用传统PID控制算法。 传统PID控制算法是运用反馈求和后的误差信号的比例(0阶位置项)、积分(误差累积项)、微分(1阶速度项)进行系统校正的一种控制算法。可用于被控对象的结构和参数不能完全掌握,或得不到的精确数学模型的情况,控制器的结构和参数必须依靠经验和反复调试来确定。 方案二:采用模糊PID控制算法 模糊PID控制算法根据PID控制器的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。将模糊控制算法与传统PID控制算法巧妙结合,不但具有PID控制算法精度高等优点,又兼有模糊控制灵活、适应性强的优点。 综合考虑选择方案二的模糊PID控制算法。 (2)电动机选型 方案一:选择步进电动机 步进电动机是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机,这种电动机每当输入一个电脉冲就动一步。虽然控制时序和驱动电路相对复杂,但步进距离很小,保持力矩大,制动能力强。但步进电机速度只在一定范围可调,并且一般步进电机在不旋转时仍有若干相通电,功耗太大。 方案二:选择直流电动机 直流电动机控制简单,利用双极性PWM即可实现调速和正、反转,功率调节范围广、适应性好。直流电机的起动、制动转矩大,易于快速起动、停车,易于控制,且直流电机的调速性能好,调速范围广,易于平滑调节。 综上考虑选择方案二的直流电动机。 (3)传感器的选择 方案一:使用角位移传感器 角位移传感器是一个高精度的电位器,它输出为模拟量。但是在使用角位移传感器时,为得到其与竖直方向(即重力方向)的夹角,要使用重摆,且在角度变化小时,由于传感器自身扭矩,将不会发生角位移,从而得不到采样数据。 方案二:使用主轴编码器 主轴编码器采用与主轴同步的光电脉冲发生器,通过中间轴上的齿轮1:1地同步传动。一般是发光二极管发出红外光束,通过动、静两片光栅后,到达光电二极管,接收到脉冲信号,变换成数字量输出。按编码方式不同,分为增量式编码器和绝对编码器。前者输出脉冲,后者输出8421码。绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置,而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

旋转倒立摆设计报告

旋转倒立摆 摘要: 倒立摆的控制是控制理论研究中的一个经典问题,通过旋转式倒立摆控制系统的总体结构和工作原理,硬件系统和软件系统的设计与实现等方面,对系统模型进行动力学分析,建立合适的状态空间方程,通过反馈方法实现倒立控制,通过反复的实验,记录,分析数据,总结出比较稳定可行的控制方法。 本系统采用STC89C52作为主控制芯片,WDJ36-1高精度角位移传感器作为系统状态测试装置,通过ADC0832将采集的模拟电压量转化为数字量,传送给STC89C52进行分析处理,并依此为依据控制电机的运转状态,间接地控制摆杆的运动状态。 通过不断地测量、分析,并调整系统控制的参数,基本达到了题目的要求,并通过此次的练习,进一步熟悉掌握了单片机的应用,对控制系统的了解和兴趣。 关键词:单片机最小系统; WDJ36-1角位移传感器; 旋转倒立摆;状态反馈;稳定性;

目录 1.系统方案 (4) 1.1 微控制器模块 (4) 1.2电机模块 (4) 1.3电机驱动模块 (4) 1.4角度传感器模块 (5) 1.5电源模块 (5) 1.6显示模块 (5) 1.7最终方案 (6) 2.主要硬件电路设计 (6) 2.1电机驱动电路的设计 (6) 2.2角度检测电路的设计: (7) 3.软件实现 (7) 3.1理论分析 (7) 3.2总体流程图 (7) 3.3平衡调节流程图 (9) 4 .系统理论分析及计算.................. . (10) 4.1系统分析 (10)

4.2 摆臂摆角的计算.................. . (10) 5.系统功能测试: (10) 5.1测试方案 (10) 5.2测试结果 (10) 5.3测试分析及结论 (10) 6.结束语 (11)

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

简易旋转倒立摆及控制装置

2013年全国大学生电子设计竞赛简易旋转倒立摆及控制装置(C题) 【本科组】 2013年9月7日

摘要 本题要求设计一个简易旋转倒立摆及控制系统,其中角度传感器、步进电机和单片机890C521是系统核心部件。系统接收角度传感器反馈的信号,通过PCF8591将接收的信号转换成数字信号,将数值送入单片机中进行计算,可得出摆杆的位置,进而单片机控制步进电机,对摆杆进行控制,达到所要的旋转或者倒立的控制目标。 关键词:简易旋转倒立摆步进电机单片机角度传感器 目录 1 设计任务及要求..................................................... 1.1 设计任务.................................................... 1.2 基本要求................................................... 2主控制器件的论证与选择............................................. 2.1控制器选用 .................................................. 2.2控制系统方案选择 ............................................ 2.3角度的获取模块论证与选择 .................................... 2.4步进电机及其驱动模块的选择 .................................. 2.5 AD/DA的选择 ................................................ 3 系统的硬件设计..................................................... 3.1总体电路框图 ................................................ 图3-1 系统框图..................................... 错误!未定义书签。 3.2系统电路与程序设计 .......................................... 3.2.1 STC89C52单片机最小系统............................... 3.2.2 PCF8591模块图如图3-2。............. 错误!未定义书签。 3.3.3 模块芯片TB6560AHQ原理图如图3-3。.................... 3.3.4 供电电源............................................. 4系统软件总体设计框图.............................. 错误!未定义书签。 5 测试方案与测试结果................................................. 6 总结............................................................... 参考文献............................................................. 附录.................................................................

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

基于stm32的旋转倒立摆

基于stm32的旋转倒立摆

所在院系:工程训练中心 作者:岳伟杨博古元芮2017.7.21

基于stm32的单级旋转倒立摆控制系统的设计与实现 摘要 本文对单级旋转倒立摆的控制系统进行了研究,提出了以STM32F103为核心的控制器设计,在控制策略上采用经典控制理论PID的控制算法,实现对单级旋转倒立摆旋转臂及摆杆的同时闭环控制,通过传感器采集摆杆的状态数据,实时调整直流电机的转向和转速,以调整摆臂的角度,使摆杆恢复到动态平衡状态。在非平衡状态下,通过传感器的实时检测,能够通过功能键设计,使摆杆能稳定到一定的角度。最终测试结果表明系统控制策略有效。 关键词:STM32F103;直流减速电机;增量式PID 1引言 倒立摆控制系统是自动控制理论的重要研究平台,可对应于火箭垂直发射控制技术,因此对它的研究具有重大的实践意义和价值。目前对倒立摆的研究主要分为系统力学分析及建模,控制算法及仿真,而对实现手段少有研究。文章讨论了以STM32为核心的倒立摆控制器的设计与实现,它实现了经典双回路PID控制算法对旋转单级倒立摆的控制策略。 2方案设计与论证 2.1总体方案描述 整个系统分为系统模块、编码器模块、电机驱动模块、电机模块、电源模块、键盘模块、显示模块。各模块的系统框图如图1.1所示。

图 1.1 系统框图 2.2方案比较与选择 2.2.1芯片控制模块 方案一:采用传统的51系列单片机。 传统的51单片机为8位机,价格便宜,控制简单,但是运算速度慢,片内资源少,存储容量小,难以存储大体积的程序和实现快速精准的反应控制。并且受时钟限制,计时精度不高,外围电路也增加了系统的不可靠性。 方案二: 采用stm32f103单片机 stm32f103单片机,具有功能强大、效率高的指令系统,以及高性能模拟技术及丰富的外围模块。方便高效的开发环境使操作更加简便,低功耗是其它类单片机难以比拟的,集成度较高,编程相对简单。 综上,选择了性能跟好的stm32f103单片机。 2.2.2电机选择 方案一:普通直流伺服电机 普通直流伺服电机有价格低使用简单等优点,但其扭矩较小,可控性差,此系统要求控制精度高速度快,直流电机则不能满足要求。

简易旋转倒立摆及控制装置

简易旋转倒立摆及控制装置设计报告及总结 摘要 倒立摆系统机理的研究不仅具有重要的理论价值,而且具有重要的现实意义,是控制类中经久不衰的经典题型。本题中,简易旋转倒立摆,在C8051F040单片机的基础上,使用ZGB42FM直流减速电机,BTN7971B电机驱动,可变电阻(角度传感器),机械摆杆等模块。通过编写、烧入程序,调控硬件协调工作,使摆杆首先实现一定角度的转动,再完成圆周运动,以及保持竖直向上的倒立状态。用以满足题目的基本要求,进而深一步探究倒立摆在保持运动姿态方面的发展与应用。 关键字:单片机,倒立摆,摆杆,可变电阻。

引言:本题整体上只由一个电机A 提供动力,电机直接控制旋转臂C 做往复旋 转运动,而通过转轴D 连接在旋臂C 上的摆杆E 是非常灵活的。旋臂C 转动一定角度时,摆杆E 由于向心力会使摆杆E 继续向上旋转,以达到E 杆转动一个角度的效果。相似,当C 的转动速度比较快,停下后,E 下端处的速度和向心力都比较大,能够使E 杆完成圆周运动。 为了使摆杆能够倒立,就要求摆杆转动到上半圆周面时,要通过单片机控制电机A 不断的调整使旋转臂C 转动多个角度,尽量的使摆杆E 与竖直面的角度变小,并能够受力平衡,这样就可以保持一段时间的倒立状态。为达到角度的调整,就要测量出E 杆与竖直面间的角度差,经过单片机的控制,使电机A 做出相应的旋转动作,减小这个角度差。 1、方案设计与讨论: 1.1结构框图 1.2方案论证: 1.21控制器模块 本题,单片机只要接收来自传感器的信号,向电机驱动输入信号处理后计算出的高低电平即可。 方案一:用ATMEL 公司生产的AT89S52单片机,低功耗,高性能CMOS 8位处理器,使用广泛,算法较为简单,但是在执行复杂动作时,处理速度不够高。 方案二:用宏晶公司生产的STC89C52RC 单片机,STC 的单片机性能与ATMEL 的单片机相似,但是价格相对便宜。缺点是易受潮湿影响,在调用子程序是频繁出错。 方案三:使用C8051F 单片机该芯片与标准的8051芯片兼容,拥有高速指令处理能力,增加了中断源,复位源,内部有两个12位的ADC 子系统,有JTAG 调试和边界扫描,片内集成的SPI 接口,方便系统外设扩展。 单片机 电机驱动 执行电机 摆杆 角度传感器

基于LabVIEW的旋转倒立摆系统设计

龙源期刊网 https://www.360docs.net/doc/709349649.html, 基于LabVIEW的旋转倒立摆系统设计 作者:白富斌董君浩侯丽鹏 来源:《现代商贸工业》2016年第09期 摘要:以LabVIEW为平台,结合PID算法,对旋转倒立摆系统设计进行设计研究。 在倒立摆旋转过程中,通过编码器将判断位置与角度的相应电信号反馈给上位机,上位机通过运行程序计算并输出信号进而来控制摆杆的的角度、位置,使倒立摆的摆杆不会下垂。 关键词:旋转倒立摆;PID算法;LabVIEW;反馈调节 中图分类号:TB 文献标识码:A doi:10.19311/https://www.360docs.net/doc/709349649.html,ki.1672-3198.2016.09.096 0 引言 倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统。在控制过程中,能有效地反映诸如鲁棒性、随动性等许多控制中的关键问题,是检验各种控制理论的理想模型。因此对倒立摆系统的研究在理论和方法上均有着深远的意义。 本文中,用增量式旋转编码器、伺服电机、伺服驱动器、数据采集卡、液晶显示模块等制作了一个一级旋转倒立摆系统,用PID算法,在LabVIEW中编程,进行控制测试及调整,最后实现对倒立摆的精准控制。 1 倒立摆系统的电路设计 旋臂一端与伺服电机连接并由伺服电机驱动,可绕转轴在旋转水平面内旋转,旋转臂另一端固定有一个旋转编码器,旋转编码器连接着摆杆,当旋转臂转动时会带动摆杆在与编码器转轴旋转方向内旋转。如图1所示。 2 系统工作原理 编码器将角位移电压信号送到控制器,根据状态反馈控制器将此电压信号输入LabVIEW 前面板中,通过程序计算出相对应的输出信号,再给PID模块输出相应的脉冲信号,发送给伺服驱动器,再由伺服驱动器使电机转动,进而实现对摆杆的控制 3 旋转倒立摆的PID控制算法

基于双闭环PID控制的一阶倒立摆控制系统设计

自动控制原理课程设计说明书 基于双闭环PID控制的一阶倒立摆控 制系统设计 姓名: 学号: 学院: 专业: 指导教师: 2018年 1月

目录 1 任务概述 (3) 1.1设计概述 (3) 1.2 要完成的设计任务: (3) 2系统建模 (4) 2.1 对象模型 (4) 2.2 模型建立及封装 (4) 3仿真验证 (9) 3.1 实验设计 (9) 3.2 建立M文件编制绘图子程序 (9) 4 双闭环PID控制器设计 (12) 4.1内环控制器的设计 (13) 4.2外环控制器的设计 (14) 5 仿真实验 (15) 5.1简化模型 (15) 5.2 仿真实验 (17) 6 检验系统的鲁棒性 (18) 6.1 编写程序求系统性能指标 (18) 6.2 改变参数验证控制系统的鲁棒性 (19) 7 结论 (22) 附录 (22)

1 任务概述 1.1设计概述 如图1 所示的“一阶倒立摆控制系统”中,通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。 图1 一阶倒立摆控制系统 这是一个借助于“SIMULINK封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。 1.2 要完成的设计任务: (1)通过理论分析建立对象模型(实际模型),并在原点进行线性化,得到线性化模型;将实际模型和线性化模型作为子系统,并进行封装,将倒立摆的振子质量

m和倒摆长度L作为子系统的参数,可以由用户根据需要输入; (2)设计实验,进行模型验证; (3)一阶倒立摆系统为“自不稳定的非最小相位系统”。将系统小车位置作为“外环”,而将摆杆摆角作为“内环”,设计内化与外环的PID控制器; (4)在单位阶跃输入下,进行SIMULINK仿真; (5)编写绘图程序,绘制阶跃响应曲线,并编程求解系统性能指标:最大超调量、调节时间、上升时间; (6)检验系统的鲁棒性:将对象的特性做如下变化后,同样在单位阶跃输入下,检验所设计控制系统的鲁棒性能,列表比较系统的性能指标(最大超调量、调节时间、上升时间)。 倒摆长度L不变,倒立摆的振子质量m从1kg分别改变为1.5kg、2kg、2.5kg、0.8kg、0.5kg; 倒立摆的振子质量m不变,倒摆长度L从0.3m分别改变为0.5m、0.6m、0.2m、0.1m。 2系统建模 2.1 对象模型 一阶倒立摆的精确模型的状态方程为: 若只考虑θ在其工作点 = 0附近的细微变化,这时可以将模型线性化,这时可以近似认为: 一阶倒立摆的简化模型的状态方程为: 2.2 模型建立及封装 上边的图是精确模型,下边的是简化模型。

2013全国电子设计大赛旋转倒立摆

目录 第一章系统方案比较与选择 (3) 1.1总实现方案 (3) 1.2主控制器方案比较与选择 (3) 第二章理论分析与计算 (5) 2.1编码器脉冲转换角度设计 (5) 2.2摇摆及圆周算法设计 (5) 2.3机械结构设计及电机选型 (6) 2.4 PID算法设计 (7) 第三章系统电路设计 (9) 3.1 系统主板工作原理 (9) 第四章系统程序设计 (10) 4.1 系统总体模块图 (10) 4.2 系统总流程图 (11) 第五章系统测试与结果 (12) 5.1 传感器角度测试 (12) 5.2 摇摆及圆周运动测试 (12) 5.3 倒立摆测试 (13) 第六章误差分析 (14) 6.1 整体的误差分析 (14) 6.2 软件引起的算法误差分析 (14) 第七章参赛感悟 (15)

摘要 本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。 关键字:倒立摆,mega128a,编码器

第一章系统方案比较与选择 1.1总实现方案 方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。 方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。 方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。 通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。 1.2主控制器方案比较与选择 为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。 方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。 方案二:采用ATMEL公司的AVR系列ATMEGA128A单片机为核心控制器件,MEGA128A有8个外部中断,中断系统丰富,并且有128K 字节的系统内可编程Flash,我们对它的性能和指标相对也较为熟悉,如此能够实现快速扫描和数据处理!

2013年全国电子设计大赛题目简易旋转倒立摆及控制装置(C题)

参赛注意事项 9月4日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高 职高 专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 每队严格限制3人,开赛后不得中途更换队员。 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制 作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须回避,对违纪参赛队 取消评审资格。 9月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》 ,由专人封存。 易旋转倒立摆及控制装置(C 题) 简【本科组】 、任务 D 固定在旋转臂C 的一端,当旋转臂C 在电动机A 驱动下作往复旋转运动时, 带动摆杆 E 在垂直于 旋转臂C 的平面作自由旋转。 二、要求 图1旋转倒立摆结构示意图 1.基本要求 (1)摆杆从处于自然下垂状态(摆角 0°开始,驱动电机带动旋转臂作往复 旋转使摆杆 摆动,并尽快使摆角达到或超过-60° +60° (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成圆 周运动; 2013年全国大学生电子设计竞赛试题 (6) 设计并制作一套简易旋转倒 立摆及其控制装置。旋转倒立摆 的结构如图1所示。电动机A 定在支架B 上,通过转轴F 驱动 旋转臂C 旋转。摆杆E 通过转轴 D 转轴 (1 6

1.旋转倒立摆机械部分必须自制,结构要求如下:硬质摆杆 E 通过转轴 D 连 接在旋转臂C 边 缘,且距旋转臂C 轴心距离为20cn ± 5cm ;摆杆的横截面 为圆形或正方形,直径或边长不超过 1cm ,长度在15cn ± 5cm 范围内;允 许使用传感器检测摆杆的状态,但不得影响摆杆的转动灵活性;图 1 中支 架 B 的形状仅作参考,其余未作规定的可自行设计结构;电动机自行选型。 2.摆杆要能够在垂直平面灵活旋转,检验方法如下:将摆杆拉起至水平位置后 松开,摆杆至少 能够自由摆动 3 个来回。 3.除电动机 A 之外,装置中不得有其他动力部件。 4.摆杆自然下垂状态是指摆角为 0°位置,见图 2。 5.摆杆倒立状态是指摆杆在 -165°至 165°范围内。 6.基本要求( 1)、(2)中,超过 30s 视为失败;发挥部分( 1)超过 90s 视为失 败;发挥 部分( 3)超过 3 分钟即视为失败;以上各项,完 3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近 除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于 转臂的转动角度不大于 90°。 165°位置,外力撤 5s ;期间旋 2.发挥部分 1) 从摆杆处于自然下垂状态开始,控制旋转臂作往复旋转运动, 杆摆起倒立,保持倒立状态时间不少于 10s ; 尽快使摆 2) 在摆杆保持倒立状态下,施加干扰后摆杆能继续保持倒立或 立状 态; 2s 内恢复倒 3) 在摆杆保持倒立状态的前提下,旋转臂作圆周运动,并尽快使单方向转 过角度达到或超过 360°; 4) 其他。三、说明

一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有 大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 二、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:

工业控制计算机电动机驱动器一阶倒立摆 一阶倒立摆控制系统动态结构图 F面的工作是根据结构框图,分析和解决各个环节的传递函数! 1. 一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示, 其中: M小车质量 m为摆杆质量 J :为摆杆惯量 F:加在小车上的力 x :小车位置 摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 J鎳F y lsin 二- F x l cos: (1) (2) 摆杆重心的运动方程为 F x d2 (x l sin r) 彳『=mg-m d2 d2t

相关文档
最新文档