物理学相关 作业四答案

物理学相关 作业四答案
物理学相关 作业四答案

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课 后习题及答案质点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

题1.1:已知质点沿x 轴作直线运动,其运动方程为 3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小; (2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--= t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有

2002 1at t v x x + += 由此,可计算在0~2和4~6 s 时间间隔内各时刻的位置分别为 t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m 5.7- 10- 5.7- 0 40 48.7 55 58.7 60 用描数据点的作图方法,由表中数据可作0~2 s 和4~6 s 时间内的x -t 图。在2~4 s 时间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少? 题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为 ()i i i r v t r r h h r t t t x t d d 1d d d d d d 2 /12 2 2 2 -??? ? ? ?-=-= ==' 而收绳的速率t r v d d - =,且因vt l r -=0,故 ()i v 2 /12 021-??? ? ? ?-- -='vt l h v 题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v t r t r t r t r t θ+=+== ' r d d e t r 是船的径向速度,θd d e t r θ是船的横向速度,而 t r d d 是收绳的速率。由于船速v '与径向速度之间夹角位θ ,所以

半导体物理作业与答案

3.试用掺杂半导体的能带图解释说明右图中 N 型硅中载流子浓度随温度的变化过程。并在图上标出低温弱电离区, 中间电离区,强电离区,过渡区,高温本征激发区。 第四章:半导体的导电性 1.半导体中有哪几种主要的散射机构,它们跟温度的变化关系如何?并从散射的观点解释下图中硅电阻率随温度的变化曲线。 (1)电离杂质的散射 温度越高载流子热运动的平均速度越大,可以较快的掠过杂质离子不易被散射P 正比NiT (-3/2) (2)晶格振动的散射随温度升高散射概率增大 (3)其他散射机构 1.中性杂质散射 在温度很低时,未电离的杂志的书目比电离杂质的数目大的多,这种中性杂质也对周期性势场有一定的微扰作用而引起散射,当温度很低时,晶格振动散射和电离杂志散射都很微弱的情况下,才引起主要的散射作用 2.位错散射 位错线上的不饱和键具有中心作用,俘获电子形成负电中心,其周围将有电离施主杂质的积累从而形成一个局部电场,称为载流子散射的附加电场 3.等同能谷间散射 对于Ge 、Si 、导带结构是多能谷的。导带能量极小值有几个不同的波矢值。对于多能谷半导体,电子的散射将不只局限于一个能谷内,可以从一个能谷散射到另一个,称为谷间散射 AB 段温度很低本征激发可忽略,载流子主要有杂志电离提供,随温度升高增加散射主要由电离杂质决定,迁移率随温度升高而增大,所以电阻率随温度升高而下降 BC 段 温度继续升高,杂质已经全部电离,本征激发还不显著,载流子基本上不随温度变化,晶格振动上升为主要矛盾,迁移率随温度升高而降低,所以电阻率随温度升高而下增大 C 段温度继续升高,本征激发很快增加,大量的本征载流子产生远远超过迁移率减小对电阻率的影响,杂质半导体的电阻率将随温度升高极具的下降,表现出同本征半导体相似的特征 第六章:pn 结 1证明:平衡状态下(即零偏)的pn 结 E F =常数u 得则考虑到则因为dx x qV d dx dE dx dE dx dE q nq J dx dE dx dE q T k dx n d T k E E n n e n n dx n d q T k nq J q T k D dx dn qD nq J i i F n n i F i F i T k E E i n n n n n n n i F )] ([)(1)()(ln ln ln )(ln ,00)/()(0 00-=∴ ? ?????-+=-=?-+ ==?? ? ???+== +=-E E E μμμμ dx dE p J dx dE n J F p p F n n μμ==,平衡时Jn ,Jp =0,所以EF 为常数 2.推导计算pn 结接触电势差的表达式。 假设:P 区:Ec=Ecp Ev=Evp no=npo po=ppo

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

刘恩科—半导体物理习题

半导体物理习题解答 (河北大学电子信息工程学院 席砺莼) 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 27106.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理作业

半导体物理作业 第一章:半导体中的电子状态 2.已知一维晶体的电子能带可写为式中,a 为晶格常数。试求: (1)能带的宽度; (2)电子的波矢k 状态时的速度; (3)能带底部和顶部电子的有效质量。 第三章:半导体中载流子的统计分布 1.推导半导体的状态密度分布函数 2.利用玻尔兹曼分布函数推导热平衡时半导体的载流子浓度:

并证明n0,p0满足质量作用定律: 3.试用掺杂半导体的能带图解释说明右图中N型硅中载流子浓度随温度的变化过程。并在图上标出低温弱电离区,中间电离区,强电离区,过渡区,高温本征激发区。 第四章:半导体的导电性 1.半导体中有哪几种主要的散射机构,它们跟温度的变化关系如何?并从散射的观点解释下图中硅电阻率随温度的变化曲线。 第五章:非平衡载流子 1.半导体因光照或电注入就可以产生非平衡载流子,从而在半导体中形成载流子的浓度梯度,产生载流子的扩散流,试分别从1)样品足够厚2)样品厚度一定两种条件推导相应的非平衡载流子浓度分布函数及相应的扩散流密度的表达式。

2.对于一个非均匀掺杂半导体,半导体中会产生一个内建电场,试说明内建电场的形成机制 并推导载流子漂移运动与扩散运动之间的爱因斯坦关系式。 第六章:pn结 1证明:平衡状态下(即零偏)的pn结E F=常数 2.推导计算pn结接触电势差的表达式。 3.画出pn结零偏,正偏,反偏下的能带图 4. 画出pn结零偏,正偏,反偏下的载流子分布图 5. 理想pn结的几个假设条件是什么,推导理想pn结的电流电压方程,并画图示出。 6.由图所示,试说明影响pn结电流电压特性偏离理想方程的各种因素。

大学物理(第四版)课后习题及答案 磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0?10-5 T 。如设想此地磁场是由地球赤道上 一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可 看成是均匀磁场的条件为x B d d = 0;0d d 22=x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理第四版下册课后题答案

习题11 11-1.直角三角形ABC的A点上,有电荷C 10 8.19 1 - ? = q,B点上有电荷 C 10 8.49 2 - ? - = q,试求C点的电场强度(设0.04m BC=,0.03m AC=)。 解:1q在C点产生的场强: 1 12 4 AC q E i r πε = , 2 q在C点产生的场强: 2 22 4 BC q E j r πε = , ∴C点的电场强度:44 12 2.710 1.810 E E E i j =+=?+?; C点的合场强:224 12 3.2410V E E E m =+=?, 方向如图: 1.8 arctan33.73342' 2.7 α=== 。 11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电 量为C 10 12 .39- ?的正电荷均匀分布在棒上,求圆心处电场强度的大小 和方向。 解:∵棒长为2 3.12 l r d m π =-=, ∴电荷线密度:91 1.010 q C m l λ-- ==?? 可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为 0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d02 .0 = 长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷 的塑料棒在O点产生的场强。 解法1:利用微元积分: 2 1 cos 4 O x Rd dE R λθ θ πε =? , ∴2 000 cos2sin2 444 O d E d R R R α α λλλ θθαα πεπεπε - ==?≈?= ?1 0.72V m- =?; 解法2:直接利用点电荷场强公式: 由于d r <<,该小段可看成点电荷:11 2.010 q d C λ- '==?, 则圆心处场强: 11 91 22 2.010 9.0100.72 4(0.5) O q E V m R πε - - '? ==??=? 。 方向由圆心指向缝隙处。 11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电 荷线密度为λ,四分之一圆弧AB的半径为R,试求圆 α j i 2cm O R x α α

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: ?????????????????????????????????????????? (1)同理,-K状态电子的速度则为: ????????????????????????????????????????(2)从一维情况容易看出:??????? ????????????????????????????????????????????????????????(3)同理有:????????????????????????????? ????????????????????????????????????????????????????????(4)???????????????????????????????????????????????????????? ?????????????????????(5) 将式(3)(4)(5)代入式(2)后得: ??????????????????????????????????????????(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关系??????????????????? ??????????????????????????????????????????????? (1) ????????????????????????????????????(2)令???得:????? 当时,代入(2)得: 对应E(k)的极小值。 ?当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度????????? (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

【精品】物理化学第四版课后答案

物理化学第四版课后 答案

第一章气体的pVT性质 1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态:

因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。 (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试 求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同?

(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干? 解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则, 。重复上面的过程,第n 次充氮气后,系统的摩尔分数为 , 因此 。 1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。实验值为。 解:用理想气体状态方程计算 用van der Waals计算,查表得知,对于N2气(附录七)

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

半导体物理习题

半导体物理习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

附: 半导体物理习题 第一章 晶体结构 1. 指出下述各种结构是不是布拉伐格子。如果是,请给出三个原基矢量;如 果不是,请找出相应的布拉伐格子和尽可能小的基元。 (1) 底心立方(在立方单胞水平表面的中心有附加点的简立方); (2) 侧面心立方(在立方单胞垂直表面的中心有附加点的简立方); (3) 边心立方(在最近邻连线的中点有附加点的简立方)。 2. 证明体心立方格子和面心立方格子互为正、倒格子。 3. 在如图1所示的二维布拉伐格子中,以格点O 为原点,任意选取两组原基 矢量,写出格点A 和B 的晶格矢量A R 和B R 。 4. 以基矢量为坐标轴(以晶格常数a 为度量单位,如图2),在闪锌矿结构的 一个立方单胞中,写出各原子的坐标。

5.石墨有许多原子层,每层是由类似于蜂巢的六角形原子环组成,使每个原 子有距离为a的三个近邻原子。试证明在最小的晶胞中有两个原子,并画出正格子和倒格子。 第二章晶格振动和晶格缺陷 1.质量为m和M的两种原子组成如图3所示的一维复式格子。假设相邻原子 间的弹性力常数都是β,试求出振动频谱。 2.设有一个一维原子链,原子质量均为m,其平衡位置如图4所示。如果只 考虑相邻原子间的相互作用,试在简谐近似下,求出振动频率ω与波矢q之间的函数关系。 3.若把聚乙烯链—CH=CH—CH=CH—看作是具有全同质量m、但力常数是以 1 β, 2 β交替变换的一维链,链的重复距离为a,试证明该一维链振动的特征频率为} ] ) ( 2 sin 4 1[ 1{2/1 2 2 1 2 2 1 2 1 2 β β β β β β ω + - ± + = qa m 并画出色散曲线。

大学物理(第四版)课后习题及答案刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-??均匀的增加到13min r 107.2-??。 (1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 题 4.1解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为 ()200 s rad 1.132-?=-=-=t n n t πωωα (2)发动机曲轴转过的角度为 ()t n n t t t 00 20221 +=+=+=πωωαωθ 在12 s 内曲轴转过的圈数为 圈3902 20=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-?=ω, s 0.2=τ。求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。 题4.2解:(1)根据题意中转速随时间的变化关系,将t 6.0 s 代入,即得 100s 6.895.01--==??? ? ??-=ωωωτt e (2)角加速度随时间变化的规律为 220s 5.4d d ---===t t e e t ττωωα (3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=??? ? ??-==??-s t s t e t τωωθ 则t = 6.0 s 时电动机转过的圈数 圈87.52== π θN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 J C t ωωα-==d d (1) 根据初始条件对式(1)积分,有

半导体物理习题及解答

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明 之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 刘诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的 电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。 温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允

带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、E P =-E n D、m P *=-m n *。 1-4、解: (1)Ge、Si: a)Eg (Si:0K) = ;Eg (Ge:0K) = ; b)间接能隙结构 c)禁带宽度E g随温度增加而减小; (2)GaAs: a)E g (300K) 第二篇习题-半导体中的杂质和缺陷能级 刘诺编 2-1、什么叫浅能级杂质它们电离后有何特点 2-2、什么叫施主什么叫施主电离施主电离前后有何特征试举例说明之,并用能带图表征出n型半导体。 2-3、什么叫受主什么叫受主电离受主电离前后有何特征试举例说明之,并用能带图表征出p型半导体。

相关文档
最新文档