驱动桥壳分析

驱动桥壳分析
驱动桥壳分析

新产品 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛

| 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿

基于ANSYS 的汽车驱动桥壳的有限元分析

作者:武汉理工大学 杨波 罗金桥

析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS 是当前国际上流行的有

软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械SYS 软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。

桥壳强度分析计算

视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

图1 驱动桥壳的受力简图

计算可简化成三种典型的工况,只要在这三种载荷计算工况下桥壳的强度得到保证,就认为该桥壳在汽车行驶条件下是可靠的。

或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力σ和扭转切应力τ分别为:

面对车轮垂直反力在桥壳板簧座处断面引起的垂直平面的弯矩,Mv=m'G2b/2;(b为轮胎中心平面到板簧座之间的横向距离)

引力或制动力(一侧车轮上的)在水平面内引起的弯矩,Mh=F x2b

引或制动时,上述危险断面所受转矩,Tt=F x2r r;

、Wt——分别为危险断面垂直平面和水平面弯曲的抗弯截面系数及抗扭截面系数,之间的关系如表1所示。

力最大时,外轮和内轮上的垂直反力和Fz2o,Fz2i以及桥壳内、外板簧座处断面的弯曲应力σi、σo之间的关系,分别为:

通过不平路面时,危险断面的弯曲应力为:

动载荷系数。对于轿车,k取1.75;对于货车,k取2.0;对于越野车,k取2.5。

用弯曲应力为300MPa~500MPa,许用扭转切应力为150MPa~400MPa。可锻铸铁桥壳取较小值,钢板冲压焊接桥壳取较大值。

强度的传统计算方法,只能算出某一断面的应力平均值,而不能完全反映桥壳上应力及其分布的真实情况。因此,它仅用于对桥壳强其他车型的桥壳强度进行比较,而不能用于计算桥壳上某点(例如应力集中点)的真实应力值。使用有限元法对驱动桥壳进行强度分

简化得当,受力约束处理合理,就可以得到比较详细的应力与变形的分布情况,这些都是上述传统计算方法所难以办到的。

二、实现方法

一般来说,在整个有限元求解过程中最重要的环节是有限元前处理模型的建立。这一般包括

几何建模、定义材料属性和实常数(要根据单元的几何特性来设置,有些单元没有实常数)、

定义单元类型,网格划分、添加约束与载荷等。由于汽车零部件结构形状较为复杂,包含许

多复杂曲面,而一般有限元软件所提供的几何建模工具功能相当有限,难以快速方便地对其

建模。因此,针对较复杂的结构,可以先在三维CAD软件(如在UG中)建立几何模型,

然后在有限元分析软件ANSYS中通过输入接口读入实体模型,最后在ANSYS中完成其分

析过程。

三、有限元计算模型的建立

被分析汽车的参数为:汽车的名义装载量m1=4.0t,满载轴荷时后桥负荷m2=6.0t,车轮

中心线至钢板弹簧座中心距离b=370mm,两钢板弹簧座中心间的距离s=1004mm,桥壳

本身的重力G0=931.6N,桥壳设计的安全系数为7,弹簧上表面面积5000mm2,由此可

得到面载荷为5.88MPa。根据国家标准,当承受满载轴荷时,桥壳最大变形量不能超过

1.5mm/m;承受

2.5倍满载轴荷时,桥壳不能出现断裂和塑性变形。所以垂直方向的载荷

取满载轴荷的2.5倍,即5.88×2.5=14.78MPa。

首先在UG中建立起驱动桥壳的三维模型。在建立桥壳的有限元模型时,先对驱动桥壳实体做必要的简化。对主要承载件,均保留其原结构形状,以反映其力学特性,对非承载件进行了一定程度的简化。简化结果如图2所示。

图2 桥壳的三维模型

然后将模型导入到ANSYS中,对其进行网格划分,划分网格时选用具有较高的刚度及计算精度的四面体10节点92号单元,这样将该零件划分为60183个节点,29805个单元,如图3所示。

图3 桥壳的有限元模型

该驱动桥壳的本体材料为8mm厚的09SiVL钢板,从材料手册中查出其弹性模量E=5MPa,泊松比μ=0.3,材料密度为7850。计算桥壳的垂直静弯曲刚度和静强度的方法是:将后桥两端固定,在弹簧座处施加载荷,将桥壳两端车轮中心线处全部约束,然后在弹簧座处施加规定载荷。

四、计算结果

在有限元模型中,驱动桥壳在2.5倍满载轴荷工况下,应力及位移云图分别如图4、图5所

示,最大位移为0.469E-03m,最大应力为2185MPa,出现在半轴套管约束处。在不考虑由于约束影响造成的局部过大应力的情况下,应力较大值分布在钢板弹簧座的两侧,约为240MPa,远小于材料的许用应力=510MPa~610MPa。所以,该桥壳是符合结构强度要求的。

图4 2.5倍满载荷条件下的Mises应力云图

图5 2.5倍满载荷条件下的Mises位移云图

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

驱动桥差速器设计说明书

摘要 汽车驱动桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能。汽车差速器位于驱动桥内部,为满足汽车转弯时内外侧车轮或两驱动桥直接以不同角度旋转,并传递扭矩的需求,在传递扭矩时应能够根据行驶的环境自动分配扭矩,提高了汽车通过性。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 随着汽车技术的成熟,轻型车的不断普及,人们根据差速器使用目的的不同,设计出多种类型差速器。与国外相比,我国的车用差速器开发设计不论在技术上,还是在成本控制上都存在不小的差距,尤其是目前兴起的三维软件设计方面,缺乏独立开发与创新能力,这样就造成设计手段落后,新产品上市周期慢,材料品质和工艺加工水平也存在很多弱点。 本文认真地分析了国内外驱动桥中差速器设计的现状及发展趋势,在论述汽车驱动桥的基本原理和运行机理的基础上,提炼出了在差速器设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等关键技术;阐述了汽车差速器的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了轻型车差速器总成及半轴的结构型式;轻型车差速器的结构设计强度计算运用了理论分析成果;最后运用CATIA软件对汽车差速器进行建模设计,提升了设计水平,缩短了开发周期,提高了产品质量,设计完全合理,达到了预期的目标。 关键词:驱动桥;差速器;半轴;结构设计;

Automobile driving axle is one of the main components of cars, its basic function is increased by the transmission shaft or directly by coming from torque, again will torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function. Auto differential drive to meet internal, located in car wheel or when turning inside and outside two axles directly with different point of view, and transfer the rotating torque transmission torque in demand, according to the environment should be driving torque, improve the automatic assignment car through sex. Its quality, performance will have a direct impact on the security of the vehicle, economy, comfort and reliability. As car technology maturity, the increasing popularity of small, people of different purposes according to differential, the design gives a variety of types differential. Compared with foreign countries, China's automotive differential development design whether in technology, or in the cost control there are large gap, especially at present the rise of 3d software design, lack of independent development and innovation ability, thus causing design means backward, new products listed cycle slow, materials quality and craft processing level also has many weaknesses. This paper conscientiously analyzes the differential drive axle design at home and abroad in the present situation and development trend of automobile driven axle, this basic principle and operation mechanism, carry on the basis of the differential practiced a meet the design should be mastered in smooth and automobile driving through sexual, noise reduction technology application and parts of standardization, parts of generalization, serialization of products, and other key technology; Expounds the basic principle and automotive differential system analysis; According to economic, applicable, comfortable, safe and reliable design principles and analysis comparison, determine the small differential assembly and half shaft structure type; Small differential structure design strength calculation using theoretical analysis results; Finally using CATIA software modeling design of automotive differential, promoted design level, shorten the development cycle, improve the product quality, design completely reasonable, can achieve the desired goals. Key words:Differential mechanism;Differential gear;Planetary gear;Semiaxis;

驱动桥设计

5.4 差速器的设计 汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左右车轮因滚动半径不同而使左右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性恶化。为了防止这些现象的发生,汽车左右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮式、凸轮式、、蜗轮式和牙嵌自由轮式等多种形式。 5.4.1 差速器结构形式的选择 从经济性和平稳性考虑,后桥选用结构简单、紧凑、工作平稳,制造方便,用于公路汽车也很可靠地普通对称式圆锥行星齿轮差速器。 5.4.2 差速器齿轮主要参数选择 1.行星齿轮数目的选择 行星齿轮数目定为n=4 2.行星齿轮球面半径b R (mm )的确定 圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径b R ,它就是行星齿轮的安装尺寸,实际上代替了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。球面半径可根据经验公式来确定: 3d b b T K R = 式中:b K --------行星齿轮球面半径系数,b K =2.5~3.0,对于有四个行星齿轮的轿车和公路载货汽车取最小值, d T -----------计算转矩,Nm 所以:7.2=b R 6.967.458263=mm, 3.节锥距的确定mm A 7.940=mm R b 6.96= 4.行星齿轮齿数1Z 和半轴齿轮齿数2Z 的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮尽量少,但一般不小于10,半轴齿轮齿数采用14~25,后桥半轴齿轮与行星齿轮的齿数比多在 1.5~ 2.0范围内。在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数之

江淮帅铃汽车驱动桥设计说明书

第1章绪论 1.1 本课题的目的和意义 本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这

不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350N·m 以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过 程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。 1.2 驱动桥的分类 1.2.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最

汽车桥壳的结构设计及制造工艺制定

《汽车制造工艺》课程三级项目6.5t汽车桥壳的结构设计及制造工艺制定 2016年11月6日

目录 一、汽车桥壳的功能及特征分析 (3) 1.汽车桥壳的主要功能 (3) 2.汽车桥壳的种类及特征 (3) 二、汽车桥壳冲压焊接制造方法简述 (5) 三、汽车桥壳冲压焊接工艺设计 (6) 四、汽车桥壳冲压焊接工艺工序图的绘制 (9) 五、材料利用率计算及成本预测 (10) 1.材料利用率计算 (10) 2.成本预测 (10) 六、汽车桥壳的强度计算及校核 (11) 七、汽车桥壳的结构设计 (14) 八、项目心得体会 (14) 九、参考资料 (15)

一、汽车桥壳的功能及特征分析 1.汽车桥壳的主要功能 1、和从动桥一起承受汽车质量 2、使左、右驱动车轮的轴向相对位置固定 3、汽车行驶时,其作为行驶系的组成部分时功用主要是安装悬架或轮毂,支撑汽车悬架以上各部分重量,承受驱动轮传来的反力和力矩,并在驱动轮与悬架之间传力 2.汽车桥壳的种类及特征 1、铸造式桥壳 整体铸造式桥壳是汽车发展史上最早采用的结构,整体铸造桥壳优缺点都较为明显。整体铸造式桥壳可采用可锻铸铁、球墨铸铁以及铸钢铸造,为进一步提高整体铸造式桥壳的刚度和强度,还可以在整体铸造式桥壳两端压入较长的无缝钢管作为半轴套管,并用销钉固定。整体铸造式桥壳的主要优点在于刚性好、塑性变形小、强度高、易铸成等强度梁,可根据各截面不同的强度要求设计铸造不一样的壁厚。其缺点是弹性及韧变较冲焊桥壳差、铸造质量不易保证,且整体质量大、成本较高,不适合整车进行轻量化及降低成本设计。 2、冲压焊接式 钢板冲压焊接式整体桥壳主要组成部分包括上下对焊的一对桥壳主件、两个突缘、四块三角钢板、两个半轴套管、加强圈、一个后盖以及两个钢板弹簧座,

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

驱动桥设计_毕业设计论文

驱动桥设计 摘要 现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。 汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。 本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。 关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模 ABSTRACT

High effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response. The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling. According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS. On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling. Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling

商用车驱动桥设计说明书

商用车驱动桥设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率的需要时,必须要搭配一个高效、可靠的驱动桥。本文参照传统驱动桥的设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支撑轴承进行了寿命校核。本文还是采用传统的锥齿轮作为商用车的主减速器。 关键词:商用车,驱动桥,主减速器,螺旋锥齿轮

THE DESIGNING OF BUSINESS AUTOMOBILE REAR DRIVE AXLES ABSTRACT Drive axle is one of automobile four important assemblies. Its performance directly influence on the entire automobile, especially for the heavy truck. When using the big power engine with the big driving torque to satisfy the need of high speed, heavy-loaded, high efficiency, high benefit. Today heavy truck must exploit the high driven efficiency single reduction final drive axle. Becoming the heavy traditional designing method of the drive axle: first, make up the main parts structure and the key designing parameters; then reference to the similar driving axle structure, decide the entire designing project; finally check the strength of the axle drive bevel pinion, bevel gear wheel, the differential planetary pinion, differential side gear, full-floating axle shaft and the banjo axle housing, and the life expection of carrier bearing. The designing takes spiral bevel gear as the gear type of business automobile’ final drive. KEY WORDS: business automobile, drive axle, final drive , spiral bevel gear

驱动桥壳设计

驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式 和组合式三种形式。 1.可分式桥壳 可分式桥壳(图5—29)由一个垂直接 合面分为左右两部分,两部分通过螺栓联 接成一体。每一部分均由一铸造壳体和一 个压入其外端的半轴套管组成,轴管与壳 体用铆钉连接。 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳

整体式桥壳(图5—30) 的特点是整个桥壳是一根空 心梁,桥壳和主减速器壳为两 体。它具有强度和刚度较大, 主减速器拆装、调整方便等优 点。 按制造工艺不同,整体式 桥壳可分为铸造式(图5— 30a)、钢板冲压焊接式(图5 —30b)和扩张成形式三种。铸 造式桥壳的强度和刚度较大, 但质量大,加:上面多,制造 工艺复杂,主要用于中、·重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图5—31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两端, 两者间用塞焊或销钉固定。它的优 点是从动齿轮轴承的支承刚度较 好,主减速器的装配、调整比可分 式桥壳方便,然而要求有较高的加 工精度,常用于轿车、轻型货车中。 二.驱动桥壳强度计算

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析 牟建宏 (西南大学工程技术学院,北碚 400715) 摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS 0引言 驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介 1.1有限元法的定义 有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。 1.2有限元法的基本原理 将连续的求解域离散为一组单元的组合体,用在每个单元假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。 1.3有限元分析的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

驱动桥设计

商用车驱动桥设计 摘要 汽车后桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能:同时,驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力,横向力及其力矩。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,确定主减速器、差速器、半轴和桥壳的结构类型,进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键词:低速载货汽车驱动桥主减速器差速器

THE DESIGNING OF BUSINESS AUTOMOBILE REAR DRIVE AXLES ABSTRACT Drive axle is one of the most important parts of automobile. The function is to increase the torque from drive shaft or from transmission directly, and then distribute it to left and right wheels which have the differential ability automobile needed when driving. And the drive axle has to support the vertical force, longitudinal force, horizontal force and their moments between road and frame or body. Its quality and performance will affect the security, economic, comfortability and reliability. According to the design parameters given, determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, identify the main reducer, differential, axle and axle housing structure type, design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. KEY WORDS: light truck; drive axle; single reduction final drive

长城哈弗h6驱动桥毕业设计

长城哈弗h6驱动桥毕业设计 第1章绪论 1.1 概述 1.1.1驱动桥总成概述 随着汽车工业的发展及汽车技术的提高,驱动桥的设计,制造工艺都在日益完善。驱动桥也和其他汽车总成一样,除了广泛采用新技术外,在机构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织的专业化目标前进。 汽车驱动桥位于传动系的末端, 一般由主减速器,差速器,车轮传动装置和桥壳组成。其基本功用是增扭、降速和改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。 根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般越野车多以前桥为转向桥,而后桥为驱动桥。 驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。 1.1.2 驱动桥设计的要求 设计驱动桥时应当满足如下基本要求: 1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。 2)齿轮及其它传动件工作平稳,噪声小。在各种载荷和转速工况下有较高的传动效率。 3)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。与悬架导向机构运动协调。 4)结构简单,加工工艺性好,制造容易,维修,调整方便。

相关文档
最新文档